numam-spdk/lib/env_dpdk/pci.c
Ben Walker a9be2ce64a env: Rename pci_device_rte_hotremove to pci_device_rte_dev_event
Give this a more generic name. We're going to be using these
events for more than just hotremove coming up.

Signed-off-by: Ben Walker <benjamin.walker@intel.com>
Change-Id: Ia5356e9ab809807ba4d85ecc212a496e96012bce
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/3559
Community-CI: Mellanox Build Bot
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
2020-07-30 08:43:06 +00:00

1067 lines
25 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "env_internal.h"
#include <rte_alarm.h>
#include <rte_devargs.h>
#include "spdk/env.h"
#define SYSFS_PCI_DRIVERS "/sys/bus/pci/drivers"
#define PCI_CFG_SIZE 256
#define PCI_EXT_CAP_ID_SN 0x03
/* DPDK 18.11+ hotplug isn't robust. Multiple apps starting at the same time
* might cause the internal IPC to misbehave. Just retry in such case.
*/
#define DPDK_HOTPLUG_RETRY_COUNT 4
/* DPDK alarm/interrupt thread */
static pthread_mutex_t g_pci_mutex = PTHREAD_MUTEX_INITIALIZER;
static TAILQ_HEAD(, spdk_pci_device) g_pci_devices = TAILQ_HEAD_INITIALIZER(g_pci_devices);
/* devices hotplugged on a dpdk thread */
static TAILQ_HEAD(, spdk_pci_device) g_pci_hotplugged_devices =
TAILQ_HEAD_INITIALIZER(g_pci_hotplugged_devices);
static TAILQ_HEAD(, spdk_pci_driver) g_pci_drivers = TAILQ_HEAD_INITIALIZER(g_pci_drivers);
static int
map_bar_rte(struct spdk_pci_device *device, uint32_t bar,
void **mapped_addr, uint64_t *phys_addr, uint64_t *size)
{
struct rte_pci_device *dev = device->dev_handle;
*mapped_addr = dev->mem_resource[bar].addr;
*phys_addr = (uint64_t)dev->mem_resource[bar].phys_addr;
*size = (uint64_t)dev->mem_resource[bar].len;
return 0;
}
static int
unmap_bar_rte(struct spdk_pci_device *device, uint32_t bar, void *addr)
{
return 0;
}
static int
cfg_read_rte(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset)
{
int rc;
rc = rte_pci_read_config(dev->dev_handle, value, len, offset);
return (rc > 0 && (uint32_t) rc == len) ? 0 : -1;
}
static int
cfg_write_rte(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset)
{
int rc;
rc = rte_pci_write_config(dev->dev_handle, value, len, offset);
#ifdef __FreeBSD__
/* DPDK returns 0 on success and -1 on failure */
return rc;
#endif
return (rc > 0 && (uint32_t) rc == len) ? 0 : -1;
}
static void
remove_rte_dev(struct rte_pci_device *rte_dev)
{
char bdf[32];
int i = 0, rc;
snprintf(bdf, sizeof(bdf), "%s", rte_dev->device.name);
do {
rc = rte_eal_hotplug_remove("pci", bdf);
} while (rc == -ENOMSG && ++i <= DPDK_HOTPLUG_RETRY_COUNT);
}
static void
detach_rte_cb(void *_dev)
{
remove_rte_dev(_dev);
}
static void
detach_rte(struct spdk_pci_device *dev)
{
struct rte_pci_device *rte_dev = dev->dev_handle;
int i;
bool removed;
if (!spdk_process_is_primary()) {
remove_rte_dev(rte_dev);
return;
}
pthread_mutex_lock(&g_pci_mutex);
dev->internal.attached = false;
/* prevent the hotremove notification from removing this device */
dev->internal.pending_removal = true;
pthread_mutex_unlock(&g_pci_mutex);
rte_eal_alarm_set(1, detach_rte_cb, rte_dev);
/* wait up to 2s for the cb to execute */
for (i = 2000; i > 0; i--) {
spdk_delay_us(1000);
pthread_mutex_lock(&g_pci_mutex);
removed = dev->internal.removed;
pthread_mutex_unlock(&g_pci_mutex);
if (removed) {
break;
}
}
/* besides checking the removed flag, we also need to wait
* for the dpdk detach function to unwind, as it's doing some
* operations even after calling our detach callback. Simply
* cancel the alarm - if it started executing already, this
* call will block and wait for it to finish.
*/
rte_eal_alarm_cancel(detach_rte_cb, rte_dev);
/* the device could have been finally removed, so just check
* it again.
*/
pthread_mutex_lock(&g_pci_mutex);
removed = dev->internal.removed;
pthread_mutex_unlock(&g_pci_mutex);
if (!removed) {
fprintf(stderr, "Timeout waiting for DPDK to remove PCI device %s.\n",
rte_dev->name);
/* If we reach this state, then the device couldn't be removed and most likely
a subsequent hot add of a device in the same BDF will fail */
}
}
void
spdk_pci_driver_register(const char *name, struct spdk_pci_id *id_table, uint32_t flags)
{
struct spdk_pci_driver *driver;
driver = calloc(1, sizeof(*driver));
if (!driver) {
/* we can't do any better than bailing atm */
return;
}
driver->name = name;
driver->id_table = id_table;
driver->drv_flags = flags;
TAILQ_INSERT_TAIL(&g_pci_drivers, driver, tailq);
}
struct spdk_pci_driver *
spdk_pci_nvme_get_driver(void)
{
return spdk_pci_get_driver("nvme");
}
struct spdk_pci_driver *
spdk_pci_get_driver(const char *name)
{
struct spdk_pci_driver *driver;
TAILQ_FOREACH(driver, &g_pci_drivers, tailq) {
if (strcmp(driver->name, name) == 0) {
return driver;
}
}
return NULL;
}
static void
pci_device_rte_dev_event(const char *device_name,
enum rte_dev_event_type event,
void *cb_arg)
{
struct spdk_pci_device *dev;
bool can_detach = false;
switch (event) {
default:
case RTE_DEV_EVENT_ADD:
/* Nothing to do here yet. */
break;
case RTE_DEV_EVENT_REMOVE:
pthread_mutex_lock(&g_pci_mutex);
TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) {
struct rte_pci_device *rte_dev = dev->dev_handle;
if (strcmp(rte_dev->name, device_name) == 0 &&
!dev->internal.pending_removal) {
can_detach = !dev->internal.attached;
/* prevent any further attaches */
dev->internal.pending_removal = true;
break;
}
}
pthread_mutex_unlock(&g_pci_mutex);
if (dev != NULL && can_detach) {
/* if device is not attached we can remove it right away.
* Otherwise it will be removed at detach. */
remove_rte_dev(dev->dev_handle);
}
break;
}
}
static void
cleanup_pci_devices(void)
{
struct spdk_pci_device *dev, *tmp;
pthread_mutex_lock(&g_pci_mutex);
/* cleanup removed devices */
TAILQ_FOREACH_SAFE(dev, &g_pci_devices, internal.tailq, tmp) {
if (!dev->internal.removed) {
continue;
}
vtophys_pci_device_removed(dev->dev_handle);
TAILQ_REMOVE(&g_pci_devices, dev, internal.tailq);
free(dev);
}
/* add newly-attached devices */
TAILQ_FOREACH_SAFE(dev, &g_pci_hotplugged_devices, internal.tailq, tmp) {
TAILQ_REMOVE(&g_pci_hotplugged_devices, dev, internal.tailq);
TAILQ_INSERT_TAIL(&g_pci_devices, dev, internal.tailq);
vtophys_pci_device_added(dev->dev_handle);
}
pthread_mutex_unlock(&g_pci_mutex);
}
static int scan_pci_bus(bool delay_init);
/* translate spdk_pci_driver to an rte_pci_driver and register it to dpdk */
static int
register_rte_driver(struct spdk_pci_driver *driver)
{
unsigned pci_id_count = 0;
struct rte_pci_id *rte_id_table;
char *rte_name;
size_t rte_name_len;
uint32_t rte_flags;
assert(driver->id_table);
while (driver->id_table[pci_id_count].vendor_id) {
pci_id_count++;
}
assert(pci_id_count > 0);
rte_id_table = calloc(pci_id_count + 1, sizeof(*rte_id_table));
if (!rte_id_table) {
return -ENOMEM;
}
while (pci_id_count > 0) {
struct rte_pci_id *rte_id = &rte_id_table[pci_id_count - 1];
const struct spdk_pci_id *spdk_id = &driver->id_table[pci_id_count - 1];
rte_id->class_id = spdk_id->class_id;
rte_id->vendor_id = spdk_id->vendor_id;
rte_id->device_id = spdk_id->device_id;
rte_id->subsystem_vendor_id = spdk_id->subvendor_id;
rte_id->subsystem_device_id = spdk_id->subdevice_id;
pci_id_count--;
}
assert(driver->name);
rte_name_len = strlen(driver->name) + strlen("spdk_") + 1;
rte_name = calloc(rte_name_len, 1);
if (!rte_name) {
free(rte_id_table);
return -ENOMEM;
}
snprintf(rte_name, rte_name_len, "spdk_%s", driver->name);
driver->driver.driver.name = rte_name;
driver->driver.id_table = rte_id_table;
rte_flags = 0;
if (driver->drv_flags & SPDK_PCI_DRIVER_NEED_MAPPING) {
rte_flags |= RTE_PCI_DRV_NEED_MAPPING;
}
if (driver->drv_flags & SPDK_PCI_DRIVER_WC_ACTIVATE) {
rte_flags |= RTE_PCI_DRV_WC_ACTIVATE;
}
driver->driver.drv_flags = rte_flags;
driver->driver.probe = pci_device_init;
driver->driver.remove = pci_device_fini;
rte_pci_register(&driver->driver);
return 0;
}
static inline void
_pci_env_init(void)
{
/* We assume devices were present on the bus for more than 2 seconds
* before initializing SPDK and there's no need to wait more. We scan
* the bus, but we don't blacklist any devices.
*/
scan_pci_bus(false);
/* Register a single hotremove callback for all devices. */
if (spdk_process_is_primary()) {
rte_dev_event_callback_register(NULL, pci_device_rte_dev_event, NULL);
}
}
void
pci_env_init(void)
{
struct spdk_pci_driver *driver;
TAILQ_FOREACH(driver, &g_pci_drivers, tailq) {
register_rte_driver(driver);
}
_pci_env_init();
}
void
pci_env_reinit(void)
{
/* There is no need to register pci drivers again, since they were
* already pre-registered in pci_env_init.
*/
_pci_env_init();
}
void
pci_env_fini(void)
{
struct spdk_pci_device *dev;
char bdf[32];
cleanup_pci_devices();
TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) {
if (dev->internal.attached) {
spdk_pci_addr_fmt(bdf, sizeof(bdf), &dev->addr);
fprintf(stderr, "Device %s is still attached at shutdown!\n", bdf);
}
}
if (spdk_process_is_primary()) {
rte_dev_event_callback_unregister(NULL, pci_device_rte_dev_event, NULL);
}
}
int
pci_device_init(struct rte_pci_driver *_drv,
struct rte_pci_device *_dev)
{
struct spdk_pci_driver *driver = (struct spdk_pci_driver *)_drv;
struct spdk_pci_device *dev;
int rc;
dev = calloc(1, sizeof(*dev));
if (dev == NULL) {
return -1;
}
dev->dev_handle = _dev;
dev->addr.domain = _dev->addr.domain;
dev->addr.bus = _dev->addr.bus;
dev->addr.dev = _dev->addr.devid;
dev->addr.func = _dev->addr.function;
dev->id.class_id = _dev->id.class_id;
dev->id.vendor_id = _dev->id.vendor_id;
dev->id.device_id = _dev->id.device_id;
dev->id.subvendor_id = _dev->id.subsystem_vendor_id;
dev->id.subdevice_id = _dev->id.subsystem_device_id;
dev->socket_id = _dev->device.numa_node;
dev->type = "pci";
dev->map_bar = map_bar_rte;
dev->unmap_bar = unmap_bar_rte;
dev->cfg_read = cfg_read_rte;
dev->cfg_write = cfg_write_rte;
dev->internal.driver = driver;
dev->internal.claim_fd = -1;
if (driver->cb_fn != NULL) {
rc = driver->cb_fn(driver->cb_arg, dev);
if (rc != 0) {
free(dev);
return rc;
}
dev->internal.attached = true;
}
pthread_mutex_lock(&g_pci_mutex);
TAILQ_INSERT_TAIL(&g_pci_hotplugged_devices, dev, internal.tailq);
pthread_mutex_unlock(&g_pci_mutex);
return 0;
}
int
pci_device_fini(struct rte_pci_device *_dev)
{
struct spdk_pci_device *dev;
pthread_mutex_lock(&g_pci_mutex);
TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) {
if (dev->dev_handle == _dev) {
break;
}
}
if (dev == NULL || dev->internal.attached) {
/* The device might be still referenced somewhere in SPDK. */
pthread_mutex_unlock(&g_pci_mutex);
return -1;
}
/* remove our whitelist_at option */
if (_dev->device.devargs) {
_dev->device.devargs->data = NULL;
}
assert(!dev->internal.removed);
dev->internal.removed = true;
pthread_mutex_unlock(&g_pci_mutex);
return 0;
}
void
spdk_pci_device_detach(struct spdk_pci_device *dev)
{
assert(dev->internal.attached);
if (dev->internal.claim_fd >= 0) {
spdk_pci_device_unclaim(dev);
}
if (strcmp(dev->type, "pci") == 0) {
/* if it's a physical device we need to deal with DPDK on
* a different process and we can't just unset one flag
* here. We also want to stop using any device resources
* so that the device isn't "in use" by the userspace driver
* once we detach it. This would allow attaching the device
* to a different process, or to a kernel driver like nvme.
*/
detach_rte(dev);
} else {
dev->internal.attached = false;
}
cleanup_pci_devices();
}
static int
scan_pci_bus(bool delay_init)
{
struct spdk_pci_driver *driver;
struct rte_pci_device *rte_dev;
uint64_t now;
rte_bus_scan();
now = spdk_get_ticks();
driver = TAILQ_FIRST(&g_pci_drivers);
if (!driver) {
return 0;
}
TAILQ_FOREACH(rte_dev, &driver->driver.bus->device_list, next) {
struct rte_devargs *da;
da = rte_dev->device.devargs;
if (!da) {
char devargs_str[128];
/* the device was never blacklisted or whitelisted */
da = calloc(1, sizeof(*da));
if (!da) {
return -1;
}
snprintf(devargs_str, sizeof(devargs_str), "pci:%s", rte_dev->device.name);
if (rte_devargs_parse(da, devargs_str) != 0) {
free(da);
return -1;
}
rte_devargs_insert(&da);
rte_dev->device.devargs = da;
}
if (da->data) {
uint64_t whitelist_at = (uint64_t)(uintptr_t)da->data;
/* this device was seen by spdk before... */
if (da->policy == RTE_DEV_BLACKLISTED && whitelist_at <= now) {
da->policy = RTE_DEV_WHITELISTED;
}
} else if ((driver->driver.bus->bus.conf.scan_mode == RTE_BUS_SCAN_WHITELIST &&
da->policy == RTE_DEV_WHITELISTED) || da->policy != RTE_DEV_BLACKLISTED) {
/* override the policy only if not permanently blacklisted */
if (delay_init) {
da->policy = RTE_DEV_BLACKLISTED;
da->data = (void *)(now + 2 * spdk_get_ticks_hz());
} else {
da->policy = RTE_DEV_WHITELISTED;
da->data = (void *)(uintptr_t)now;
}
}
}
return 0;
}
int
spdk_pci_device_attach(struct spdk_pci_driver *driver,
spdk_pci_enum_cb enum_cb,
void *enum_ctx, struct spdk_pci_addr *pci_address)
{
struct spdk_pci_device *dev;
struct rte_pci_device *rte_dev;
struct rte_devargs *da;
int rc;
char bdf[32];
spdk_pci_addr_fmt(bdf, sizeof(bdf), pci_address);
cleanup_pci_devices();
TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) {
if (spdk_pci_addr_compare(&dev->addr, pci_address) == 0) {
break;
}
}
if (dev != NULL && dev->internal.driver == driver) {
pthread_mutex_lock(&g_pci_mutex);
if (dev->internal.attached || dev->internal.pending_removal) {
pthread_mutex_unlock(&g_pci_mutex);
return -1;
}
rc = enum_cb(enum_ctx, dev);
if (rc == 0) {
dev->internal.attached = true;
}
pthread_mutex_unlock(&g_pci_mutex);
return rc;
}
driver->cb_fn = enum_cb;
driver->cb_arg = enum_ctx;
int i = 0;
do {
rc = rte_eal_hotplug_add("pci", bdf, "");
} while (rc == -ENOMSG && ++i <= DPDK_HOTPLUG_RETRY_COUNT);
if (i > 1 && rc == -EEXIST) {
/* Even though the previous request timed out, the device
* was attached successfully.
*/
rc = 0;
}
driver->cb_arg = NULL;
driver->cb_fn = NULL;
cleanup_pci_devices();
if (rc != 0) {
return -1;
}
/* explicit attach ignores the whitelist, so if we blacklisted this
* device before let's enable it now - just for clarity.
*/
TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) {
if (spdk_pci_addr_compare(&dev->addr, pci_address) == 0) {
break;
}
}
assert(dev != NULL);
rte_dev = dev->dev_handle;
da = rte_dev->device.devargs;
if (da && da->data) {
da->data = (void *)(uintptr_t)spdk_get_ticks();
da->policy = RTE_DEV_WHITELISTED;
}
return 0;
}
/* Note: You can call spdk_pci_enumerate from more than one thread
* simultaneously safely, but you cannot call spdk_pci_enumerate
* and rte_eal_pci_probe simultaneously.
*/
int
spdk_pci_enumerate(struct spdk_pci_driver *driver,
spdk_pci_enum_cb enum_cb,
void *enum_ctx)
{
struct spdk_pci_device *dev;
int rc;
cleanup_pci_devices();
pthread_mutex_lock(&g_pci_mutex);
TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) {
if (dev->internal.attached ||
dev->internal.driver != driver ||
dev->internal.pending_removal) {
continue;
}
rc = enum_cb(enum_ctx, dev);
if (rc == 0) {
dev->internal.attached = true;
} else if (rc < 0) {
pthread_mutex_unlock(&g_pci_mutex);
return -1;
}
}
pthread_mutex_unlock(&g_pci_mutex);
if (scan_pci_bus(true) != 0) {
return -1;
}
driver->cb_fn = enum_cb;
driver->cb_arg = enum_ctx;
if (rte_bus_probe() != 0) {
driver->cb_arg = NULL;
driver->cb_fn = NULL;
return -1;
}
driver->cb_arg = NULL;
driver->cb_fn = NULL;
cleanup_pci_devices();
return 0;
}
struct spdk_pci_device *
spdk_pci_get_first_device(void)
{
return TAILQ_FIRST(&g_pci_devices);
}
struct spdk_pci_device *
spdk_pci_get_next_device(struct spdk_pci_device *prev)
{
return TAILQ_NEXT(prev, internal.tailq);
}
int
spdk_pci_device_map_bar(struct spdk_pci_device *dev, uint32_t bar,
void **mapped_addr, uint64_t *phys_addr, uint64_t *size)
{
return dev->map_bar(dev, bar, mapped_addr, phys_addr, size);
}
int
spdk_pci_device_unmap_bar(struct spdk_pci_device *dev, uint32_t bar, void *addr)
{
return dev->unmap_bar(dev, bar, addr);
}
uint32_t
spdk_pci_device_get_domain(struct spdk_pci_device *dev)
{
return dev->addr.domain;
}
uint8_t
spdk_pci_device_get_bus(struct spdk_pci_device *dev)
{
return dev->addr.bus;
}
uint8_t
spdk_pci_device_get_dev(struct spdk_pci_device *dev)
{
return dev->addr.dev;
}
uint8_t
spdk_pci_device_get_func(struct spdk_pci_device *dev)
{
return dev->addr.func;
}
uint16_t
spdk_pci_device_get_vendor_id(struct spdk_pci_device *dev)
{
return dev->id.vendor_id;
}
uint16_t
spdk_pci_device_get_device_id(struct spdk_pci_device *dev)
{
return dev->id.device_id;
}
uint16_t
spdk_pci_device_get_subvendor_id(struct spdk_pci_device *dev)
{
return dev->id.subvendor_id;
}
uint16_t
spdk_pci_device_get_subdevice_id(struct spdk_pci_device *dev)
{
return dev->id.subdevice_id;
}
struct spdk_pci_id
spdk_pci_device_get_id(struct spdk_pci_device *dev)
{
return dev->id;
}
int
spdk_pci_device_get_socket_id(struct spdk_pci_device *dev)
{
return dev->socket_id;
}
int
spdk_pci_device_cfg_read(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset)
{
return dev->cfg_read(dev, value, len, offset);
}
int
spdk_pci_device_cfg_write(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset)
{
return dev->cfg_write(dev, value, len, offset);
}
int
spdk_pci_device_cfg_read8(struct spdk_pci_device *dev, uint8_t *value, uint32_t offset)
{
return spdk_pci_device_cfg_read(dev, value, 1, offset);
}
int
spdk_pci_device_cfg_write8(struct spdk_pci_device *dev, uint8_t value, uint32_t offset)
{
return spdk_pci_device_cfg_write(dev, &value, 1, offset);
}
int
spdk_pci_device_cfg_read16(struct spdk_pci_device *dev, uint16_t *value, uint32_t offset)
{
return spdk_pci_device_cfg_read(dev, value, 2, offset);
}
int
spdk_pci_device_cfg_write16(struct spdk_pci_device *dev, uint16_t value, uint32_t offset)
{
return spdk_pci_device_cfg_write(dev, &value, 2, offset);
}
int
spdk_pci_device_cfg_read32(struct spdk_pci_device *dev, uint32_t *value, uint32_t offset)
{
return spdk_pci_device_cfg_read(dev, value, 4, offset);
}
int
spdk_pci_device_cfg_write32(struct spdk_pci_device *dev, uint32_t value, uint32_t offset)
{
return spdk_pci_device_cfg_write(dev, &value, 4, offset);
}
int
spdk_pci_device_get_serial_number(struct spdk_pci_device *dev, char *sn, size_t len)
{
int err;
uint32_t pos, header = 0;
uint32_t i, buf[2];
if (len < 17) {
return -1;
}
err = spdk_pci_device_cfg_read32(dev, &header, PCI_CFG_SIZE);
if (err || !header) {
return -1;
}
pos = PCI_CFG_SIZE;
while (1) {
if ((header & 0x0000ffff) == PCI_EXT_CAP_ID_SN) {
if (pos) {
/* skip the header */
pos += 4;
for (i = 0; i < 2; i++) {
err = spdk_pci_device_cfg_read32(dev, &buf[i], pos + 4 * i);
if (err) {
return -1;
}
}
snprintf(sn, len, "%08x%08x", buf[1], buf[0]);
return 0;
}
}
pos = (header >> 20) & 0xffc;
/* 0 if no other items exist */
if (pos < PCI_CFG_SIZE) {
return -1;
}
err = spdk_pci_device_cfg_read32(dev, &header, pos);
if (err) {
return -1;
}
}
return -1;
}
struct spdk_pci_addr
spdk_pci_device_get_addr(struct spdk_pci_device *dev)
{
return dev->addr;
}
bool
spdk_pci_device_is_removed(struct spdk_pci_device *dev)
{
return dev->internal.pending_removal;
}
int
spdk_pci_addr_compare(const struct spdk_pci_addr *a1, const struct spdk_pci_addr *a2)
{
if (a1->domain > a2->domain) {
return 1;
} else if (a1->domain < a2->domain) {
return -1;
} else if (a1->bus > a2->bus) {
return 1;
} else if (a1->bus < a2->bus) {
return -1;
} else if (a1->dev > a2->dev) {
return 1;
} else if (a1->dev < a2->dev) {
return -1;
} else if (a1->func > a2->func) {
return 1;
} else if (a1->func < a2->func) {
return -1;
}
return 0;
}
#ifdef __linux__
int
spdk_pci_device_claim(struct spdk_pci_device *dev)
{
int dev_fd;
char dev_name[64];
int pid;
void *dev_map;
struct flock pcidev_lock = {
.l_type = F_WRLCK,
.l_whence = SEEK_SET,
.l_start = 0,
.l_len = 0,
};
snprintf(dev_name, sizeof(dev_name), "/tmp/spdk_pci_lock_%04x:%02x:%02x.%x",
dev->addr.domain, dev->addr.bus, dev->addr.dev, dev->addr.func);
dev_fd = open(dev_name, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
if (dev_fd == -1) {
fprintf(stderr, "could not open %s\n", dev_name);
return -errno;
}
if (ftruncate(dev_fd, sizeof(int)) != 0) {
fprintf(stderr, "could not truncate %s\n", dev_name);
close(dev_fd);
return -errno;
}
dev_map = mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE,
MAP_SHARED, dev_fd, 0);
if (dev_map == MAP_FAILED) {
fprintf(stderr, "could not mmap dev %s (%d)\n", dev_name, errno);
close(dev_fd);
return -errno;
}
if (fcntl(dev_fd, F_SETLK, &pcidev_lock) != 0) {
pid = *(int *)dev_map;
fprintf(stderr, "Cannot create lock on device %s, probably"
" process %d has claimed it\n", dev_name, pid);
munmap(dev_map, sizeof(int));
close(dev_fd);
/* F_SETLK returns unspecified errnos, normalize them */
return -EACCES;
}
*(int *)dev_map = (int)getpid();
munmap(dev_map, sizeof(int));
dev->internal.claim_fd = dev_fd;
/* Keep dev_fd open to maintain the lock. */
return 0;
}
void
spdk_pci_device_unclaim(struct spdk_pci_device *dev)
{
char dev_name[64];
snprintf(dev_name, sizeof(dev_name), "/tmp/spdk_pci_lock_%04x:%02x:%02x.%x",
dev->addr.domain, dev->addr.bus, dev->addr.dev, dev->addr.func);
close(dev->internal.claim_fd);
dev->internal.claim_fd = -1;
unlink(dev_name);
}
#endif /* __linux__ */
#ifdef __FreeBSD__
int
spdk_pci_device_claim(struct spdk_pci_device *dev)
{
/* TODO */
return 0;
}
void
spdk_pci_device_unclaim(struct spdk_pci_device *dev)
{
/* TODO */
}
#endif /* __FreeBSD__ */
int
spdk_pci_addr_parse(struct spdk_pci_addr *addr, const char *bdf)
{
unsigned domain, bus, dev, func;
if (addr == NULL || bdf == NULL) {
return -EINVAL;
}
if ((sscanf(bdf, "%x:%x:%x.%x", &domain, &bus, &dev, &func) == 4) ||
(sscanf(bdf, "%x.%x.%x.%x", &domain, &bus, &dev, &func) == 4)) {
/* Matched a full address - all variables are initialized */
} else if (sscanf(bdf, "%x:%x:%x", &domain, &bus, &dev) == 3) {
func = 0;
} else if ((sscanf(bdf, "%x:%x.%x", &bus, &dev, &func) == 3) ||
(sscanf(bdf, "%x.%x.%x", &bus, &dev, &func) == 3)) {
domain = 0;
} else if ((sscanf(bdf, "%x:%x", &bus, &dev) == 2) ||
(sscanf(bdf, "%x.%x", &bus, &dev) == 2)) {
domain = 0;
func = 0;
} else {
return -EINVAL;
}
if (bus > 0xFF || dev > 0x1F || func > 7) {
return -EINVAL;
}
addr->domain = domain;
addr->bus = bus;
addr->dev = dev;
addr->func = func;
return 0;
}
int
spdk_pci_addr_fmt(char *bdf, size_t sz, const struct spdk_pci_addr *addr)
{
int rc;
rc = snprintf(bdf, sz, "%04x:%02x:%02x.%x",
addr->domain, addr->bus,
addr->dev, addr->func);
if (rc > 0 && (size_t)rc < sz) {
return 0;
}
return -1;
}
void
spdk_pci_hook_device(struct spdk_pci_driver *drv, struct spdk_pci_device *dev)
{
assert(dev->map_bar != NULL);
assert(dev->unmap_bar != NULL);
assert(dev->cfg_read != NULL);
assert(dev->cfg_write != NULL);
dev->internal.driver = drv;
TAILQ_INSERT_TAIL(&g_pci_devices, dev, internal.tailq);
}
void
spdk_pci_unhook_device(struct spdk_pci_device *dev)
{
assert(!dev->internal.attached);
TAILQ_REMOVE(&g_pci_devices, dev, internal.tailq);
}
const char *
spdk_pci_device_get_type(const struct spdk_pci_device *dev)
{
return dev->type;
}