320c7fb825
The NVMe over Fabrics transports should already be setting this in the initial admin queue Connect command, so setting it again is not useful. The kernel NVMe over Fabrics target additionally has a bug in the Set Features - Keep Alive Timeout handler (it is extracting the KATO value from the wrong offset in the command), so this works around the kernel bug by not sending the Set Features command at all. Change-Id: I0d7f09b71fcea116acf8810c5880157bb9315a04 Signed-off-by: Ziye Yang <ziye.yang@intel.com>
1633 lines
43 KiB
C
1633 lines
43 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "nvme_internal.h"
|
|
#include "spdk/env.h"
|
|
#include <signal.h>
|
|
|
|
static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct nvme_async_event_request *aer);
|
|
|
|
static int
|
|
nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
|
|
{
|
|
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
|
|
&cc->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
|
|
{
|
|
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
|
|
&csts->raw);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
|
|
{
|
|
return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
|
|
&cap->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
|
|
{
|
|
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
|
|
&vs->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_set_cc(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cc_register *cc)
|
|
{
|
|
return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
|
|
cc->raw);
|
|
}
|
|
|
|
void
|
|
spdk_nvme_ctrlr_opts_set_defaults(struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
opts->num_io_queues = DEFAULT_MAX_IO_QUEUES;
|
|
opts->use_cmb_sqs = false;
|
|
opts->arb_mechanism = SPDK_NVME_CC_AMS_RR;
|
|
opts->keep_alive_timeout_ms = 10 * 1000;
|
|
opts->queue_size = DEFAULT_MAX_QUEUE_SIZE;
|
|
strncpy(opts->hostnqn, DEFAULT_HOSTNQN, sizeof(opts->hostnqn));
|
|
}
|
|
|
|
/**
|
|
* This function will be called when the process allocates the IO qpair.
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
pid_t pid = getpid();
|
|
|
|
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
|
|
if (active_proc->pid == pid) {
|
|
TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair,
|
|
per_process_tailq);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function will be called when the process frees the IO qpair.
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
pid_t pid = getpid();
|
|
|
|
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
|
|
if (active_proc->pid == pid) {
|
|
TAILQ_REMOVE(&active_proc->allocated_io_qpairs, qpair,
|
|
per_process_tailq);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
struct spdk_nvme_qpair *
|
|
spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
|
|
enum spdk_nvme_qprio qprio)
|
|
{
|
|
uint32_t qid;
|
|
struct spdk_nvme_qpair *qpair;
|
|
union spdk_nvme_cc_register cc;
|
|
|
|
if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
|
|
SPDK_ERRLOG("get_cc failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Only the low 2 bits (values 0, 1, 2, 3) of QPRIO are valid. */
|
|
if ((qprio & 3) != qprio) {
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
|
|
* default round robin arbitration method.
|
|
*/
|
|
if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (qprio != SPDK_NVME_QPRIO_URGENT)) {
|
|
SPDK_ERRLOG("invalid queue priority for default round robin arbitration method\n");
|
|
return NULL;
|
|
}
|
|
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
/*
|
|
* Get the first available I/O queue ID.
|
|
*/
|
|
qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
|
|
if (qid > ctrlr->opts.num_io_queues) {
|
|
SPDK_ERRLOG("No free I/O queue IDs\n");
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return NULL;
|
|
}
|
|
|
|
qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, qprio);
|
|
if (qpair == NULL) {
|
|
SPDK_ERRLOG("transport->ctrlr_create_io_qpair() failed\n");
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return NULL;
|
|
}
|
|
spdk_bit_array_clear(ctrlr->free_io_qids, qid);
|
|
TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
|
|
|
|
nvme_ctrlr_proc_add_io_qpair(qpair);
|
|
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return qpair;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
|
|
if (qpair == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
ctrlr = qpair->ctrlr;
|
|
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
nvme_ctrlr_proc_remove_io_qpair(qpair);
|
|
|
|
TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
|
|
spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
|
|
|
|
if (nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair)) {
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return -1;
|
|
}
|
|
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_intel_log_page_directory *log_page_directory)
|
|
{
|
|
struct spdk_pci_id pci_id;
|
|
|
|
if (log_page_directory == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (nvme_transport_ctrlr_get_pci_id(ctrlr, &pci_id)) {
|
|
return;
|
|
}
|
|
|
|
if (pci_id.vendor_id != SPDK_PCI_VID_INTEL) {
|
|
return;
|
|
}
|
|
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
|
|
|
|
if (log_page_directory->read_latency_log_len ||
|
|
(ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
|
|
}
|
|
if (log_page_directory->write_latency_log_len ||
|
|
(ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
|
|
}
|
|
if (log_page_directory->temperature_statistics_log_len) {
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
|
|
}
|
|
if (log_page_directory->smart_log_len) {
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
|
|
}
|
|
if (log_page_directory->marketing_description_log_len) {
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
|
|
}
|
|
}
|
|
|
|
static int nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint64_t phys_addr = 0;
|
|
struct nvme_completion_poll_status status;
|
|
struct spdk_nvme_intel_log_page_directory *log_page_directory;
|
|
|
|
log_page_directory = spdk_zmalloc(sizeof(struct spdk_nvme_intel_log_page_directory),
|
|
64, &phys_addr);
|
|
if (log_page_directory == NULL) {
|
|
SPDK_ERRLOG("could not allocate log_page_directory\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
status.done = false;
|
|
spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY, SPDK_NVME_GLOBAL_NS_TAG,
|
|
log_page_directory, sizeof(struct spdk_nvme_intel_log_page_directory),
|
|
nvme_completion_poll_cb,
|
|
&status);
|
|
while (status.done == false) {
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
spdk_free(log_page_directory);
|
|
SPDK_ERRLOG("nvme_ctrlr_cmd_get_log_page failed!\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, log_page_directory);
|
|
spdk_free(log_page_directory);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
|
|
/* Mandatory pages */
|
|
ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
|
|
ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
|
|
ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
|
|
if (ctrlr->cdata.lpa.celp) {
|
|
ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
|
|
}
|
|
if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
|
|
nvme_ctrlr_set_intel_support_log_pages(ctrlr);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
|
|
/* Mandatory features */
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
|
|
/* Optional features */
|
|
if (ctrlr->cdata.vwc.present) {
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
|
|
}
|
|
if (ctrlr->cdata.apsta.supported) {
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
|
|
}
|
|
if (ctrlr->cdata.hmpre) {
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
|
|
}
|
|
if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
|
|
nvme_ctrlr_set_intel_supported_features(ctrlr);
|
|
}
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
|
|
{
|
|
struct spdk_nvme_qpair *qpair;
|
|
|
|
if (hot_remove) {
|
|
ctrlr->is_removed = true;
|
|
}
|
|
ctrlr->is_failed = true;
|
|
nvme_qpair_fail(ctrlr->adminq);
|
|
TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
|
|
nvme_qpair_fail(qpair);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_shutdown(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_cc_register cc;
|
|
union spdk_nvme_csts_register csts;
|
|
int ms_waited = 0;
|
|
|
|
if (ctrlr->is_removed) {
|
|
return;
|
|
}
|
|
|
|
if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
|
|
SPDK_ERRLOG("get_cc() failed\n");
|
|
return;
|
|
}
|
|
|
|
cc.bits.shn = SPDK_NVME_SHN_NORMAL;
|
|
|
|
if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
|
|
SPDK_ERRLOG("set_cc() failed\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The NVMe spec does not define a timeout period
|
|
* for shutdown notification, so we just pick
|
|
* 5 seconds as a reasonable amount of time to
|
|
* wait before proceeding.
|
|
*/
|
|
do {
|
|
if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
|
|
SPDK_ERRLOG("get_csts() failed\n");
|
|
return;
|
|
}
|
|
|
|
if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "shutdown complete\n");
|
|
return;
|
|
}
|
|
|
|
nvme_delay(1000);
|
|
ms_waited++;
|
|
} while (ms_waited < 5000);
|
|
|
|
SPDK_ERRLOG("did not shutdown within 5 seconds\n");
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_cc_register cc;
|
|
int rc;
|
|
|
|
rc = nvme_transport_ctrlr_enable(ctrlr);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("transport ctrlr_enable failed\n");
|
|
return rc;
|
|
}
|
|
|
|
if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
|
|
SPDK_ERRLOG("get_cc() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (cc.bits.en != 0) {
|
|
SPDK_ERRLOG("%s called with CC.EN = 1\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
cc.bits.en = 1;
|
|
cc.bits.css = 0;
|
|
cc.bits.shn = 0;
|
|
cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
|
|
cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
|
|
|
|
/* Page size is 2 ^ (12 + mps). */
|
|
cc.bits.mps = nvme_u32log2(PAGE_SIZE) - 12;
|
|
|
|
switch (ctrlr->opts.arb_mechanism) {
|
|
case SPDK_NVME_CC_AMS_RR:
|
|
break;
|
|
case SPDK_NVME_CC_AMS_WRR:
|
|
if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
|
|
break;
|
|
}
|
|
return -EINVAL;
|
|
case SPDK_NVME_CC_AMS_VS:
|
|
if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
|
|
break;
|
|
}
|
|
return -EINVAL;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
cc.bits.ams = ctrlr->opts.arb_mechanism;
|
|
|
|
if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
|
|
SPDK_ERRLOG("set_cc() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static const char *
|
|
nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
|
|
{
|
|
switch (state) {
|
|
case NVME_CTRLR_STATE_INIT:
|
|
return "init";
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
|
|
return "disable and wait for CSTS.RDY = 1";
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
|
|
return "disable and wait for CSTS.RDY = 0";
|
|
case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
|
|
return "enable and wait for CSTS.RDY = 1";
|
|
case NVME_CTRLR_STATE_READY:
|
|
return "ready";
|
|
}
|
|
return "unknown";
|
|
};
|
|
#endif /* DEBUG */
|
|
|
|
static void
|
|
nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
|
|
uint64_t timeout_in_ms)
|
|
{
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "setting state to %s (timeout %" PRIu64 " ms)\n",
|
|
nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
|
|
|
|
ctrlr->state = state;
|
|
if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
|
|
ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
|
|
} else {
|
|
ctrlr->state_timeout_tsc = spdk_get_ticks() + (timeout_in_ms * spdk_get_ticks_hz()) / 1000;
|
|
}
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc = 0;
|
|
struct spdk_nvme_qpair *qpair;
|
|
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
if (ctrlr->is_resetting || ctrlr->is_failed) {
|
|
/*
|
|
* Controller is already resetting or has failed. Return
|
|
* immediately since there is no need to kick off another
|
|
* reset in these cases.
|
|
*/
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return 0;
|
|
}
|
|
|
|
ctrlr->is_resetting = true;
|
|
|
|
SPDK_NOTICELOG("resetting controller\n");
|
|
|
|
/* Disable all queues before disabling the controller hardware. */
|
|
nvme_qpair_disable(ctrlr->adminq);
|
|
TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
|
|
nvme_qpair_disable(qpair);
|
|
}
|
|
|
|
/* Set the state back to INIT to cause a full hardware reset. */
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
|
|
|
|
while (ctrlr->state != NVME_CTRLR_STATE_READY) {
|
|
if (nvme_ctrlr_process_init(ctrlr) != 0) {
|
|
SPDK_ERRLOG("%s: controller reinitialization failed\n", __func__);
|
|
nvme_ctrlr_fail(ctrlr, false);
|
|
rc = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ctrlr->is_failed) {
|
|
/* Reinitialize qpairs */
|
|
TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
|
|
if (nvme_transport_ctrlr_reinit_io_qpair(ctrlr, qpair) != 0) {
|
|
nvme_ctrlr_fail(ctrlr, false);
|
|
rc = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
ctrlr->is_resetting = false;
|
|
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_completion_poll_status status;
|
|
int rc;
|
|
|
|
status.done = false;
|
|
rc = nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
|
|
nvme_completion_poll_cb, &status);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
while (status.done == false) {
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("nvme_identify_controller failed!\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
/*
|
|
* Use MDTS to ensure our default max_xfer_size doesn't exceed what the
|
|
* controller supports.
|
|
*/
|
|
ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
|
|
if (ctrlr->cdata.mdts > 0) {
|
|
ctrlr->max_xfer_size = nvme_min(ctrlr->max_xfer_size,
|
|
ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_set_num_qpairs(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_completion_poll_status status;
|
|
int cq_allocated, sq_allocated;
|
|
int rc;
|
|
uint32_t i;
|
|
|
|
status.done = false;
|
|
|
|
if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
|
|
SPDK_NOTICELOG("Limiting requested num_io_queues %u to max %d\n",
|
|
ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
|
|
ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
|
|
} else if (ctrlr->opts.num_io_queues < 1) {
|
|
SPDK_NOTICELOG("Requested num_io_queues 0, increasing to 1\n");
|
|
ctrlr->opts.num_io_queues = 1;
|
|
}
|
|
|
|
rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
|
|
nvme_completion_poll_cb, &status);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
while (status.done == false) {
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("nvme_set_num_queues failed!\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
/*
|
|
* Data in cdw0 is 0-based.
|
|
* Lower 16-bits indicate number of submission queues allocated.
|
|
* Upper 16-bits indicate number of completion queues allocated.
|
|
*/
|
|
sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
|
|
cq_allocated = (status.cpl.cdw0 >> 16) + 1;
|
|
|
|
ctrlr->opts.num_io_queues = nvme_min(sq_allocated, cq_allocated);
|
|
|
|
ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
|
|
if (ctrlr->free_io_qids == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Initialize list of free I/O queue IDs. QID 0 is the admin queue. */
|
|
spdk_bit_array_clear(ctrlr->free_io_qids, 0);
|
|
for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
|
|
spdk_bit_array_set(ctrlr->free_io_qids, i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_completion_poll_status status;
|
|
uint32_t keep_alive_interval_ms;
|
|
int rc;
|
|
|
|
if (ctrlr->opts.keep_alive_timeout_ms == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (ctrlr->cdata.kas == 0) {
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "Controller KAS is 0 - not enabling Keep Alive\n");
|
|
ctrlr->opts.keep_alive_timeout_ms = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
|
|
status.done = false;
|
|
rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
|
|
nvme_completion_poll_cb, &status);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Keep alive timeout Get Feature failed: %d\n", rc);
|
|
ctrlr->opts.keep_alive_timeout_ms = 0;
|
|
return rc;
|
|
}
|
|
|
|
while (status.done == false) {
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("Keep alive timeout Get Feature failed: SC %x SCT %x\n",
|
|
status.cpl.status.sc, status.cpl.status.sct);
|
|
ctrlr->opts.keep_alive_timeout_ms = 0;
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (ctrlr->opts.keep_alive_timeout_ms != status.cpl.cdw0) {
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "Controller adjusted keep alive timeout to %u ms\n",
|
|
status.cpl.cdw0);
|
|
}
|
|
|
|
ctrlr->opts.keep_alive_timeout_ms = status.cpl.cdw0;
|
|
|
|
keep_alive_interval_ms = ctrlr->opts.keep_alive_timeout_ms / 2;
|
|
if (keep_alive_interval_ms == 0) {
|
|
keep_alive_interval_ms = 1;
|
|
}
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "Sending keep alive every %u ms\n", keep_alive_interval_ms);
|
|
|
|
ctrlr->keep_alive_interval_ticks = (keep_alive_interval_ms * spdk_get_ticks_hz()) / UINT64_C(1000);
|
|
|
|
/* Schedule the first Keep Alive to be sent as soon as possible. */
|
|
ctrlr->next_keep_alive_tick = spdk_get_ticks();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_destruct_namespaces(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (ctrlr->ns) {
|
|
uint32_t i, num_ns = ctrlr->num_ns;
|
|
|
|
for (i = 0; i < num_ns; i++) {
|
|
nvme_ns_destruct(&ctrlr->ns[i]);
|
|
}
|
|
|
|
spdk_free(ctrlr->ns);
|
|
ctrlr->ns = NULL;
|
|
ctrlr->num_ns = 0;
|
|
}
|
|
|
|
if (ctrlr->nsdata) {
|
|
spdk_free(ctrlr->nsdata);
|
|
ctrlr->nsdata = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_construct_namespaces(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint32_t i, nn = ctrlr->cdata.nn;
|
|
uint64_t phys_addr = 0;
|
|
|
|
if (nn == 0) {
|
|
SPDK_ERRLOG("controller has 0 namespaces\n");
|
|
return -1;
|
|
}
|
|
|
|
/* ctrlr->num_ns may be 0 (startup) or a different number of namespaces (reset),
|
|
* so check if we need to reallocate.
|
|
*/
|
|
if (nn != ctrlr->num_ns) {
|
|
nvme_ctrlr_destruct_namespaces(ctrlr);
|
|
|
|
ctrlr->ns = spdk_zmalloc(nn * sizeof(struct spdk_nvme_ns), 64,
|
|
&phys_addr);
|
|
if (ctrlr->ns == NULL) {
|
|
goto fail;
|
|
}
|
|
|
|
ctrlr->nsdata = spdk_zmalloc(nn * sizeof(struct spdk_nvme_ns_data), 64,
|
|
&phys_addr);
|
|
if (ctrlr->nsdata == NULL) {
|
|
goto fail;
|
|
}
|
|
|
|
ctrlr->num_ns = nn;
|
|
}
|
|
|
|
for (i = 0; i < nn; i++) {
|
|
struct spdk_nvme_ns *ns = &ctrlr->ns[i];
|
|
uint32_t nsid = i + 1;
|
|
|
|
if (nvme_ns_construct(ns, nsid, ctrlr) != 0) {
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
nvme_ctrlr_destruct_namespaces(ctrlr);
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_async_event_request *aer = arg;
|
|
struct spdk_nvme_ctrlr *ctrlr = aer->ctrlr;
|
|
|
|
if (cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
|
|
/*
|
|
* This is simulated when controller is being shut down, to
|
|
* effectively abort outstanding asynchronous event requests
|
|
* and make sure all memory is freed. Do not repost the
|
|
* request in this case.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (ctrlr->aer_cb_fn != NULL) {
|
|
ctrlr->aer_cb_fn(ctrlr->aer_cb_arg, cpl);
|
|
}
|
|
|
|
/*
|
|
* Repost another asynchronous event request to replace the one
|
|
* that just completed.
|
|
*/
|
|
if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
|
|
/*
|
|
* We can't do anything to recover from a failure here,
|
|
* so just print a warning message and leave the AER unsubmitted.
|
|
*/
|
|
SPDK_ERRLOG("resubmitting AER failed!\n");
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct nvme_async_event_request *aer)
|
|
{
|
|
struct nvme_request *req;
|
|
|
|
aer->ctrlr = ctrlr;
|
|
req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
|
|
aer->req = req;
|
|
if (req == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
|
|
return nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_critical_warning_state state;
|
|
struct nvme_async_event_request *aer;
|
|
uint32_t i;
|
|
struct nvme_completion_poll_status status;
|
|
int rc;
|
|
|
|
status.done = false;
|
|
|
|
state.raw = 0xFF;
|
|
state.bits.reserved = 0;
|
|
rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, nvme_completion_poll_cb, &status);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
while (status.done == false) {
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("nvme_ctrlr_cmd_set_async_event_config failed!\n");
|
|
return 0;
|
|
}
|
|
|
|
/* aerl is a zero-based value, so we need to add 1 here. */
|
|
ctrlr->num_aers = nvme_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
|
|
|
|
for (i = 0; i < ctrlr->num_aers; i++) {
|
|
aer = &ctrlr->aer[i];
|
|
if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
|
|
SPDK_ERRLOG("nvme_ctrlr_construct_and_submit_aer failed!\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This function will be called when a process is using the controller.
|
|
* 1. For the primary process, it is called when constructing the controller.
|
|
* 2. For the secondary process, it is called at probing the controller.
|
|
* Note: will check whether the process is already added for the same process.
|
|
*/
|
|
int
|
|
nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *ctrlr_proc, *active_proc;
|
|
pid_t pid = getpid();
|
|
|
|
/* Check whether the process is already added or not */
|
|
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
|
|
if (active_proc->pid == pid) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Initialize the per process properties for this ctrlr */
|
|
ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process), 64, NULL);
|
|
if (ctrlr_proc == NULL) {
|
|
SPDK_ERRLOG("failed to allocate memory to track the process props\n");
|
|
|
|
return -1;
|
|
}
|
|
|
|
ctrlr_proc->is_primary = spdk_process_is_primary();
|
|
ctrlr_proc->pid = pid;
|
|
STAILQ_INIT(&ctrlr_proc->active_reqs);
|
|
ctrlr_proc->devhandle = devhandle;
|
|
ctrlr_proc->ref = 0;
|
|
TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
|
|
|
|
TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This function will be called when the process detaches the controller.
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_ctrlr_process *proc)
|
|
{
|
|
struct spdk_nvme_qpair *qpair, *tmp_qpair;
|
|
|
|
assert(STAILQ_EMPTY(&proc->active_reqs));
|
|
|
|
TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
|
|
spdk_nvme_ctrlr_free_io_qpair(qpair);
|
|
}
|
|
|
|
TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
|
|
|
|
spdk_free(proc);
|
|
}
|
|
|
|
/**
|
|
* This function will be called when the process exited unexpectedly
|
|
* in order to free any incomplete nvme request and allocated memory.
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
|
|
{
|
|
struct nvme_request *req, *tmp_req;
|
|
|
|
STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
|
|
STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
|
|
|
|
assert(req->pid == proc->pid);
|
|
|
|
nvme_free_request(req);
|
|
}
|
|
|
|
spdk_free(proc);
|
|
}
|
|
|
|
/**
|
|
* This function will be called when destructing the controller.
|
|
* 1. There is no more admin request on this controller.
|
|
* 2. Clean up any left resource allocation when its associated process is gone.
|
|
*/
|
|
void
|
|
nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc, *tmp;
|
|
|
|
/* Free all the processes' properties and make sure no pending admin IOs */
|
|
TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
|
|
TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
|
|
|
|
assert(STAILQ_EMPTY(&active_proc->active_reqs));
|
|
|
|
spdk_free(active_proc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function will be called when any other process attaches or
|
|
* detaches the controller in order to cleanup those unexpectedly
|
|
* terminated processes.
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static int
|
|
nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc, *tmp;
|
|
int active_proc_count = 0;
|
|
|
|
TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
|
|
if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
|
|
SPDK_ERRLOG("process %d terminated unexpected\n", active_proc->pid);
|
|
|
|
TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
|
|
|
|
nvme_ctrlr_cleanup_process(active_proc);
|
|
} else {
|
|
active_proc_count++;
|
|
}
|
|
}
|
|
|
|
return active_proc_count;
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
pid_t pid = getpid();
|
|
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
nvme_ctrlr_remove_inactive_proc(ctrlr);
|
|
|
|
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
|
|
if (active_proc->pid == pid) {
|
|
active_proc->ref++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc, *tmp;
|
|
pid_t pid = getpid();
|
|
int proc_count;
|
|
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
|
|
|
|
TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
|
|
if (active_proc->pid == pid) {
|
|
active_proc->ref--;
|
|
assert(active_proc->ref >= 0);
|
|
|
|
/*
|
|
* The last active process will be removed at the end of
|
|
* the destruction of the controller.
|
|
*/
|
|
if (active_proc->ref == 0 && proc_count != 1) {
|
|
nvme_ctrlr_remove_process(ctrlr, active_proc);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
int ref = 0;
|
|
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
nvme_ctrlr_remove_inactive_proc(ctrlr);
|
|
|
|
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
|
|
ref += active_proc->ref;
|
|
}
|
|
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return ref;
|
|
}
|
|
|
|
/**
|
|
* This function will be called repeatedly during initialization until the controller is ready.
|
|
*/
|
|
int
|
|
nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_cc_register cc;
|
|
union spdk_nvme_csts_register csts;
|
|
uint32_t ready_timeout_in_ms;
|
|
int rc;
|
|
|
|
/*
|
|
* May need to avoid accessing any register on the target controller
|
|
* for a while. Return early without touching the FSM.
|
|
* Check sleep_timeout_tsc > 0 for unit test.
|
|
*/
|
|
if ((ctrlr->sleep_timeout_tsc > 0) &&
|
|
(spdk_get_ticks() <= ctrlr->sleep_timeout_tsc)) {
|
|
return 0;
|
|
}
|
|
ctrlr->sleep_timeout_tsc = 0;
|
|
|
|
if (nvme_ctrlr_get_cc(ctrlr, &cc) ||
|
|
nvme_ctrlr_get_csts(ctrlr, &csts)) {
|
|
SPDK_ERRLOG("get registers failed\n");
|
|
nvme_ctrlr_fail(ctrlr, false);
|
|
return -EIO;
|
|
}
|
|
|
|
ready_timeout_in_ms = 500 * ctrlr->cap.bits.to;
|
|
|
|
/*
|
|
* Check if the current initialization step is done or has timed out.
|
|
*/
|
|
switch (ctrlr->state) {
|
|
case NVME_CTRLR_STATE_INIT:
|
|
/* Begin the hardware initialization by making sure the controller is disabled. */
|
|
if (cc.bits.en) {
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 1\n");
|
|
/*
|
|
* Controller is currently enabled. We need to disable it to cause a reset.
|
|
*
|
|
* If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
|
|
* Wait for the ready bit to be 1 before disabling the controller.
|
|
*/
|
|
if (csts.bits.rdy == 0) {
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1, ready_timeout_in_ms);
|
|
return 0;
|
|
}
|
|
|
|
/* CC.EN = 1 && CSTS.RDY == 1, so we can immediately disable the controller. */
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "Setting CC.EN = 0\n");
|
|
cc.bits.en = 0;
|
|
if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
|
|
SPDK_ERRLOG("set_cc() failed\n");
|
|
nvme_ctrlr_fail(ctrlr, false);
|
|
return -EIO;
|
|
}
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
|
|
|
|
/*
|
|
* Wait 2 secsonds before accessing PCI registers.
|
|
* Not using sleep() to avoid blocking other controller's initialization.
|
|
*/
|
|
if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "Applying quirk: delay 2 seconds before reading registers\n");
|
|
ctrlr->sleep_timeout_tsc = spdk_get_ticks() + 2 * spdk_get_ticks_hz();
|
|
}
|
|
return 0;
|
|
} else {
|
|
if (csts.bits.rdy == 1) {
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 0 && CSTS.RDY = 1 - waiting for shutdown to complete\n");
|
|
/*
|
|
* Controller is in the process of shutting down.
|
|
* We need to wait for RDY to become 0.
|
|
*/
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Controller is currently disabled. We can jump straight to enabling it.
|
|
*/
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 0 && CSTS.RDY = 0 - enabling controller\n");
|
|
rc = nvme_ctrlr_enable(ctrlr);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, ready_timeout_in_ms);
|
|
return rc;
|
|
}
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
|
|
if (csts.bits.rdy == 1) {
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 1 && CSTS.RDY = 1 - disabling controller\n");
|
|
/* CC.EN = 1 && CSTS.RDY = 1, so we can set CC.EN = 0 now. */
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "Setting CC.EN = 0\n");
|
|
cc.bits.en = 0;
|
|
if (nvme_ctrlr_set_cc(ctrlr, &cc)) {
|
|
SPDK_ERRLOG("set_cc() failed\n");
|
|
nvme_ctrlr_fail(ctrlr, false);
|
|
return -EIO;
|
|
}
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms);
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
|
|
if (csts.bits.rdy == 0) {
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 0 && CSTS.RDY = 0 - enabling controller\n");
|
|
/* CC.EN = 0 && CSTS.RDY = 0, so we can enable the controller now. */
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "Setting CC.EN = 1\n");
|
|
rc = nvme_ctrlr_enable(ctrlr);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, ready_timeout_in_ms);
|
|
return rc;
|
|
}
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
|
|
if (csts.bits.rdy == 1) {
|
|
SPDK_TRACELOG(SPDK_TRACE_NVME, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
|
|
/*
|
|
* The controller has been enabled.
|
|
* Perform the rest of initialization in nvme_ctrlr_start() serially.
|
|
*/
|
|
rc = nvme_ctrlr_start(ctrlr);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
|
|
return rc;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
nvme_ctrlr_fail(ctrlr, false);
|
|
return -1;
|
|
}
|
|
|
|
if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
|
|
spdk_get_ticks() > ctrlr->state_timeout_tsc) {
|
|
SPDK_ERRLOG("Initialization timed out in state %d\n", ctrlr->state);
|
|
nvme_ctrlr_fail(ctrlr, false);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_start(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
nvme_transport_qpair_reset(ctrlr->adminq);
|
|
|
|
nvme_qpair_enable(ctrlr->adminq);
|
|
|
|
if (nvme_ctrlr_identify(ctrlr) != 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (nvme_ctrlr_configure_aer(ctrlr) != 0) {
|
|
return -1;
|
|
}
|
|
|
|
nvme_ctrlr_set_supported_log_pages(ctrlr);
|
|
nvme_ctrlr_set_supported_features(ctrlr);
|
|
|
|
if (ctrlr->cdata.sgls.supported) {
|
|
ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
|
|
}
|
|
|
|
if (nvme_ctrlr_set_keep_alive_timeout(ctrlr) != 0) {
|
|
SPDK_ERRLOG("Setting keep alive timeout failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_mutex_init_recursive_shared(pthread_mutex_t *mtx)
|
|
{
|
|
pthread_mutexattr_t attr;
|
|
int rc = 0;
|
|
|
|
if (pthread_mutexattr_init(&attr)) {
|
|
return -1;
|
|
}
|
|
if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
|
|
#ifndef __FreeBSD__
|
|
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
|
|
#endif
|
|
pthread_mutex_init(mtx, &attr)) {
|
|
rc = -1;
|
|
}
|
|
pthread_mutexattr_destroy(&attr);
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_pci_id pci_id;
|
|
int rc;
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
|
|
ctrlr->flags = 0;
|
|
ctrlr->free_io_qids = NULL;
|
|
|
|
ctrlr->min_page_size = 1 << (12 + ctrlr->cap.bits.mpsmin);
|
|
|
|
ctrlr->is_resetting = false;
|
|
ctrlr->is_failed = false;
|
|
|
|
TAILQ_INIT(&ctrlr->active_io_qpairs);
|
|
|
|
rc = nvme_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
if (nvme_transport_ctrlr_get_pci_id(ctrlr, &pci_id) == 0) {
|
|
ctrlr->quirks = nvme_get_quirks(&pci_id);
|
|
}
|
|
|
|
TAILQ_INIT(&ctrlr->active_procs);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
while (!TAILQ_EMPTY(&ctrlr->active_io_qpairs)) {
|
|
struct spdk_nvme_qpair *qpair = TAILQ_FIRST(&ctrlr->active_io_qpairs);
|
|
|
|
spdk_nvme_ctrlr_free_io_qpair(qpair);
|
|
}
|
|
|
|
nvme_ctrlr_shutdown(ctrlr);
|
|
|
|
nvme_ctrlr_destruct_namespaces(ctrlr);
|
|
|
|
spdk_bit_array_free(&ctrlr->free_io_qids);
|
|
|
|
pthread_mutex_destroy(&ctrlr->ctrlr_lock);
|
|
|
|
nvme_transport_ctrlr_destruct(ctrlr);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct nvme_request *req)
|
|
{
|
|
return nvme_qpair_submit_request(ctrlr->adminq, req);
|
|
}
|
|
|
|
static void
|
|
nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
/* Do nothing */
|
|
}
|
|
|
|
/*
|
|
* Check if we need to send a Keep Alive command.
|
|
* Caller must hold ctrlr->ctrlr_lock.
|
|
*/
|
|
static void
|
|
nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint64_t now;
|
|
struct nvme_request *req;
|
|
struct spdk_nvme_cmd *cmd;
|
|
int rc;
|
|
|
|
now = spdk_get_ticks();
|
|
if (now < ctrlr->next_keep_alive_tick) {
|
|
return;
|
|
}
|
|
|
|
req = nvme_allocate_request_null(nvme_keep_alive_completion, NULL);
|
|
if (req == NULL) {
|
|
return;
|
|
}
|
|
|
|
cmd = &req->cmd;
|
|
cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
|
|
|
|
rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Submitting Keep Alive failed\n");
|
|
}
|
|
|
|
ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
|
|
}
|
|
|
|
int32_t
|
|
spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int32_t num_completions;
|
|
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
if (ctrlr->keep_alive_interval_ticks) {
|
|
nvme_ctrlr_keep_alive(ctrlr);
|
|
}
|
|
num_completions = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return num_completions;
|
|
}
|
|
|
|
const struct spdk_nvme_ctrlr_data *
|
|
spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return &ctrlr->cdata;
|
|
}
|
|
|
|
union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->cap;
|
|
}
|
|
|
|
union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_vs_register vs;
|
|
|
|
if (nvme_ctrlr_get_vs(ctrlr, &vs)) {
|
|
vs.raw = 0;
|
|
}
|
|
return vs;
|
|
}
|
|
|
|
uint32_t
|
|
spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->num_ns;
|
|
}
|
|
|
|
struct spdk_nvme_ns *
|
|
spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t ns_id)
|
|
{
|
|
if (ns_id < 1 || ns_id > ctrlr->num_ns) {
|
|
return NULL;
|
|
}
|
|
|
|
return &ctrlr->ns[ns_id - 1];
|
|
}
|
|
|
|
void
|
|
spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
|
|
spdk_nvme_aer_cb aer_cb_fn,
|
|
void *aer_cb_arg)
|
|
{
|
|
ctrlr->aer_cb_fn = aer_cb_fn;
|
|
ctrlr->aer_cb_arg = aer_cb_arg;
|
|
}
|
|
|
|
bool
|
|
spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
|
|
{
|
|
/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
|
|
SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
|
|
return ctrlr->log_page_supported[log_page];
|
|
}
|
|
|
|
bool
|
|
spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
|
|
{
|
|
/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
|
|
SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
|
|
return ctrlr->feature_supported[feature_code];
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
|
|
struct spdk_nvme_ctrlr_list *payload)
|
|
{
|
|
struct nvme_completion_poll_status status;
|
|
int res;
|
|
|
|
status.done = false;
|
|
res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
|
|
nvme_completion_poll_cb, &status);
|
|
if (res)
|
|
return res;
|
|
while (status.done == false) {
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("spdk_nvme_ctrlr_attach_ns failed!\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
return spdk_nvme_ctrlr_reset(ctrlr);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
|
|
struct spdk_nvme_ctrlr_list *payload)
|
|
{
|
|
struct nvme_completion_poll_status status;
|
|
int res;
|
|
|
|
status.done = false;
|
|
res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
|
|
nvme_completion_poll_cb, &status);
|
|
if (res)
|
|
return res;
|
|
while (status.done == false) {
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("spdk_nvme_ctrlr_detach_ns failed!\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
return spdk_nvme_ctrlr_reset(ctrlr);
|
|
}
|
|
|
|
uint32_t
|
|
spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
|
|
{
|
|
struct nvme_completion_poll_status status;
|
|
int res;
|
|
|
|
status.done = false;
|
|
res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, &status);
|
|
if (res)
|
|
return 0;
|
|
while (status.done == false) {
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("spdk_nvme_ctrlr_create_ns failed!\n");
|
|
return 0;
|
|
}
|
|
|
|
res = spdk_nvme_ctrlr_reset(ctrlr);
|
|
if (res) {
|
|
return 0;
|
|
}
|
|
|
|
/* Return the namespace ID that was created */
|
|
return status.cpl.cdw0;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
|
|
{
|
|
struct nvme_completion_poll_status status;
|
|
int res;
|
|
|
|
status.done = false;
|
|
res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, &status);
|
|
if (res)
|
|
return res;
|
|
while (status.done == false) {
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("spdk_nvme_ctrlr_delete_ns failed!\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
return spdk_nvme_ctrlr_reset(ctrlr);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
|
|
struct spdk_nvme_format *format)
|
|
{
|
|
struct nvme_completion_poll_status status;
|
|
int res;
|
|
|
|
status.done = false;
|
|
res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
|
|
&status);
|
|
if (res)
|
|
return res;
|
|
while (status.done == false) {
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("spdk_nvme_ctrlr_format failed!\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
return spdk_nvme_ctrlr_reset(ctrlr);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
|
|
int slot)
|
|
{
|
|
struct spdk_nvme_fw_commit fw_commit;
|
|
struct nvme_completion_poll_status status;
|
|
int res;
|
|
unsigned int size_remaining;
|
|
unsigned int offset;
|
|
unsigned int transfer;
|
|
void *p;
|
|
|
|
if (size % 4) {
|
|
SPDK_ERRLOG("spdk_nvme_ctrlr_update_firmware invalid size!\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Firmware download */
|
|
size_remaining = size;
|
|
offset = 0;
|
|
p = payload;
|
|
|
|
while (size_remaining > 0) {
|
|
transfer = nvme_min(size_remaining, ctrlr->min_page_size);
|
|
status.done = false;
|
|
|
|
res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
|
|
nvme_completion_poll_cb,
|
|
&status);
|
|
if (res)
|
|
return res;
|
|
|
|
while (status.done == false) {
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("spdk_nvme_ctrlr_fw_image_download failed!\n");
|
|
return -ENXIO;
|
|
}
|
|
p += transfer;
|
|
offset += transfer;
|
|
size_remaining -= transfer;
|
|
}
|
|
|
|
/* Firmware commit */
|
|
memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
|
|
fw_commit.fs = slot;
|
|
fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_IMG;
|
|
|
|
status.done = false;
|
|
|
|
res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
|
|
&status);
|
|
if (res)
|
|
return res;
|
|
|
|
while (status.done == false) {
|
|
pthread_mutex_lock(&ctrlr->ctrlr_lock);
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
pthread_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
if (spdk_nvme_cpl_is_error(&status.cpl)) {
|
|
SPDK_ERRLOG("nvme_ctrlr_cmd_fw_commit failed!\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
return spdk_nvme_ctrlr_reset(ctrlr);
|
|
}
|