Seth Howell 8c5de263a1 test: move lib/nvme up one directory
Change-Id: I40c29b30c7098e34f2aa860612eeb82f2fb01ff3
Signed-off-by: Seth Howell <seth.howell@intel.com>
Reviewed-on: https://review.gerrithub.io/404974
Tested-by: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
2018-03-27 00:46:52 -04:00

543 lines
13 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/nvme.h"
#include "spdk/env.h"
#include "spdk/util.h"
#define MAX_DEVS 64
#define MAX_IOVS 128
#define DATA_PATTERN 0x5A
#define BASE_LBA_START 0x100000
struct dev {
struct spdk_nvme_ctrlr *ctrlr;
char name[SPDK_NVMF_TRADDR_MAX_LEN + 1];
};
static struct dev devs[MAX_DEVS];
static int num_devs = 0;
#define foreach_dev(iter) \
for (iter = devs; iter - devs < num_devs; iter++)
static int io_complete_flag = 0;
struct sgl_element {
void *base;
size_t offset;
size_t len;
};
struct io_request {
uint32_t current_iov_index;
uint32_t current_iov_bytes_left;
struct sgl_element iovs[MAX_IOVS];
uint32_t nseg;
uint32_t misalign;
};
static void nvme_request_reset_sgl(void *cb_arg, uint32_t sgl_offset)
{
uint32_t i;
uint32_t offset = 0;
struct sgl_element *iov;
struct io_request *req = (struct io_request *)cb_arg;
for (i = 0; i < req->nseg; i++) {
iov = &req->iovs[i];
offset += iov->len;
if (offset > sgl_offset) {
break;
}
}
req->current_iov_index = i;
req->current_iov_bytes_left = offset - sgl_offset;
return;
}
static int nvme_request_next_sge(void *cb_arg, void **address, uint32_t *length)
{
struct io_request *req = (struct io_request *)cb_arg;
struct sgl_element *iov;
if (req->current_iov_index >= req->nseg) {
*length = 0;
*address = NULL;
return 0;
}
iov = &req->iovs[req->current_iov_index];
if (req->current_iov_bytes_left) {
*address = iov->base + iov->offset + iov->len - req->current_iov_bytes_left;
*length = req->current_iov_bytes_left;
req->current_iov_bytes_left = 0;
} else {
*address = iov->base + iov->offset;
*length = iov->len;
}
req->current_iov_index++;
return 0;
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *cpl)
{
if (spdk_nvme_cpl_is_error(cpl)) {
io_complete_flag = 2;
} else {
io_complete_flag = 1;
}
}
static void build_io_request_0(struct io_request *req)
{
req->nseg = 1;
req->iovs[0].base = spdk_dma_zmalloc(0x800, 4, NULL);
req->iovs[0].len = 0x800;
}
static void build_io_request_1(struct io_request *req)
{
req->nseg = 1;
/* 512B for 1st sge */
req->iovs[0].base = spdk_dma_zmalloc(0x200, 0x200, NULL);
req->iovs[0].len = 0x200;
}
static void build_io_request_2(struct io_request *req)
{
req->nseg = 1;
/* 256KB for 1st sge */
req->iovs[0].base = spdk_dma_zmalloc(0x40000, 0x1000, NULL);
req->iovs[0].len = 0x40000;
}
static void build_io_request_3(struct io_request *req)
{
req->nseg = 3;
/* 2KB for 1st sge, make sure the iov address start at 0x800 boundary,
* and end with 0x1000 boundary */
req->iovs[0].base = spdk_dma_zmalloc(0x1000, 0x1000, NULL);
req->iovs[0].offset = 0x800;
req->iovs[0].len = 0x800;
/* 4KB for 2th sge */
req->iovs[1].base = spdk_dma_zmalloc(0x1000, 0x1000, NULL);
req->iovs[1].len = 0x1000;
/* 12KB for 3th sge */
req->iovs[2].base = spdk_dma_zmalloc(0x3000, 0x1000, NULL);
req->iovs[2].len = 0x3000;
}
static void build_io_request_4(struct io_request *req)
{
uint32_t i;
req->nseg = 32;
/* 4KB for 1st sge */
req->iovs[0].base = spdk_dma_zmalloc(0x1000, 0x1000, NULL);
req->iovs[0].len = 0x1000;
/* 8KB for the rest 31 sge */
for (i = 1; i < req->nseg; i++) {
req->iovs[i].base = spdk_dma_zmalloc(0x2000, 0x1000, NULL);
req->iovs[i].len = 0x2000;
}
}
static void build_io_request_5(struct io_request *req)
{
req->nseg = 1;
/* 8KB for 1st sge */
req->iovs[0].base = spdk_dma_zmalloc(0x2000, 0x1000, NULL);
req->iovs[0].len = 0x2000;
}
static void build_io_request_6(struct io_request *req)
{
req->nseg = 2;
/* 4KB for 1st sge */
req->iovs[0].base = spdk_dma_zmalloc(0x1000, 0x1000, NULL);
req->iovs[0].len = 0x1000;
/* 4KB for 2st sge */
req->iovs[1].base = spdk_dma_zmalloc(0x1000, 0x1000, NULL);
req->iovs[1].len = 0x1000;
}
static void build_io_request_7(struct io_request *req)
{
uint8_t *base;
req->nseg = 1;
/*
* Create a 64KB sge, but ensure it is *not* aligned on a 4KB
* boundary. This is valid for single element buffers with PRP.
*/
base = spdk_dma_zmalloc(0x11000, 0x1000, NULL);
req->misalign = 64;
req->iovs[0].base = base + req->misalign;
req->iovs[0].len = 0x10000;
}
static void build_io_request_8(struct io_request *req)
{
req->nseg = 2;
/*
* 1KB for 1st sge, make sure the iov address does not start and end
* at 0x1000 boundary
*/
req->iovs[0].base = spdk_dma_zmalloc(0x1000, 0x1000, NULL);
req->iovs[0].offset = 0x400;
req->iovs[0].len = 0x400;
/*
* 1KB for 1st sge, make sure the iov address does not start and end
* at 0x1000 boundary
*/
req->iovs[1].base = spdk_dma_zmalloc(0x1000, 0x1000, NULL);
req->iovs[1].offset = 0x400;
req->iovs[1].len = 0x400;
}
static void build_io_request_9(struct io_request *req)
{
/*
* Check if mixed PRP complaint and not complaint requests are handled
* properly by spliting them into subrequests.
* Construct buffers with following theme:
*/
const size_t req_len[] = { 2048, 4096, 2048, 4096, 2048, 1024 };
const size_t req_off[] = { 0x800, 0x0, 0x0, 0x100, 0x800, 0x800 };
struct sgl_element *iovs = req->iovs;
uint32_t i;
req->nseg = SPDK_COUNTOF(req_len);
assert(SPDK_COUNTOF(req_len) == SPDK_COUNTOF(req_off));
for (i = 0; i < req->nseg; i++) {
iovs[i].base = spdk_dma_zmalloc(req_off[i] + req_len[i], 0x4000, NULL);
iovs[i].offset = req_off[i];
iovs[i].len = req_len[i];
}
}
static void build_io_request_10(struct io_request *req)
{
/*
* Test the case where we have a valid PRP list, but the first and last
* elements are not exact multiples of the logical block size.
*/
const size_t req_len[] = { 4004, 4096, 92 };
const size_t req_off[] = { 0x5c, 0x0, 0x0 };
struct sgl_element *iovs = req->iovs;
uint32_t i;
req->nseg = SPDK_COUNTOF(req_len);
assert(SPDK_COUNTOF(req_len) == SPDK_COUNTOF(req_off));
for (i = 0; i < req->nseg; i++) {
iovs[i].base = spdk_dma_zmalloc(req_off[i] + req_len[i], 0x4000, NULL);
iovs[i].offset = req_off[i];
iovs[i].len = req_len[i];
}
}
static void build_io_request_11(struct io_request *req)
{
/* This test case focuses on the last element not starting on a page boundary. */
const size_t req_len[] = { 512, 512 };
const size_t req_off[] = { 0xe00, 0x800 };
struct sgl_element *iovs = req->iovs;
uint32_t i;
req->nseg = SPDK_COUNTOF(req_len);
assert(SPDK_COUNTOF(req_len) == SPDK_COUNTOF(req_off));
for (i = 0; i < req->nseg; i++) {
iovs[i].base = spdk_dma_zmalloc(req_off[i] + req_len[i], 0x4000, NULL);
iovs[i].offset = req_off[i];
iovs[i].len = req_len[i];
}
}
typedef void (*nvme_build_io_req_fn_t)(struct io_request *req);
static void
free_req(struct io_request *req)
{
uint32_t i;
if (req == NULL) {
return;
}
for (i = 0; i < req->nseg; i++) {
spdk_dma_free(req->iovs[i].base - req->misalign);
}
spdk_dma_free(req);
}
static int
writev_readv_tests(struct dev *dev, nvme_build_io_req_fn_t build_io_fn, const char *test_name)
{
int rc = 0;
uint32_t len, lba_count;
uint32_t i, j, nseg, remainder;
char *buf;
struct io_request *req;
struct spdk_nvme_ns *ns;
struct spdk_nvme_qpair *qpair;
const struct spdk_nvme_ns_data *nsdata;
ns = spdk_nvme_ctrlr_get_ns(dev->ctrlr, 1);
if (!ns) {
fprintf(stderr, "Null namespace\n");
return 0;
}
nsdata = spdk_nvme_ns_get_data(ns);
if (!nsdata || !spdk_nvme_ns_get_sector_size(ns)) {
fprintf(stderr, "Empty nsdata or wrong sector size\n");
return 0;
}
if (spdk_nvme_ns_get_flags(ns) & SPDK_NVME_NS_DPS_PI_SUPPORTED) {
return 0;
}
req = spdk_dma_zmalloc(sizeof(*req), 0, NULL);
if (!req) {
fprintf(stderr, "Allocate request failed\n");
return 0;
}
/* IO parameters setting */
build_io_fn(req);
len = 0;
for (i = 0; i < req->nseg; i++) {
struct sgl_element *sge = &req->iovs[i];
len += sge->len;
}
lba_count = len / spdk_nvme_ns_get_sector_size(ns);
remainder = len % spdk_nvme_ns_get_sector_size(ns);
if (!lba_count || remainder || (BASE_LBA_START + lba_count > (uint32_t)nsdata->nsze)) {
fprintf(stderr, "%s: %s Invalid IO length parameter\n", dev->name, test_name);
free_req(req);
return 0;
}
qpair = spdk_nvme_ctrlr_alloc_io_qpair(dev->ctrlr, NULL, 0);
if (!qpair) {
free_req(req);
return -1;
}
nseg = req->nseg;
for (i = 0; i < nseg; i++) {
memset(req->iovs[i].base + req->iovs[i].offset, DATA_PATTERN, req->iovs[i].len);
}
rc = spdk_nvme_ns_cmd_writev(ns, qpair, BASE_LBA_START, lba_count,
io_complete, req, 0,
nvme_request_reset_sgl,
nvme_request_next_sge);
if (rc != 0) {
fprintf(stderr, "%s: %s writev failed\n", dev->name, test_name);
spdk_nvme_ctrlr_free_io_qpair(qpair);
free_req(req);
return -1;
}
io_complete_flag = 0;
while (!io_complete_flag) {
spdk_nvme_qpair_process_completions(qpair, 1);
}
if (io_complete_flag != 1) {
fprintf(stderr, "%s: %s writev failed\n", dev->name, test_name);
spdk_nvme_ctrlr_free_io_qpair(qpair);
free_req(req);
return -1;
}
/* reset completion flag */
io_complete_flag = 0;
for (i = 0; i < nseg; i++) {
memset(req->iovs[i].base + req->iovs[i].offset, 0, req->iovs[i].len);
}
rc = spdk_nvme_ns_cmd_readv(ns, qpair, BASE_LBA_START, lba_count,
io_complete, req, 0,
nvme_request_reset_sgl,
nvme_request_next_sge);
if (rc != 0) {
fprintf(stderr, "%s: %s readv failed\n", dev->name, test_name);
spdk_nvme_ctrlr_free_io_qpair(qpair);
free_req(req);
return -1;
}
while (!io_complete_flag) {
spdk_nvme_qpair_process_completions(qpair, 1);
}
if (io_complete_flag != 1) {
fprintf(stderr, "%s: %s readv failed\n", dev->name, test_name);
spdk_nvme_ctrlr_free_io_qpair(qpair);
free_req(req);
return -1;
}
for (i = 0; i < nseg; i++) {
buf = (char *)req->iovs[i].base + req->iovs[i].offset;
for (j = 0; j < req->iovs[i].len; j++) {
if (buf[j] != DATA_PATTERN) {
fprintf(stderr, "%s: %s write/read success, but memcmp Failed\n", dev->name, test_name);
spdk_nvme_ctrlr_free_io_qpair(qpair);
free_req(req);
return -1;
}
}
}
fprintf(stdout, "%s: %s test passed\n", dev->name, test_name);
spdk_nvme_ctrlr_free_io_qpair(qpair);
free_req(req);
return rc;
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
printf("Attaching to %s\n", trid->traddr);
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct dev *dev;
/* add to dev list */
dev = &devs[num_devs++];
dev->ctrlr = ctrlr;
snprintf(dev->name, sizeof(dev->name), "%s",
trid->traddr);
printf("Attached to %s\n", dev->name);
}
int main(int argc, char **argv)
{
struct dev *iter;
int rc, i;
struct spdk_env_opts opts;
spdk_env_opts_init(&opts);
opts.name = "nvme_sgl";
opts.core_mask = "0x1";
opts.shm_id = 0;
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
return 1;
}
printf("NVMe Readv/Writev Request test\n");
if (spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "nvme_probe() failed\n");
exit(1);
}
rc = 0;
foreach_dev(iter) {
#define TEST(x) writev_readv_tests(iter, x, #x)
if (TEST(build_io_request_0)
|| TEST(build_io_request_1)
|| TEST(build_io_request_2)
|| TEST(build_io_request_3)
|| TEST(build_io_request_4)
|| TEST(build_io_request_5)
|| TEST(build_io_request_6)
|| TEST(build_io_request_7)
|| TEST(build_io_request_8)
|| TEST(build_io_request_9)
|| TEST(build_io_request_10)
|| TEST(build_io_request_11)) {
#undef TEST
rc = 1;
printf("%s: failed sgl tests\n", iter->name);
}
}
printf("Cleaning up...\n");
for (i = 0; i < num_devs; i++) {
struct dev *dev = &devs[i];
spdk_nvme_detach(dev->ctrlr);
}
return rc;
}