numam-spdk/lib/nvmf/rdma.c
Daniel Verkamp c7b8b414d1 nvmf_tgt: add IPv6 listen address support
Change-Id: Ia165c3f033658adc86c8993a2a32783921ab1832
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
Reviewed-on: https://review.gerrithub.io/396494
Tested-by: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
2018-01-29 12:41:57 -05:00

1926 lines
56 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include <infiniband/verbs.h>
#include <rdma/rdma_cma.h>
#include <rdma/rdma_verbs.h>
#include "nvmf_internal.h"
#include "transport.h"
#include "spdk/assert.h"
#include "spdk/io_channel.h"
#include "spdk/nvmf.h"
#include "spdk/nvmf_spec.h"
#include "spdk/string.h"
#include "spdk/trace.h"
#include "spdk/util.h"
#include "spdk_internal/log.h"
/*
RDMA Connection Resouce Defaults
*/
#define NVMF_DEFAULT_TX_SGE 1
#define NVMF_DEFAULT_RX_SGE 2
/* The RDMA completion queue size */
#define NVMF_RDMA_CQ_SIZE 4096
/* AIO backend requires block size aligned data buffers,
* extra 4KiB aligned data buffer should work for most devices.
*/
#define SHIFT_4KB 12
#define NVMF_DATA_BUFFER_ALIGNMENT (1 << SHIFT_4KB)
#define NVMF_DATA_BUFFER_MASK (NVMF_DATA_BUFFER_ALIGNMENT - 1)
enum spdk_nvmf_rdma_request_state {
/* The request is not currently in use */
RDMA_REQUEST_STATE_FREE = 0,
/* Initial state when request first received */
RDMA_REQUEST_STATE_NEW,
/* The request is queued until a data buffer is available. */
RDMA_REQUEST_STATE_NEED_BUFFER,
/* The request is waiting on RDMA queue depth availability
* to transfer data from the host to the controller.
*/
RDMA_REQUEST_STATE_TRANSFER_PENDING_HOST_TO_CONTROLLER,
/* The request is currently transferring data from the host to the controller. */
RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
/* The request is ready to execute at the block device */
RDMA_REQUEST_STATE_READY_TO_EXECUTE,
/* The request is currently executing at the block device */
RDMA_REQUEST_STATE_EXECUTING,
/* The request finished executing at the block device */
RDMA_REQUEST_STATE_EXECUTED,
/* The request is waiting on RDMA queue depth availability
* to transfer data from the controller to the host.
*/
RDMA_REQUEST_STATE_TRANSFER_PENDING_CONTROLLER_TO_HOST,
/* The request is ready to send a completion */
RDMA_REQUEST_STATE_READY_TO_COMPLETE,
/* The request currently has a completion outstanding */
RDMA_REQUEST_STATE_COMPLETING,
/* The request completed and can be marked free. */
RDMA_REQUEST_STATE_COMPLETED,
};
/* This structure holds commands as they are received off the wire.
* It must be dynamically paired with a full request object
* (spdk_nvmf_rdma_request) to service a request. It is separate
* from the request because RDMA does not appear to order
* completions, so occasionally we'll get a new incoming
* command when there aren't any free request objects.
*/
struct spdk_nvmf_rdma_recv {
struct ibv_recv_wr wr;
struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE];
struct spdk_nvmf_rdma_qpair *qpair;
/* In-capsule data buffer */
uint8_t *buf;
TAILQ_ENTRY(spdk_nvmf_rdma_recv) link;
};
struct spdk_nvmf_rdma_request {
struct spdk_nvmf_request req;
void *data_from_pool;
enum spdk_nvmf_rdma_request_state state;
struct spdk_nvmf_rdma_recv *recv;
struct {
struct ibv_send_wr wr;
struct ibv_sge sgl[NVMF_DEFAULT_TX_SGE];
} rsp;
struct {
struct ibv_send_wr wr;
struct ibv_sge sgl[NVMF_DEFAULT_TX_SGE];
} data;
TAILQ_ENTRY(spdk_nvmf_rdma_request) link;
};
struct spdk_nvmf_rdma_qpair {
struct spdk_nvmf_qpair qpair;
struct spdk_nvmf_rdma_port *port;
struct spdk_nvmf_rdma_poller *poller;
struct rdma_cm_id *cm_id;
/* The maximum number of I/O outstanding on this connection at one time */
uint16_t max_queue_depth;
/* The maximum number of active RDMA READ and WRITE operations at one time */
uint16_t max_rw_depth;
/* The current number of I/O outstanding on this connection. This number
* includes all I/O from the time the capsule is first received until it is
* completed.
*/
uint16_t cur_queue_depth;
/* The number of RDMA READ and WRITE requests that are outstanding */
uint16_t cur_rdma_rw_depth;
/* Receives that are waiting for a request object */
TAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue;
/* Requests that are not in use */
TAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue;
/* Requests that are waiting to perform an RDMA READ or WRITE */
TAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_rw_queue;
/* Array of size "max_queue_depth" containing RDMA requests. */
struct spdk_nvmf_rdma_request *reqs;
/* Array of size "max_queue_depth" containing RDMA recvs. */
struct spdk_nvmf_rdma_recv *recvs;
/* Array of size "max_queue_depth" containing 64 byte capsules
* used for receive.
*/
union nvmf_h2c_msg *cmds;
struct ibv_mr *cmds_mr;
/* Array of size "max_queue_depth" containing 16 byte completions
* to be sent back to the user.
*/
union nvmf_c2h_msg *cpls;
struct ibv_mr *cpls_mr;
/* Array of size "max_queue_depth * InCapsuleDataSize" containing
* buffers to be used for in capsule data.
*/
void *bufs;
struct ibv_mr *bufs_mr;
TAILQ_ENTRY(spdk_nvmf_rdma_qpair) link;
TAILQ_ENTRY(spdk_nvmf_rdma_qpair) pending_link;
/* Mgmt channel */
struct spdk_io_channel *mgmt_channel;
struct spdk_nvmf_rdma_mgmt_channel *ch;
};
struct spdk_nvmf_rdma_poller {
struct spdk_nvmf_rdma_device *device;
struct spdk_nvmf_rdma_poll_group *group;
struct ibv_cq *cq;
TAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs;
TAILQ_ENTRY(spdk_nvmf_rdma_poller) link;
};
struct spdk_nvmf_rdma_poll_group {
struct spdk_nvmf_transport_poll_group group;
TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers;
};
/* Assuming rdma_cm uses just one protection domain per ibv_context. */
struct spdk_nvmf_rdma_device {
struct ibv_device_attr attr;
struct ibv_context *context;
struct spdk_mem_map *map;
struct ibv_pd *pd;
TAILQ_ENTRY(spdk_nvmf_rdma_device) link;
};
struct spdk_nvmf_rdma_port {
struct spdk_nvme_transport_id trid;
struct rdma_cm_id *id;
struct spdk_nvmf_rdma_device *device;
uint32_t ref;
TAILQ_ENTRY(spdk_nvmf_rdma_port) link;
};
struct spdk_nvmf_rdma_transport {
struct spdk_nvmf_transport transport;
struct rdma_event_channel *event_channel;
struct spdk_mempool *data_buf_pool;
pthread_mutex_t lock;
uint16_t max_queue_depth;
uint32_t max_io_size;
uint32_t in_capsule_data_size;
TAILQ_HEAD(, spdk_nvmf_rdma_device) devices;
TAILQ_HEAD(, spdk_nvmf_rdma_port) ports;
};
struct spdk_nvmf_rdma_mgmt_channel {
/* Requests that are waiting to obtain a data buffer */
TAILQ_HEAD(, spdk_nvmf_rdma_request) pending_data_buf_queue;
};
static int
spdk_nvmf_rdma_mgmt_channel_create(void *io_device, void *ctx_buf)
{
struct spdk_nvmf_rdma_mgmt_channel *ch = ctx_buf;
TAILQ_INIT(&ch->pending_data_buf_queue);
return 0;
}
static void
spdk_nvmf_rdma_mgmt_channel_destroy(void *io_device, void *ctx_buf)
{
struct spdk_nvmf_rdma_mgmt_channel *ch = ctx_buf;
if (!TAILQ_EMPTY(&ch->pending_data_buf_queue)) {
SPDK_ERRLOG("Pending I/O list wasn't empty on channel destruction\n");
}
}
static void
spdk_nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
{
if (rqpair->poller) {
TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link);
}
if (rqpair->cmds_mr) {
ibv_dereg_mr(rqpair->cmds_mr);
}
if (rqpair->cpls_mr) {
ibv_dereg_mr(rqpair->cpls_mr);
}
if (rqpair->bufs_mr) {
ibv_dereg_mr(rqpair->bufs_mr);
}
if (rqpair->cm_id) {
rdma_destroy_qp(rqpair->cm_id);
rdma_destroy_id(rqpair->cm_id);
}
if (rqpair->mgmt_channel) {
spdk_put_io_channel(rqpair->mgmt_channel);
}
/* Free all memory */
spdk_dma_free(rqpair->cmds);
spdk_dma_free(rqpair->cpls);
spdk_dma_free(rqpair->bufs);
free(rqpair->reqs);
free(rqpair->recvs);
free(rqpair);
}
static int
spdk_nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_qpair *rqpair;
int rc, i;
struct ibv_qp_init_attr attr;
struct spdk_nvmf_rdma_recv *rdma_recv;
struct spdk_nvmf_rdma_request *rdma_req;
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
memset(&attr, 0, sizeof(struct ibv_qp_init_attr));
attr.qp_type = IBV_QPT_RC;
attr.send_cq = rqpair->poller->cq;
attr.recv_cq = rqpair->poller->cq;
attr.cap.max_send_wr = rqpair->max_queue_depth * 2; /* SEND, READ, and WRITE operations */
attr.cap.max_recv_wr = rqpair->max_queue_depth; /* RECV operations */
attr.cap.max_send_sge = NVMF_DEFAULT_TX_SGE;
attr.cap.max_recv_sge = NVMF_DEFAULT_RX_SGE;
rc = rdma_create_qp(rqpair->cm_id, NULL, &attr);
if (rc) {
SPDK_ERRLOG("rdma_create_qp failed: errno %d: %s\n", errno, spdk_strerror(errno));
rdma_destroy_id(rqpair->cm_id);
rqpair->cm_id = NULL;
spdk_nvmf_rdma_qpair_destroy(rqpair);
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair);
rqpair->reqs = calloc(rqpair->max_queue_depth, sizeof(*rqpair->reqs));
rqpair->recvs = calloc(rqpair->max_queue_depth, sizeof(*rqpair->recvs));
rqpair->cmds = spdk_dma_zmalloc(rqpair->max_queue_depth * sizeof(*rqpair->cmds),
0x1000, NULL);
rqpair->cpls = spdk_dma_zmalloc(rqpair->max_queue_depth * sizeof(*rqpair->cpls),
0x1000, NULL);
rqpair->bufs = spdk_dma_zmalloc(rqpair->max_queue_depth * rtransport->in_capsule_data_size,
0x1000, NULL);
if (!rqpair->reqs || !rqpair->recvs || !rqpair->cmds ||
!rqpair->cpls || !rqpair->bufs) {
SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
spdk_nvmf_rdma_qpair_destroy(rqpair);
return -1;
}
rqpair->cmds_mr = ibv_reg_mr(rqpair->cm_id->pd, rqpair->cmds,
rqpair->max_queue_depth * sizeof(*rqpair->cmds),
IBV_ACCESS_LOCAL_WRITE);
rqpair->cpls_mr = ibv_reg_mr(rqpair->cm_id->pd, rqpair->cpls,
rqpair->max_queue_depth * sizeof(*rqpair->cpls),
0);
rqpair->bufs_mr = ibv_reg_mr(rqpair->cm_id->pd, rqpair->bufs,
rqpair->max_queue_depth * rtransport->in_capsule_data_size,
IBV_ACCESS_LOCAL_WRITE |
IBV_ACCESS_REMOTE_WRITE);
if (!rqpair->cmds_mr || !rqpair->cpls_mr || !rqpair->bufs_mr) {
SPDK_ERRLOG("Unable to register required memory for RDMA queue.\n");
spdk_nvmf_rdma_qpair_destroy(rqpair);
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n",
rqpair->cmds, rqpair->max_queue_depth * sizeof(*rqpair->cmds), rqpair->cmds_mr->lkey);
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n",
rqpair->cpls, rqpair->max_queue_depth * sizeof(*rqpair->cpls), rqpair->cpls_mr->lkey);
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n",
rqpair->bufs, rqpair->max_queue_depth * rtransport->in_capsule_data_size, rqpair->bufs_mr->lkey);
for (i = 0; i < rqpair->max_queue_depth; i++) {
struct ibv_recv_wr *bad_wr = NULL;
rdma_recv = &rqpair->recvs[i];
rdma_recv->qpair = rqpair;
/* Set up memory to receive commands */
rdma_recv->buf = (void *)((uintptr_t)rqpair->bufs + (i * rtransport->in_capsule_data_size));
rdma_recv->sgl[0].addr = (uintptr_t)&rqpair->cmds[i];
rdma_recv->sgl[0].length = sizeof(rqpair->cmds[i]);
rdma_recv->sgl[0].lkey = rqpair->cmds_mr->lkey;
rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
rdma_recv->sgl[1].length = rtransport->in_capsule_data_size;
rdma_recv->sgl[1].lkey = rqpair->bufs_mr->lkey;
rdma_recv->wr.wr_id = (uintptr_t)rdma_recv;
rdma_recv->wr.sg_list = rdma_recv->sgl;
rdma_recv->wr.num_sge = SPDK_COUNTOF(rdma_recv->sgl);
rc = ibv_post_recv(rqpair->cm_id->qp, &rdma_recv->wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Unable to post capsule for RDMA RECV\n");
spdk_nvmf_rdma_qpair_destroy(rqpair);
return -1;
}
}
for (i = 0; i < rqpair->max_queue_depth; i++) {
rdma_req = &rqpair->reqs[i];
rdma_req->req.qpair = &rqpair->qpair;
rdma_req->req.cmd = NULL;
/* Set up memory to send responses */
rdma_req->req.rsp = &rqpair->cpls[i];
rdma_req->rsp.sgl[0].addr = (uintptr_t)&rqpair->cpls[i];
rdma_req->rsp.sgl[0].length = sizeof(rqpair->cpls[i]);
rdma_req->rsp.sgl[0].lkey = rqpair->cpls_mr->lkey;
rdma_req->rsp.wr.wr_id = (uintptr_t)rdma_req;
rdma_req->rsp.wr.next = NULL;
rdma_req->rsp.wr.opcode = IBV_WR_SEND;
rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
/* Set up memory for data buffers */
rdma_req->data.wr.wr_id = (uint64_t)rdma_req;
rdma_req->data.wr.next = NULL;
rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
rdma_req->data.wr.sg_list = rdma_req->data.sgl;
rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
TAILQ_INSERT_TAIL(&rqpair->free_queue, rdma_req, link);
}
return 0;
}
static int
request_transfer_in(struct spdk_nvmf_request *req)
{
int rc;
struct spdk_nvmf_rdma_request *rdma_req;
struct spdk_nvmf_qpair *qpair;
struct spdk_nvmf_rdma_qpair *rqpair;
struct ibv_send_wr *bad_wr = NULL;
qpair = req->qpair;
rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
rqpair->cur_rdma_rw_depth++;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA READ POSTED. Request: %p Connection: %p\n", req, qpair);
spdk_trace_record(TRACE_RDMA_READ_START, 0, 0, (uintptr_t)req, 0);
rdma_req->data.wr.opcode = IBV_WR_RDMA_READ;
rdma_req->data.wr.next = NULL;
rc = ibv_post_send(rqpair->cm_id->qp, &rdma_req->data.wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Unable to transfer data from host to target\n");
/* Decrement r/w counter back since data transfer
* has not started.
*/
rqpair->cur_rdma_rw_depth--;
return -1;
}
return 0;
}
static int
request_transfer_out(struct spdk_nvmf_request *req)
{
int rc;
struct spdk_nvmf_rdma_request *rdma_req;
struct spdk_nvmf_qpair *qpair;
struct spdk_nvmf_rdma_qpair *rqpair;
struct spdk_nvme_cpl *rsp;
struct ibv_recv_wr *bad_recv_wr = NULL;
struct ibv_send_wr *send_wr, *bad_send_wr = NULL;
qpair = req->qpair;
rsp = &req->rsp->nvme_cpl;
rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
/* Advance our sq_head pointer */
if (qpair->sq_head == qpair->sq_head_max) {
qpair->sq_head = 0;
} else {
qpair->sq_head++;
}
rsp->sqhd = qpair->sq_head;
/* Post the capsule to the recv buffer */
assert(rdma_req->recv != NULL);
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA RECV POSTED. Recv: %p Connection: %p\n", rdma_req->recv,
rqpair);
rc = ibv_post_recv(rqpair->cm_id->qp, &rdma_req->recv->wr, &bad_recv_wr);
if (rc) {
SPDK_ERRLOG("Unable to re-post rx descriptor\n");
return rc;
}
rdma_req->recv = NULL;
/* Build the response which consists of an optional
* RDMA WRITE to transfer data, plus an RDMA SEND
* containing the response.
*/
send_wr = &rdma_req->rsp.wr;
if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA WRITE POSTED. Request: %p Connection: %p\n", req, qpair);
spdk_trace_record(TRACE_RDMA_WRITE_START, 0, 0, (uintptr_t)req, 0);
rqpair->cur_rdma_rw_depth++;
rdma_req->data.wr.opcode = IBV_WR_RDMA_WRITE;
rdma_req->data.wr.next = send_wr;
send_wr = &rdma_req->data.wr;
}
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "RDMA SEND POSTED. Request: %p Connection: %p\n", req, qpair);
spdk_trace_record(TRACE_NVMF_IO_COMPLETE, 0, 0, (uintptr_t)req, 0);
/* Send the completion */
rc = ibv_post_send(rqpair->cm_id->qp, send_wr, &bad_send_wr);
if (rc) {
SPDK_ERRLOG("Unable to send response capsule\n");
if (rdma_req->data.wr.opcode == IBV_WR_RDMA_WRITE) {
/* Decrement r/w counter back since data transfer
* has not started.
*/
rqpair->cur_rdma_rw_depth--;
}
}
return rc;
}
static int
spdk_nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
{
struct spdk_nvmf_rdma_accept_private_data accept_data;
struct rdma_conn_param ctrlr_event_data = {};
int rc;
accept_data.recfmt = 0;
accept_data.crqsize = rqpair->max_queue_depth;
ctrlr_event_data.private_data = &accept_data;
ctrlr_event_data.private_data_len = sizeof(accept_data);
if (id->ps == RDMA_PS_TCP) {
ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
ctrlr_event_data.initiator_depth = rqpair->max_rw_depth;
}
rc = rdma_accept(id, &ctrlr_event_data);
if (rc) {
SPDK_ERRLOG("Error %d on rdma_accept\n", errno);
} else {
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n");
}
return rc;
}
static void
spdk_nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
{
struct spdk_nvmf_rdma_reject_private_data rej_data;
rej_data.recfmt = 0;
rej_data.sts = error;
rdma_reject(id, &rej_data, sizeof(rej_data));
}
static int
nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event,
new_qpair_fn cb_fn)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_qpair *rqpair = NULL;
struct spdk_nvmf_rdma_port *port;
struct rdma_conn_param *rdma_param = NULL;
const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
uint16_t max_queue_depth;
uint16_t max_rw_depth;
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
rdma_param = &event->param.conn;
if (rdma_param->private_data == NULL ||
rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
SPDK_ERRLOG("connect request: no private data provided\n");
spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
return -1;
}
private_data = rdma_param->private_data;
if (private_data->recfmt != 0) {
SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n",
event->id->verbs->device->name, event->id->verbs->device->dev_name);
port = event->listen_id->context;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
event->listen_id, event->listen_id->verbs, port);
/* Figure out the supported queue depth. This is a multi-step process
* that takes into account hardware maximums, host provided values,
* and our target's internal memory limits */
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n");
/* Start with the maximum queue depth allowed by the target */
max_queue_depth = rtransport->max_queue_depth;
max_rw_depth = rtransport->max_queue_depth;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n", rtransport->max_queue_depth);
/* Next check the local NIC's hardware limitations */
SPDK_DEBUGLOG(SPDK_LOG_RDMA,
"Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
max_rw_depth = spdk_min(max_rw_depth, port->device->attr.max_qp_rd_atom);
/* Next check the remote NIC's hardware limitations */
SPDK_DEBUGLOG(SPDK_LOG_RDMA,
"Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
rdma_param->initiator_depth, rdma_param->responder_resources);
if (rdma_param->initiator_depth > 0) {
max_rw_depth = spdk_min(max_rw_depth, rdma_param->initiator_depth);
}
/* Finally check for the host software requested values, which are
* optional. */
if (rdma_param->private_data != NULL &&
rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize);
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize);
max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
}
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
max_queue_depth, max_rw_depth);
rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
if (rqpair == NULL) {
SPDK_ERRLOG("Could not allocate new connection.\n");
spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
return -1;
}
rqpair->port = port;
rqpair->max_queue_depth = max_queue_depth;
rqpair->max_rw_depth = max_rw_depth;
rqpair->cm_id = event->id;
rqpair->qpair.transport = transport;
TAILQ_INIT(&rqpair->incoming_queue);
TAILQ_INIT(&rqpair->free_queue);
TAILQ_INIT(&rqpair->pending_rdma_rw_queue);
event->id->context = &rqpair->qpair;
cb_fn(&rqpair->qpair);
return 0;
}
static void
nvmf_rdma_handle_disconnect(void *ctx)
{
struct spdk_nvmf_qpair *qpair = ctx;
struct spdk_nvmf_ctrlr *ctrlr;
struct spdk_nvmf_rdma_qpair *rqpair;
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
ctrlr = qpair->ctrlr;
if (ctrlr == NULL) {
/* No ctrlr has been established yet, so destroy
* the connection.
*/
spdk_nvmf_rdma_qpair_destroy(rqpair);
return;
}
spdk_nvmf_ctrlr_disconnect(qpair);
}
static int
nvmf_rdma_disconnect(struct rdma_cm_event *evt)
{
struct spdk_nvmf_qpair *qpair;
struct spdk_io_channel *ch;
if (evt->id == NULL) {
SPDK_ERRLOG("disconnect request: missing cm_id\n");
return -1;
}
qpair = evt->id->context;
if (qpair == NULL) {
SPDK_ERRLOG("disconnect request: no active connection\n");
return -1;
}
/* ack the disconnect event before rdma_destroy_id */
rdma_ack_cm_event(evt);
ch = spdk_io_channel_from_ctx(qpair->group);
spdk_thread_send_msg(spdk_io_channel_get_thread(ch), nvmf_rdma_handle_disconnect, qpair);
return 0;
}
#ifdef DEBUG
static const char *CM_EVENT_STR[] = {
"RDMA_CM_EVENT_ADDR_RESOLVED",
"RDMA_CM_EVENT_ADDR_ERROR",
"RDMA_CM_EVENT_ROUTE_RESOLVED",
"RDMA_CM_EVENT_ROUTE_ERROR",
"RDMA_CM_EVENT_CONNECT_REQUEST",
"RDMA_CM_EVENT_CONNECT_RESPONSE",
"RDMA_CM_EVENT_CONNECT_ERROR",
"RDMA_CM_EVENT_UNREACHABLE",
"RDMA_CM_EVENT_REJECTED",
"RDMA_CM_EVENT_ESTABLISHED",
"RDMA_CM_EVENT_DISCONNECTED",
"RDMA_CM_EVENT_DEVICE_REMOVAL",
"RDMA_CM_EVENT_MULTICAST_JOIN",
"RDMA_CM_EVENT_MULTICAST_ERROR",
"RDMA_CM_EVENT_ADDR_CHANGE",
"RDMA_CM_EVENT_TIMEWAIT_EXIT"
};
#endif /* DEBUG */
static int
spdk_nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action,
void *vaddr, size_t size)
{
struct spdk_nvmf_rdma_device *device = cb_ctx;
struct ibv_pd *pd = device->pd;
struct ibv_mr *mr;
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
mr = ibv_reg_mr(pd, vaddr, size,
IBV_ACCESS_LOCAL_WRITE |
IBV_ACCESS_REMOTE_READ |
IBV_ACCESS_REMOTE_WRITE);
if (mr == NULL) {
SPDK_ERRLOG("ibv_reg_mr() failed\n");
return -1;
} else {
spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
}
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr);
spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
if (mr) {
ibv_dereg_mr(mr);
}
break;
}
return 0;
}
typedef enum spdk_nvme_data_transfer spdk_nvme_data_transfer_t;
static spdk_nvme_data_transfer_t
spdk_nvmf_rdma_request_get_xfer(struct spdk_nvmf_rdma_request *rdma_req)
{
enum spdk_nvme_data_transfer xfer;
struct spdk_nvme_cmd *cmd = &rdma_req->req.cmd->nvme_cmd;
struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1;
/* Figure out data transfer direction */
if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
xfer = spdk_nvme_opc_get_data_transfer(rdma_req->req.cmd->nvmf_cmd.fctype);
} else {
xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
/* Some admin commands are special cases */
if ((rdma_req->req.qpair->qid == 0) &&
((cmd->opc == SPDK_NVME_OPC_GET_FEATURES) ||
(cmd->opc == SPDK_NVME_OPC_SET_FEATURES))) {
switch (cmd->cdw10 & 0xff) {
case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
case SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
case SPDK_NVME_FEAT_HOST_IDENTIFIER:
break;
default:
xfer = SPDK_NVME_DATA_NONE;
}
}
}
if (xfer == SPDK_NVME_DATA_NONE) {
return xfer;
}
/* Even for commands that may transfer data, they could have specified 0 length.
* We want those to show up with xfer SPDK_NVME_DATA_NONE.
*/
switch (sgl->generic.type) {
case SPDK_NVME_SGL_TYPE_DATA_BLOCK:
case SPDK_NVME_SGL_TYPE_BIT_BUCKET:
case SPDK_NVME_SGL_TYPE_SEGMENT:
case SPDK_NVME_SGL_TYPE_LAST_SEGMENT:
if (sgl->unkeyed.length == 0) {
xfer = SPDK_NVME_DATA_NONE;
}
break;
case SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK:
if (sgl->keyed.length == 0) {
xfer = SPDK_NVME_DATA_NONE;
}
break;
}
return xfer;
}
static int
spdk_nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_device *device,
struct spdk_nvmf_rdma_request *rdma_req)
{
struct spdk_nvme_cmd *cmd;
struct spdk_nvme_cpl *rsp;
struct spdk_nvme_sgl_descriptor *sgl;
cmd = &rdma_req->req.cmd->nvme_cmd;
rsp = &rdma_req->req.rsp->nvme_cpl;
sgl = &cmd->dptr.sgl1;
if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
(sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
if (sgl->keyed.length > rtransport->max_io_size) {
SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
sgl->keyed.length, rtransport->max_io_size);
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return -1;
}
rdma_req->req.length = sgl->keyed.length;
rdma_req->data_from_pool = spdk_mempool_get(rtransport->data_buf_pool);
if (!rdma_req->data_from_pool) {
/* No available buffers. Queue this request up. */
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
return 0;
}
/* AIO backend requires block size aligned data buffers,
* 4KiB aligned data buffer should work for most devices.
*/
rdma_req->req.data = (void *)((uintptr_t)(rdma_req->data_from_pool + NVMF_DATA_BUFFER_MASK)
& ~NVMF_DATA_BUFFER_MASK);
rdma_req->data.sgl[0].addr = (uintptr_t)rdma_req->req.data;
rdma_req->data.sgl[0].length = sgl->keyed.length;
rdma_req->data.sgl[0].lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map,
(uint64_t)rdma_req->req.data))->lkey;
rdma_req->data.wr.wr.rdma.rkey = sgl->keyed.key;
rdma_req->data.wr.wr.rdma.remote_addr = sgl->address;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took buffer from central pool\n", rdma_req);
return 0;
} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
uint64_t offset = sgl->address;
uint32_t max_len = rtransport->in_capsule_data_size;
SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
offset, sgl->unkeyed.length);
if (offset > max_len) {
SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
offset, max_len);
rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
return -1;
}
max_len -= (uint32_t)offset;
if (sgl->unkeyed.length > max_len) {
SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
sgl->unkeyed.length, max_len);
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return -1;
}
rdma_req->req.data = rdma_req->recv->buf + offset;
rdma_req->data_from_pool = NULL;
rdma_req->req.length = sgl->unkeyed.length;
return 0;
}
SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n",
sgl->generic.type, sgl->generic.subtype);
rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
return -1;
}
static bool
spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_request *rdma_req)
{
struct spdk_nvmf_rdma_qpair *rqpair;
struct spdk_nvmf_rdma_device *device;
struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
int rc;
struct spdk_nvmf_rdma_recv *rdma_recv;
enum spdk_nvmf_rdma_request_state prev_state;
bool progress = false;
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
device = rqpair->port->device;
assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
/* The loop here is to allow for several back-to-back state changes. */
do {
prev_state = rdma_req->state;
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state);
switch (rdma_req->state) {
case RDMA_REQUEST_STATE_FREE:
/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
* to escape this state. */
break;
case RDMA_REQUEST_STATE_NEW:
rqpair->cur_queue_depth++;
rdma_recv = rdma_req->recv;
/* The first element of the SGL is the NVMe command */
rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
TAILQ_REMOVE(&rqpair->incoming_queue, rdma_recv, link);
TAILQ_REMOVE(&rqpair->free_queue, rdma_req, link);
/* The next state transition depends on the data transfer needs of this request. */
rdma_req->req.xfer = spdk_nvmf_rdma_request_get_xfer(rdma_req);
/* If no data to transfer, ready to execute. */
if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
break;
}
rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
TAILQ_INSERT_TAIL(&rqpair->ch->pending_data_buf_queue, rdma_req, link);
break;
case RDMA_REQUEST_STATE_NEED_BUFFER:
assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
if (rdma_req != TAILQ_FIRST(&rqpair->ch->pending_data_buf_queue)) {
/* This request needs to wait in line to obtain a buffer */
break;
}
/* Try to get a data buffer */
rc = spdk_nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
if (rc < 0) {
TAILQ_REMOVE(&rqpair->ch->pending_data_buf_queue, rdma_req, link);
rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
break;
}
if (!rdma_req->req.data) {
/* No buffers available. */
break;
}
TAILQ_REMOVE(&rqpair->ch->pending_data_buf_queue, rdma_req, link);
/* If data is transferring from host to controller and the data didn't
* arrive using in capsule data, we need to do a transfer from the host.
*/
if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER && rdma_req->data_from_pool != NULL) {
rdma_req->state = RDMA_REQUEST_STATE_TRANSFER_PENDING_HOST_TO_CONTROLLER;
TAILQ_INSERT_TAIL(&rqpair->pending_rdma_rw_queue, rdma_req, link);
break;
}
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
break;
case RDMA_REQUEST_STATE_TRANSFER_PENDING_HOST_TO_CONTROLLER:
if (rdma_req != TAILQ_FIRST(&rqpair->pending_rdma_rw_queue)) {
/* This request needs to wait in line to perform RDMA */
break;
}
if (rqpair->cur_rdma_rw_depth < rqpair->max_rw_depth) {
TAILQ_REMOVE(&rqpair->pending_rdma_rw_queue, rdma_req, link);
rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
rc = request_transfer_in(&rdma_req->req);
if (rc) {
rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
}
}
break;
case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
* to escape this state. */
break;
case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
spdk_nvmf_request_exec(&rdma_req->req);
break;
case RDMA_REQUEST_STATE_EXECUTING:
/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
* to escape this state. */
break;
case RDMA_REQUEST_STATE_EXECUTED:
if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
rdma_req->state = RDMA_REQUEST_STATE_TRANSFER_PENDING_CONTROLLER_TO_HOST;
TAILQ_INSERT_TAIL(&rqpair->pending_rdma_rw_queue, rdma_req, link);
} else {
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
}
break;
case RDMA_REQUEST_STATE_TRANSFER_PENDING_CONTROLLER_TO_HOST:
if (rdma_req != TAILQ_FIRST(&rqpair->pending_rdma_rw_queue)) {
/* This request needs to wait in line to perform RDMA */
break;
}
if (rqpair->cur_rdma_rw_depth < rqpair->max_rw_depth) {
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
TAILQ_REMOVE(&rqpair->pending_rdma_rw_queue, rdma_req, link);
}
break;
case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
rdma_req->state = RDMA_REQUEST_STATE_COMPLETING;
rc = request_transfer_out(&rdma_req->req);
assert(rc == 0); /* No good way to handle this currently */
break;
case RDMA_REQUEST_STATE_COMPLETING:
/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
* to escape this state. */
break;
case RDMA_REQUEST_STATE_COMPLETED:
assert(rqpair->cur_queue_depth > 0);
rqpair->cur_queue_depth--;
if (rdma_req->data_from_pool) {
/* Put the buffer back in the pool */
spdk_mempool_put(rtransport->data_buf_pool, rdma_req->data_from_pool);
rdma_req->data_from_pool = NULL;
}
rdma_req->req.length = 0;
rdma_req->req.data = NULL;
rdma_req->state = RDMA_REQUEST_STATE_FREE;
TAILQ_INSERT_TAIL(&rqpair->free_queue, rdma_req, link);
break;
}
if (rdma_req->state != prev_state) {
progress = true;
}
} while (rdma_req->state != prev_state);
return progress;
}
/* Public API callbacks begin here */
static struct spdk_nvmf_transport *
spdk_nvmf_rdma_create(struct spdk_nvmf_tgt *tgt)
{
int rc;
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_device *device, *tmp;
struct ibv_context **contexts;
uint32_t i;
int flag;
rtransport = calloc(1, sizeof(*rtransport));
if (!rtransport) {
return NULL;
}
pthread_mutex_init(&rtransport->lock, NULL);
TAILQ_INIT(&rtransport->devices);
TAILQ_INIT(&rtransport->ports);
rtransport->transport.tgt = tgt;
rtransport->transport.ops = &spdk_nvmf_transport_rdma;
SPDK_NOTICELOG("*** RDMA Transport Init ***\n");
rtransport->max_queue_depth = tgt->opts.max_queue_depth;
rtransport->max_io_size = tgt->opts.max_io_size;
rtransport->in_capsule_data_size = tgt->opts.in_capsule_data_size;
rtransport->event_channel = rdma_create_event_channel();
if (rtransport->event_channel == NULL) {
SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
free(rtransport);
return NULL;
}
flag = fcntl(rtransport->event_channel->fd, F_GETFL);
if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
rtransport->event_channel->fd, spdk_strerror(errno));
free(rtransport);
return NULL;
}
rtransport->data_buf_pool = spdk_mempool_create("spdk_nvmf_rdma",
rtransport->max_queue_depth * 4, /* The 4 is arbitrarily chosen. Needs to be configurable. */
rtransport->max_io_size + NVMF_DATA_BUFFER_ALIGNMENT,
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY);
if (!rtransport->data_buf_pool) {
SPDK_ERRLOG("Unable to allocate buffer pool for poll group\n");
free(rtransport);
return NULL;
}
spdk_io_device_register(rtransport, spdk_nvmf_rdma_mgmt_channel_create,
spdk_nvmf_rdma_mgmt_channel_destroy,
sizeof(struct spdk_nvmf_rdma_mgmt_channel));
contexts = rdma_get_devices(NULL);
i = 0;
rc = 0;
while (contexts[i] != NULL) {
device = calloc(1, sizeof(*device));
if (!device) {
SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
rc = -ENOMEM;
break;
}
device->context = contexts[i];
rc = ibv_query_device(device->context, &device->attr);
if (rc < 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
free(device);
break;
}
device->pd = NULL;
device->map = NULL;
TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
i++;
}
if (rc < 0) {
TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
TAILQ_REMOVE(&rtransport->devices, device, link);
free(device);
}
spdk_mempool_free(rtransport->data_buf_pool);
rdma_destroy_event_channel(rtransport->event_channel);
free(rtransport);
rdma_free_devices(contexts);
return NULL;
}
rdma_free_devices(contexts);
return &rtransport->transport;
}
static int
spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_port *port, *port_tmp;
struct spdk_nvmf_rdma_device *device, *device_tmp;
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
TAILQ_REMOVE(&rtransport->ports, port, link);
rdma_destroy_id(port->id);
free(port);
}
if (rtransport->event_channel != NULL) {
rdma_destroy_event_channel(rtransport->event_channel);
}
TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
TAILQ_REMOVE(&rtransport->devices, device, link);
if (device->map) {
spdk_mem_map_free(&device->map);
}
free(device);
}
if (spdk_mempool_count(rtransport->data_buf_pool) != (rtransport->max_queue_depth * 4)) {
SPDK_ERRLOG("transport buffer pool count is %zu but should be %u\n",
spdk_mempool_count(rtransport->data_buf_pool),
rtransport->max_queue_depth * 4);
}
spdk_mempool_free(rtransport->data_buf_pool);
spdk_io_device_unregister(rtransport, NULL);
free(rtransport);
return 0;
}
static int
spdk_nvmf_rdma_listen(struct spdk_nvmf_transport *transport,
const struct spdk_nvme_transport_id *trid)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_device *device;
struct spdk_nvmf_rdma_port *port_tmp, *port;
struct addrinfo *res;
struct addrinfo hints;
int family;
int rc;
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
port = calloc(1, sizeof(*port));
if (!port) {
return -ENOMEM;
}
/* Selectively copy the trid. Things like NQN don't matter here - that
* mapping is enforced elsewhere.
*/
port->trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
port->trid.adrfam = trid->adrfam;
snprintf(port->trid.traddr, sizeof(port->trid.traddr), "%s", trid->traddr);
snprintf(port->trid.trsvcid, sizeof(port->trid.trsvcid), "%s", trid->trsvcid);
pthread_mutex_lock(&rtransport->lock);
assert(rtransport->event_channel != NULL);
TAILQ_FOREACH(port_tmp, &rtransport->ports, link) {
if (spdk_nvme_transport_id_compare(&port_tmp->trid, &port->trid) == 0) {
port_tmp->ref++;
free(port);
/* Already listening at this address */
pthread_mutex_unlock(&rtransport->lock);
return 0;
}
}
rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
if (rc < 0) {
SPDK_ERRLOG("rdma_create_id() failed\n");
free(port);
pthread_mutex_unlock(&rtransport->lock);
return rc;
}
switch (port->trid.adrfam) {
case SPDK_NVMF_ADRFAM_IPV4:
family = AF_INET;
break;
case SPDK_NVMF_ADRFAM_IPV6:
family = AF_INET6;
break;
default:
SPDK_ERRLOG("Unhandled ADRFAM %d\n", port->trid.adrfam);
free(port);
pthread_mutex_unlock(&rtransport->lock);
return -EINVAL;
}
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = 0;
rc = getaddrinfo(port->trid.traddr, port->trid.trsvcid, &hints, &res);
if (rc) {
SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
free(port);
pthread_mutex_unlock(&rtransport->lock);
return -EINVAL;
}
rc = rdma_bind_addr(port->id, res->ai_addr);
freeaddrinfo(res);
if (rc < 0) {
SPDK_ERRLOG("rdma_bind_addr() failed\n");
rdma_destroy_id(port->id);
free(port);
pthread_mutex_unlock(&rtransport->lock);
return rc;
}
rc = rdma_listen(port->id, 10); /* 10 = backlog */
if (rc < 0) {
SPDK_ERRLOG("rdma_listen() failed\n");
rdma_destroy_id(port->id);
free(port);
pthread_mutex_unlock(&rtransport->lock);
return rc;
}
TAILQ_FOREACH(device, &rtransport->devices, link) {
if (device->context == port->id->verbs) {
port->device = device;
break;
}
}
if (!port->device) {
SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
port->id->verbs);
rdma_destroy_id(port->id);
free(port);
pthread_mutex_unlock(&rtransport->lock);
return -EINVAL;
}
if (!device->map) {
device->pd = port->id->pd;
device->map = spdk_mem_map_alloc(0, spdk_nvmf_rdma_mem_notify, device);
if (!device->map) {
SPDK_ERRLOG("Unable to allocate memory map for new poll group\n");
return -1;
}
} else {
assert(device->pd == port->id->pd);
}
SPDK_NOTICELOG("*** NVMf Target Listening on %s port %d ***\n",
port->trid.traddr, ntohs(rdma_get_src_port(port->id)));
port->ref = 1;
TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
pthread_mutex_unlock(&rtransport->lock);
return 0;
}
static int
spdk_nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
const struct spdk_nvme_transport_id *_trid)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_port *port, *tmp;
struct spdk_nvme_transport_id trid = {};
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
/* Selectively copy the trid. Things like NQN don't matter here - that
* mapping is enforced elsewhere.
*/
trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
trid.adrfam = _trid->adrfam;
snprintf(trid.traddr, sizeof(port->trid.traddr), "%s", _trid->traddr);
snprintf(trid.trsvcid, sizeof(port->trid.trsvcid), "%s", _trid->trsvcid);
pthread_mutex_lock(&rtransport->lock);
TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
if (spdk_nvme_transport_id_compare(&port->trid, &trid) == 0) {
assert(port->ref > 0);
port->ref--;
if (port->ref == 0) {
TAILQ_REMOVE(&rtransport->ports, port, link);
rdma_destroy_id(port->id);
free(port);
}
break;
}
}
pthread_mutex_unlock(&rtransport->lock);
return 0;
}
static void
spdk_nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct rdma_cm_event *event;
int rc;
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
if (rtransport->event_channel == NULL) {
return;
}
while (1) {
rc = rdma_get_cm_event(rtransport->event_channel, &event);
if (rc == 0) {
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
switch (event->event) {
case RDMA_CM_EVENT_CONNECT_REQUEST:
rc = nvmf_rdma_connect(transport, event, cb_fn);
if (rc < 0) {
SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
break;
}
break;
case RDMA_CM_EVENT_ESTABLISHED:
break;
case RDMA_CM_EVENT_ADDR_CHANGE:
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_DEVICE_REMOVAL:
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
rc = nvmf_rdma_disconnect(event);
if (rc < 0) {
SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
break;
}
continue;
default:
SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
break;
}
rdma_ack_cm_event(event);
} else {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
}
break;
}
}
}
static void
spdk_nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
struct spdk_nvme_transport_id *trid,
struct spdk_nvmf_discovery_log_page_entry *entry)
{
entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
entry->adrfam = trid->adrfam;
entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_SPECIFIED;
spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
}
static struct spdk_nvmf_transport_poll_group *
spdk_nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_poll_group *rgroup;
struct spdk_nvmf_rdma_poller *poller;
struct spdk_nvmf_rdma_device *device;
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
rgroup = calloc(1, sizeof(*rgroup));
if (!rgroup) {
return NULL;
}
TAILQ_INIT(&rgroup->pollers);
pthread_mutex_lock(&rtransport->lock);
TAILQ_FOREACH(device, &rtransport->devices, link) {
if (device->map == NULL) {
/*
* The device is not in use (no listeners),
* so no protection domain has been constructed.
* Skip it.
*/
SPDK_NOTICELOG("Skipping unused RDMA device when creating poll group.\n");
continue;
}
poller = calloc(1, sizeof(*poller));
if (!poller) {
SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
free(rgroup);
pthread_mutex_unlock(&rtransport->lock);
return NULL;
}
poller->device = device;
poller->group = rgroup;
TAILQ_INIT(&poller->qpairs);
poller->cq = ibv_create_cq(device->context, NVMF_RDMA_CQ_SIZE, poller, NULL, 0);
if (!poller->cq) {
SPDK_ERRLOG("Unable to create completion queue\n");
free(poller);
free(rgroup);
pthread_mutex_unlock(&rtransport->lock);
return NULL;
}
TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
}
pthread_mutex_unlock(&rtransport->lock);
return &rgroup->group;
}
static void
spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
{
struct spdk_nvmf_rdma_poll_group *rgroup;
struct spdk_nvmf_rdma_poller *poller, *tmp;
rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
if (!rgroup) {
return;
}
TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
TAILQ_REMOVE(&rgroup->pollers, poller, link);
if (poller->cq) {
ibv_destroy_cq(poller->cq);
}
free(poller);
}
free(rgroup);
}
static int
spdk_nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_poll_group *rgroup;
struct spdk_nvmf_rdma_qpair *rqpair;
struct spdk_nvmf_rdma_device *device;
struct spdk_nvmf_rdma_poller *poller;
int rc;
rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
device = rqpair->port->device;
if (device->pd != rqpair->cm_id->pd) {
SPDK_ERRLOG("Mismatched protection domains\n");
return -1;
}
TAILQ_FOREACH(poller, &rgroup->pollers, link) {
if (poller->device == device) {
break;
}
}
if (!poller) {
SPDK_ERRLOG("No poller found for device.\n");
return -1;
}
TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link);
rqpair->poller = poller;
rc = spdk_nvmf_rdma_qpair_initialize(qpair);
if (rc < 0) {
SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
return -1;
}
rqpair->mgmt_channel = spdk_get_io_channel(rtransport);
if (!rqpair->mgmt_channel) {
spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
spdk_nvmf_rdma_qpair_destroy(rqpair);
return -1;
}
rqpair->ch = spdk_io_channel_get_ctx(rqpair->mgmt_channel);
assert(rqpair->ch != NULL);
rc = spdk_nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
if (rc) {
/* Try to reject, but we probably can't */
spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
spdk_nvmf_rdma_qpair_destroy(rqpair);
return -1;
}
return 0;
}
static int
spdk_nvmf_rdma_poll_group_remove(struct spdk_nvmf_transport_poll_group *group,
struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_rdma_poll_group *rgroup;
struct spdk_nvmf_rdma_qpair *rqpair;
struct spdk_nvmf_rdma_device *device;
struct spdk_nvmf_rdma_poller *poller;
struct spdk_nvmf_rdma_qpair *rq, *trq;
rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
device = rqpair->port->device;
TAILQ_FOREACH(poller, &rgroup->pollers, link) {
if (poller->device == device) {
break;
}
}
if (!poller) {
SPDK_ERRLOG("No poller found for device.\n");
return -1;
}
TAILQ_FOREACH_SAFE(rq, &poller->qpairs, link, trq) {
if (rq == rqpair) {
TAILQ_REMOVE(&poller->qpairs, rqpair, link);
break;
}
}
if (rq == NULL) {
SPDK_ERRLOG("RDMA qpair cannot be removed from group (not in group).\n");
return -1;
}
return 0;
}
static int
spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport,
struct spdk_nvmf_rdma_transport, transport);
struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
spdk_nvmf_rdma_request_process(rtransport, rdma_req);
return 0;
}
static void
spdk_nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair)
{
spdk_nvmf_rdma_qpair_destroy(SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair));
}
static void
spdk_nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_qpair *rqpair)
{
struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp;
struct spdk_nvmf_rdma_request *rdma_req, *req_tmp;
/* We process I/O in the pending_rdma_rw queue at the highest priority. */
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_rw_queue, link, req_tmp) {
if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) {
break;
}
}
/* The second highest priority is I/O waiting on memory buffers. */
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->ch->pending_data_buf_queue, link, req_tmp) {
if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) {
break;
}
}
/* The lowest priority is processing newly received commands */
TAILQ_FOREACH_SAFE(rdma_recv, &rqpair->incoming_queue, link, recv_tmp) {
rdma_req = TAILQ_FIRST(&rqpair->free_queue);
if (rdma_req == NULL) {
/* Need to wait for more SEND completions */
break;
}
rdma_req->recv = rdma_recv;
rdma_req->state = RDMA_REQUEST_STATE_NEW;
if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) {
break;
}
}
}
static struct spdk_nvmf_rdma_request *
get_rdma_req_from_wc(struct ibv_wc *wc)
{
struct spdk_nvmf_rdma_request *rdma_req;
rdma_req = (struct spdk_nvmf_rdma_request *)wc->wr_id;
assert(rdma_req != NULL);
#ifdef DEBUG
struct spdk_nvmf_rdma_qpair *rqpair;
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
assert(rdma_req - rqpair->reqs >= 0);
assert(rdma_req - rqpair->reqs < (ptrdiff_t)rqpair->max_queue_depth);
#endif
return rdma_req;
}
static struct spdk_nvmf_rdma_recv *
get_rdma_recv_from_wc(struct ibv_wc *wc)
{
struct spdk_nvmf_rdma_recv *rdma_recv;
assert(wc->byte_len >= sizeof(struct spdk_nvmf_capsule_cmd));
rdma_recv = (struct spdk_nvmf_rdma_recv *)wc->wr_id;
assert(rdma_recv != NULL);
#ifdef DEBUG
struct spdk_nvmf_rdma_qpair *rqpair = rdma_recv->qpair;
assert(rdma_recv - rqpair->recvs >= 0);
assert(rdma_recv - rqpair->recvs < (ptrdiff_t)rqpair->max_queue_depth);
#endif
return rdma_recv;
}
static int
spdk_nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
struct spdk_nvmf_rdma_poller *rpoller)
{
struct ibv_wc wc[32];
struct spdk_nvmf_rdma_request *rdma_req;
struct spdk_nvmf_rdma_recv *rdma_recv;
struct spdk_nvmf_rdma_qpair *rqpair;
int reaped, i;
int count = 0;
bool error = false;
/* Poll for completing operations. */
reaped = ibv_poll_cq(rpoller->cq, 32, wc);
if (reaped < 0) {
SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
errno, spdk_strerror(errno));
return -1;
}
for (i = 0; i < reaped; i++) {
if (wc[i].status) {
SPDK_ERRLOG("CQ error on CQ %p, Request 0x%lu (%d): %s\n",
rpoller->cq, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
error = true;
continue;
}
switch (wc[i].opcode) {
case IBV_WC_SEND:
rdma_req = get_rdma_req_from_wc(&wc[i]);
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
assert(rdma_req->state == RDMA_REQUEST_STATE_COMPLETING);
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
spdk_nvmf_rdma_request_process(rtransport, rdma_req);
count++;
/* Try to process other queued requests */
spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair);
break;
case IBV_WC_RDMA_WRITE:
rdma_req = get_rdma_req_from_wc(&wc[i]);
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
rqpair->cur_rdma_rw_depth--;
/* Try to process other queued requests */
spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair);
break;
case IBV_WC_RDMA_READ:
rdma_req = get_rdma_req_from_wc(&wc[i]);
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
assert(rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER);
rqpair->cur_rdma_rw_depth--;
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
spdk_nvmf_rdma_request_process(rtransport, rdma_req);
/* Try to process other queued requests */
spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair);
break;
case IBV_WC_RECV:
rdma_recv = get_rdma_recv_from_wc(&wc[i]);
rqpair = rdma_recv->qpair;
TAILQ_INSERT_TAIL(&rqpair->incoming_queue, rdma_recv, link);
/* Try to process other queued requests */
spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair);
break;
default:
SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
continue;
}
}
if (error == true) {
return -1;
}
return count;
}
static int
spdk_nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
{
struct spdk_nvmf_rdma_transport *rtransport;
struct spdk_nvmf_rdma_poll_group *rgroup;
struct spdk_nvmf_rdma_poller *rpoller;
int count, rc;
rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
count = 0;
TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
rc = spdk_nvmf_rdma_poller_poll(rtransport, rpoller);
if (rc < 0) {
return rc;
}
count += rc;
}
return count;
}
static bool
spdk_nvmf_rdma_qpair_is_idle(struct spdk_nvmf_qpair *qpair)
{
struct spdk_nvmf_rdma_qpair *rqpair;
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
if (rqpair->cur_queue_depth == 0 && rqpair->cur_rdma_rw_depth == 0) {
return true;
}
return false;
}
const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
.type = SPDK_NVME_TRANSPORT_RDMA,
.create = spdk_nvmf_rdma_create,
.destroy = spdk_nvmf_rdma_destroy,
.listen = spdk_nvmf_rdma_listen,
.stop_listen = spdk_nvmf_rdma_stop_listen,
.accept = spdk_nvmf_rdma_accept,
.listener_discover = spdk_nvmf_rdma_discover,
.poll_group_create = spdk_nvmf_rdma_poll_group_create,
.poll_group_destroy = spdk_nvmf_rdma_poll_group_destroy,
.poll_group_add = spdk_nvmf_rdma_poll_group_add,
.poll_group_remove = spdk_nvmf_rdma_poll_group_remove,
.poll_group_poll = spdk_nvmf_rdma_poll_group_poll,
.req_complete = spdk_nvmf_rdma_request_complete,
.qpair_fini = spdk_nvmf_rdma_close_qpair,
.qpair_is_idle = spdk_nvmf_rdma_qpair_is_idle,
};
SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA)