Seth Howell 7245134ab0 memory: return first translation from mem_map_translate
This should have always been the case with spdk_mem_map_translate. For
some memory maps (like RDMA) this doesn't matter, but for others like
our virtual to physical map, this is critical for retrieving valid
translations.

This behavior change will only affect maps that have a registered
contiguous memory callback.

Change-Id: I67517667f01d974702d7daa7c81238281aae0cf6
Signed-off-by: Seth Howell <seth.howell@intel.com>
Reviewed-on: https://review.gerrithub.io/436562
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
2018-12-13 22:27:21 +00:00

721 lines
19 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "env_internal.h"
#include <rte_config.h>
#include <rte_eal_memconfig.h>
#include "spdk_internal/assert.h"
#include "spdk/assert.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/util.h"
#if DEBUG
#define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
#else
#define DEBUG_PRINT(...)
#endif
#define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB))
#define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB))
#define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB))
#define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1))
#define _2MB_OFFSET(ptr) (((uintptr_t)(ptr)) & (VALUE_2MB - 1))
/* Page is registered */
#define REG_MAP_REGISTERED (1ULL << 62)
/* A notification region barrier. The 2MB translation entry that's marked
* with this flag must be unregistered separately. This allows contiguous
* regions to be unregistered in the same chunks they were registered.
*/
#define REG_MAP_NOTIFY_START (1ULL << 63)
/* Translation of a single 2MB page. */
struct map_2mb {
uint64_t translation_2mb;
};
/* Second-level map table indexed by bits [21..29] of the virtual address.
* Each entry contains the address translation or error for entries that haven't
* been retrieved yet.
*/
struct map_1gb {
struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)];
};
/* Top-level map table indexed by bits [30..47] of the virtual address.
* Each entry points to a second-level map table or NULL.
*/
struct map_256tb {
struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)];
};
/* Page-granularity memory address translation */
struct spdk_mem_map {
struct map_256tb map_256tb;
pthread_mutex_t mutex;
uint64_t default_translation;
struct spdk_mem_map_ops ops;
void *cb_ctx;
TAILQ_ENTRY(spdk_mem_map) tailq;
};
/* Registrations map. The 64 bit translations are bit fields with the
* following layout (starting with the low bits):
* 0 - 61 : reserved
* 62 - 63 : flags
*/
static struct spdk_mem_map *g_mem_reg_map;
static TAILQ_HEAD(, spdk_mem_map) g_spdk_mem_maps = TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps);
static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER;
/*
* Walk the currently registered memory via the main memory registration map
* and call the new map's notify callback for each virtually contiguous region.
*/
static int
spdk_mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action)
{
size_t idx_256tb;
uint64_t idx_1gb;
uint64_t contig_start = UINT64_MAX;
uint64_t contig_end = UINT64_MAX;
struct map_1gb *map_1gb;
int rc;
if (!g_mem_reg_map) {
return -EINVAL;
}
/* Hold the memory registration map mutex so no new registrations can be added while we are looping. */
pthread_mutex_lock(&g_mem_reg_map->mutex);
for (idx_256tb = 0;
idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]);
idx_256tb++) {
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
if (!map_1gb) {
if (contig_start != UINT64_MAX) {
/* End of of a virtually contiguous range */
rc = map->ops.notify_cb(map->cb_ctx, map, action,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
/* Don't bother handling unregister failures. It can't be any worse */
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
goto err_unregister;
}
}
contig_start = UINT64_MAX;
continue;
}
for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) {
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
(contig_start == UINT64_MAX ||
(map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_start == UINT64_MAX) {
contig_start = vaddr;
}
contig_end = vaddr;
} else {
if (contig_start != UINT64_MAX) {
/* End of of a virtually contiguous range */
rc = map->ops.notify_cb(map->cb_ctx, map, action,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
/* Don't bother handling unregister failures. It can't be any worse */
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
goto err_unregister;
}
/* This page might be a part of a neighbour region, so process
* it again. The idx_1gb will be incremented immediately.
*/
idx_1gb--;
}
contig_start = UINT64_MAX;
}
}
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
return 0;
err_unregister:
/* Unwind to the first empty translation so we don't unregister
* a region that just failed to register.
*/
idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1);
idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1);
contig_start = UINT64_MAX;
contig_end = UINT64_MAX;
/* Unregister any memory we managed to register before the failure */
for (; idx_256tb < SIZE_MAX; idx_256tb--) {
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
if (!map_1gb) {
if (contig_end != UINT64_MAX) {
/* End of of a virtually contiguous range */
map->ops.notify_cb(map->cb_ctx, map,
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
}
contig_end = UINT64_MAX;
continue;
}
for (; idx_1gb < UINT64_MAX; idx_1gb--) {
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
(contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_end == UINT64_MAX) {
contig_end = vaddr;
}
contig_start = vaddr;
} else {
if (contig_end != UINT64_MAX) {
/* End of of a virtually contiguous range */
map->ops.notify_cb(map->cb_ctx, map,
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
idx_1gb++;
}
contig_end = UINT64_MAX;
}
}
idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1;
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
return rc;
}
struct spdk_mem_map *
spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx)
{
struct spdk_mem_map *map;
int rc;
map = calloc(1, sizeof(*map));
if (map == NULL) {
return NULL;
}
if (pthread_mutex_init(&map->mutex, NULL)) {
free(map);
return NULL;
}
map->default_translation = default_translation;
map->cb_ctx = cb_ctx;
if (ops) {
map->ops = *ops;
}
if (ops && ops->notify_cb) {
pthread_mutex_lock(&g_spdk_mem_map_mutex);
rc = spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
DEBUG_PRINT("Initial mem_map notify failed\n");
pthread_mutex_destroy(&map->mutex);
free(map);
return NULL;
}
TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
return map;
}
void
spdk_mem_map_free(struct spdk_mem_map **pmap)
{
struct spdk_mem_map *map;
size_t i;
if (!pmap) {
return;
}
map = *pmap;
if (!map) {
return;
}
if (map->ops.notify_cb) {
pthread_mutex_lock(&g_spdk_mem_map_mutex);
spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER);
TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) {
free(map->map_256tb.map[i]);
}
pthread_mutex_destroy(&map->mutex);
free(map);
*pmap = NULL;
}
int
spdk_mem_register(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
uint64_t reg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
if (len == 0) {
return 0;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
if (reg & REG_MAP_REGISTERED) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EBUSY;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB,
seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED);
seg_len += VALUE_2MB;
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
int
spdk_mem_unregister(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
uint64_t reg, newreg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
/* The first page must be a start of a region. Also check if it's
* registered to make sure we don't return -ERANGE for non-registered
* regions.
*/
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -ERANGE;
}
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
if ((reg & REG_MAP_REGISTERED) == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EINVAL;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
/* If the next page is registered, it must be a start of a region as well,
* otherwise we'd be unregistering only a part of a region.
*/
if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -ERANGE;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0);
if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
seg_vaddr = vaddr;
seg_len = VALUE_2MB;
} else {
seg_len += VALUE_2MB;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
if (seg_len > 0) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
static struct map_1gb *
spdk_mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb)
{
struct map_1gb *map_1gb;
uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb);
size_t i;
if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) {
return NULL;
}
map_1gb = map->map_256tb.map[idx_256tb];
if (!map_1gb) {
pthread_mutex_lock(&map->mutex);
/* Recheck to make sure nobody else got the mutex first. */
map_1gb = map->map_256tb.map[idx_256tb];
if (!map_1gb) {
map_1gb = malloc(sizeof(struct map_1gb));
if (map_1gb) {
/* initialize all entries to default translation */
for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) {
map_1gb->map[i].translation_2mb = map->default_translation;
}
map->map_256tb.map[idx_256tb] = map_1gb;
}
}
pthread_mutex_unlock(&map->mutex);
if (!map_1gb) {
DEBUG_PRINT("allocation failed\n");
return NULL;
}
}
return map_1gb;
}
int
spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size,
uint64_t translation)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
return -EINVAL;
}
/* For now, only 2 MB-aligned registrations are supported */
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
map_2mb->translation_2mb = translation;
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
int
spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
return -EINVAL;
}
/* For now, only 2 MB-aligned registrations are supported */
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
map_2mb->translation_2mb = map->default_translation;
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
uint64_t
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size)
{
const struct map_1gb *map_1gb;
const struct map_2mb *map_2mb;
uint64_t idx_256tb;
uint64_t idx_1gb;
uint64_t vfn_2mb;
uint64_t total_size = 0;
uint64_t cur_size;
uint64_t prev_translation;
uint64_t orig_translation;
if (size != NULL) {
total_size = *size;
*size = 0;
}
if (spdk_unlikely(vaddr & ~MASK_256TB)) {
DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr);
return map->default_translation;
}
vfn_2mb = vaddr >> SHIFT_2MB;
idx_256tb = MAP_256TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_256tb.map[idx_256tb];
if (spdk_unlikely(!map_1gb)) {
return map->default_translation;
}
cur_size = VALUE_2MB - _2MB_OFFSET(vaddr);
if (size != NULL) {
*size = cur_size;
}
map_2mb = &map_1gb->map[idx_1gb];
if (size == NULL || map->ops.are_contiguous == NULL ||
map_2mb->translation_2mb == map->default_translation) {
return map_2mb->translation_2mb;
}
orig_translation = map_2mb->translation_2mb;
prev_translation = orig_translation;
while (cur_size < total_size) {
vfn_2mb++;
idx_256tb = MAP_256TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_256tb.map[idx_256tb];
if (spdk_unlikely(!map_1gb)) {
break;
}
map_2mb = &map_1gb->map[idx_1gb];
if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) {
break;
}
cur_size += VALUE_2MB;
prev_translation = map_2mb->translation_2mb;
}
*size = cur_size;
return orig_translation;
}
#if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0)
static void
memory_hotplug_cb(enum rte_mem_event event_type,
const void *addr, size_t len, void *arg)
{
if (event_type == RTE_MEM_EVENT_ALLOC) {
spdk_mem_register((void *)addr, len);
/* Now mark each segment so that DPDK won't later free it.
* This ensures we don't have to deal with the memory
* getting freed in different units than it was allocated.
*/
while (len > 0) {
struct rte_memseg *seg;
seg = rte_mem_virt2memseg(addr, NULL);
assert(seg != NULL);
seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
addr = (void *)((uintptr_t)addr + seg->hugepage_sz);
len -= seg->hugepage_sz;
}
} else if (event_type == RTE_MEM_EVENT_FREE) {
spdk_mem_unregister((void *)addr, len);
}
}
static int
memory_iter_cb(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, size_t len, void *arg)
{
return spdk_mem_register(ms->addr, len);
}
#endif
int
spdk_mem_map_init(void)
{
g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL);
if (g_mem_reg_map == NULL) {
DEBUG_PRINT("memory registration map allocation failed\n");
return -1;
}
/*
* Walk all DPDK memory segments and register them
* with the master memory map
*/
#if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0)
rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL);
rte_memseg_contig_walk(memory_iter_cb, NULL);
#else
struct rte_mem_config *mcfg;
size_t seg_idx;
mcfg = rte_eal_get_configuration()->mem_config;
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
struct rte_memseg *seg = &mcfg->memseg[seg_idx];
if (seg->addr == NULL) {
break;
}
spdk_mem_register(seg->addr, seg->len);
}
#endif
return 0;
}