numam-spdk/lib/env_dpdk/pci.c
Vitaliy Mysak d4653a31e0 env_dpdk: dont treat NULL as error in spdk_map_bar_rte()
We use `spdk_map_bar_rte()` to read mapped addresses
from PCI BARs.
This function is currently checking for NULL in each pair.
But in PCI memory, some registers can be left unused,
in which case they are set to 0.
As a result, we may read some NULL pointers from BARs,
which is OK.
To check if given address is indeed invalid, we should first
check if it is used.
So it is best to delegate such checks to the
user of this function.
In fact, users already do the NULL check where it is needed
(ex: virtio_pci.c:390, nvme_pcie.c:589)
so this patch just removes them from `spdk_map_bar_rte()`.

This solves github issue #1206

Change-Id: I88021ceca1b9e9d503b224f790819999cd16da01
Signed-off-by: Vitaliy Mysak <vitaliy.mysak@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/1129
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
2020-03-05 13:31:50 +00:00

911 lines
22 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "env_internal.h"
#include <rte_alarm.h>
#include "spdk/env.h"
#define SYSFS_PCI_DRIVERS "/sys/bus/pci/drivers"
#define PCI_CFG_SIZE 256
#define PCI_EXT_CAP_ID_SN 0x03
/* DPDK 18.11+ hotplug isn't robust. Multiple apps starting at the same time
* might cause the internal IPC to misbehave. Just retry in such case.
*/
#define DPDK_HOTPLUG_RETRY_COUNT 4
/* DPDK alarm/interrupt thread */
static pthread_t g_dpdk_tid;
static pthread_mutex_t g_pci_mutex = PTHREAD_MUTEX_INITIALIZER;
static TAILQ_HEAD(, spdk_pci_device) g_pci_devices = TAILQ_HEAD_INITIALIZER(g_pci_devices);
/* devices hotplugged on a dpdk thread */
static TAILQ_HEAD(, spdk_pci_device) g_pci_hotplugged_devices =
TAILQ_HEAD_INITIALIZER(g_pci_hotplugged_devices);
static TAILQ_HEAD(, spdk_pci_driver) g_pci_drivers = TAILQ_HEAD_INITIALIZER(g_pci_drivers);
static int
spdk_map_bar_rte(struct spdk_pci_device *device, uint32_t bar,
void **mapped_addr, uint64_t *phys_addr, uint64_t *size)
{
struct rte_pci_device *dev = device->dev_handle;
*mapped_addr = dev->mem_resource[bar].addr;
*phys_addr = (uint64_t)dev->mem_resource[bar].phys_addr;
*size = (uint64_t)dev->mem_resource[bar].len;
return 0;
}
static int
spdk_unmap_bar_rte(struct spdk_pci_device *device, uint32_t bar, void *addr)
{
return 0;
}
static int
spdk_cfg_read_rte(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset)
{
int rc;
rc = rte_pci_read_config(dev->dev_handle, value, len, offset);
#if defined(__FreeBSD__) && RTE_VERSION < RTE_VERSION_NUM(18, 11, 0, 0)
/* Older DPDKs return 0 on success and -1 on failure */
return rc;
#endif
return (rc > 0 && (uint32_t) rc == len) ? 0 : -1;
}
static int
spdk_cfg_write_rte(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset)
{
int rc;
rc = rte_pci_write_config(dev->dev_handle, value, len, offset);
#ifdef __FreeBSD__
/* DPDK returns 0 on success and -1 on failure */
return rc;
#endif
return (rc > 0 && (uint32_t) rc == len) ? 0 : -1;
}
static void
spdk_detach_rte_cb(void *_dev)
{
struct rte_pci_device *rte_dev = _dev;
#if RTE_VERSION >= RTE_VERSION_NUM(18, 11, 0, 0)
char bdf[32];
int i = 0, rc;
snprintf(bdf, sizeof(bdf), "%s", rte_dev->device.name);
do {
rc = rte_eal_hotplug_remove("pci", bdf);
} while (rc == -ENOMSG && ++i <= DPDK_HOTPLUG_RETRY_COUNT);
#else
rte_eal_dev_detach(&rte_dev->device);
#endif
}
static void
spdk_detach_rte(struct spdk_pci_device *dev)
{
struct rte_pci_device *rte_dev = dev->dev_handle;
int i;
bool removed;
/* The device was already marked as available and could be attached
* again while we go asynchronous, so we explicitly forbid that.
*/
dev->internal.pending_removal = true;
if (spdk_process_is_primary() && !pthread_equal(g_dpdk_tid, pthread_self())) {
rte_eal_alarm_set(1, spdk_detach_rte_cb, rte_dev);
/* wait up to 20ms for the cb to start executing */
for (i = 20; i > 0; i--) {
spdk_delay_us(1000);
pthread_mutex_lock(&g_pci_mutex);
removed = dev->internal.removed;
pthread_mutex_unlock(&g_pci_mutex);
if (removed) {
break;
}
}
/* besides checking the removed flag, we also need to wait
* for the dpdk detach function to unwind, as it's doing some
* operations even after calling our detach callback. Simply
* cancell the alarm - if it started executing already, this
* call will block and wait for it to finish.
*/
rte_eal_alarm_cancel(spdk_detach_rte_cb, rte_dev);
/* the device could have been finally removed, so just check
* it again.
*/
pthread_mutex_lock(&g_pci_mutex);
removed = dev->internal.removed;
pthread_mutex_unlock(&g_pci_mutex);
if (!removed) {
fprintf(stderr, "Timeout waiting for DPDK to remove PCI device %s.\n",
rte_dev->name);
}
} else {
spdk_detach_rte_cb(rte_dev);
}
}
void
spdk_pci_driver_register(struct spdk_pci_driver *driver)
{
TAILQ_INSERT_TAIL(&g_pci_drivers, driver, tailq);
}
#if RTE_VERSION >= RTE_VERSION_NUM(18, 5, 0, 0)
static void
spdk_pci_device_rte_hotremove_cb(void *dev)
{
spdk_detach_rte((struct spdk_pci_device *)dev);
}
static void
spdk_pci_device_rte_hotremove(const char *device_name,
enum rte_dev_event_type event,
void *cb_arg)
{
struct spdk_pci_device *dev;
bool can_detach = false;
if (event != RTE_DEV_EVENT_REMOVE) {
return;
}
pthread_mutex_lock(&g_pci_mutex);
TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) {
struct rte_pci_device *rte_dev = dev->dev_handle;
if (strcmp(rte_dev->name, device_name) == 0 &&
!dev->internal.pending_removal) {
can_detach = !dev->internal.attached;
/* prevent any further attaches */
dev->internal.pending_removal = true;
break;
}
}
pthread_mutex_unlock(&g_pci_mutex);
if (dev != NULL && can_detach) {
/* If device is not attached, we can remove it right away.
*
* Because the user's callback is invoked in eal interrupt
* callback, the interrupt callback need to be finished before
* it can be unregistered when detaching device. So finish
* callback soon and use a deferred removal to detach device
* is need. It is a workaround, once the device detaching be
* moved into the eal in the future, the deferred removal could
* be deleted.
*/
rte_eal_alarm_set(1, spdk_pci_device_rte_hotremove_cb, dev);
}
}
#endif
static void
cleanup_pci_devices(void)
{
struct spdk_pci_device *dev, *tmp;
pthread_mutex_lock(&g_pci_mutex);
/* cleanup removed devices */
TAILQ_FOREACH_SAFE(dev, &g_pci_devices, internal.tailq, tmp) {
if (!dev->internal.removed) {
continue;
}
spdk_vtophys_pci_device_removed(dev->dev_handle);
TAILQ_REMOVE(&g_pci_devices, dev, internal.tailq);
free(dev);
}
/* add newly-attached devices */
TAILQ_FOREACH_SAFE(dev, &g_pci_hotplugged_devices, internal.tailq, tmp) {
TAILQ_REMOVE(&g_pci_hotplugged_devices, dev, internal.tailq);
TAILQ_INSERT_TAIL(&g_pci_devices, dev, internal.tailq);
spdk_vtophys_pci_device_added(dev->dev_handle);
}
pthread_mutex_unlock(&g_pci_mutex);
}
static void
_get_alarm_thread_cb(void *unused)
{
g_dpdk_tid = pthread_self();
}
void
spdk_pci_init(void)
{
#if RTE_VERSION >= RTE_VERSION_NUM(18, 11, 0, 0)
struct spdk_pci_driver *driver;
/* We need to pre-register pci drivers for the pci devices to be
* attachable in multi-process with DPDK 18.11+.
*
* DPDK 18.11+ does its best to ensure all devices are equally
* attached or detached in all processes within a shared memory group.
* For SPDK it means that if a device is hotplugged in the primary,
* then DPDK will automatically send an IPC hotplug request to all other
* processes. Those other processes may not have the same SPDK PCI
* driver registered and may fail to attach the device. DPDK will send
* back the failure status, and the the primary process will also fail
* to hotplug the device. To prevent that, we need to pre-register the
* pci drivers here.
*/
TAILQ_FOREACH(driver, &g_pci_drivers, tailq) {
assert(!driver->is_registered);
driver->is_registered = true;
rte_pci_register(&driver->driver);
}
#endif
#if RTE_VERSION >= RTE_VERSION_NUM(18, 5, 0, 0)
/* Register a single hotremove callback for all devices. */
if (spdk_process_is_primary()) {
rte_dev_event_callback_register(NULL, spdk_pci_device_rte_hotremove, NULL);
}
#endif
rte_eal_alarm_set(1, _get_alarm_thread_cb, NULL);
/* alarms are executed in order, so this one will be always executed
* before any real hotremove alarms and we don't need to wait for it.
*/
}
void
spdk_pci_fini(void)
{
struct spdk_pci_device *dev;
char bdf[32];
cleanup_pci_devices();
TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) {
if (dev->internal.attached) {
spdk_pci_addr_fmt(bdf, sizeof(bdf), &dev->addr);
fprintf(stderr, "Device %s is still attached at shutdown!\n", bdf);
}
}
#if RTE_VERSION >= RTE_VERSION_NUM(18, 5, 0, 0)
if (spdk_process_is_primary()) {
rte_dev_event_callback_unregister(NULL, spdk_pci_device_rte_hotremove, NULL);
}
#endif
}
int
spdk_pci_device_init(struct rte_pci_driver *_drv,
struct rte_pci_device *_dev)
{
struct spdk_pci_driver *driver = (struct spdk_pci_driver *)_drv;
struct spdk_pci_device *dev;
int rc;
#if RTE_VERSION < RTE_VERSION_NUM(18, 11, 0, 0)
if (!driver->cb_fn) {
/* Return a positive value to indicate that this device does
* not belong to this driver, but this isn't an error.
*/
return 1;
}
#endif
dev = calloc(1, sizeof(*dev));
if (dev == NULL) {
return -1;
}
dev->dev_handle = _dev;
dev->addr.domain = _dev->addr.domain;
dev->addr.bus = _dev->addr.bus;
dev->addr.dev = _dev->addr.devid;
dev->addr.func = _dev->addr.function;
dev->id.vendor_id = _dev->id.vendor_id;
dev->id.device_id = _dev->id.device_id;
dev->id.subvendor_id = _dev->id.subsystem_vendor_id;
dev->id.subdevice_id = _dev->id.subsystem_device_id;
dev->socket_id = _dev->device.numa_node;
dev->type = "pci";
dev->map_bar = spdk_map_bar_rte;
dev->unmap_bar = spdk_unmap_bar_rte;
dev->cfg_read = spdk_cfg_read_rte;
dev->cfg_write = spdk_cfg_write_rte;
dev->detach = spdk_detach_rte;
dev->internal.driver = driver;
dev->internal.claim_fd = -1;
if (driver->cb_fn != NULL) {
rc = driver->cb_fn(driver->cb_arg, dev);
if (rc != 0) {
free(dev);
return rc;
}
dev->internal.attached = true;
}
pthread_mutex_lock(&g_pci_mutex);
TAILQ_INSERT_TAIL(&g_pci_hotplugged_devices, dev, internal.tailq);
pthread_mutex_unlock(&g_pci_mutex);
return 0;
}
int
spdk_pci_device_fini(struct rte_pci_device *_dev)
{
struct spdk_pci_device *dev;
pthread_mutex_lock(&g_pci_mutex);
TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) {
if (dev->dev_handle == _dev) {
break;
}
}
if (dev == NULL || dev->internal.attached) {
/* The device might be still referenced somewhere in SPDK. */
pthread_mutex_unlock(&g_pci_mutex);
return -1;
}
assert(!dev->internal.removed);
dev->internal.removed = true;
pthread_mutex_unlock(&g_pci_mutex);
return 0;
}
void
spdk_pci_device_detach(struct spdk_pci_device *dev)
{
assert(dev->internal.attached);
if (dev->internal.claim_fd >= 0) {
spdk_pci_device_unclaim(dev);
}
dev->internal.attached = false;
dev->detach(dev);
cleanup_pci_devices();
}
int
spdk_pci_device_attach(struct spdk_pci_driver *driver,
spdk_pci_enum_cb enum_cb,
void *enum_ctx, struct spdk_pci_addr *pci_address)
{
struct spdk_pci_device *dev;
int rc;
char bdf[32];
spdk_pci_addr_fmt(bdf, sizeof(bdf), pci_address);
cleanup_pci_devices();
TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) {
if (spdk_pci_addr_compare(&dev->addr, pci_address) == 0) {
break;
}
}
if (dev != NULL && dev->internal.driver == driver) {
pthread_mutex_lock(&g_pci_mutex);
if (dev->internal.attached || dev->internal.pending_removal) {
pthread_mutex_unlock(&g_pci_mutex);
return -1;
}
rc = enum_cb(enum_ctx, dev);
if (rc == 0) {
dev->internal.attached = true;
}
pthread_mutex_unlock(&g_pci_mutex);
return rc;
}
if (!driver->is_registered) {
driver->is_registered = true;
rte_pci_register(&driver->driver);
}
driver->cb_fn = enum_cb;
driver->cb_arg = enum_ctx;
#if RTE_VERSION >= RTE_VERSION_NUM(18, 11, 0, 0)
int i = 0;
do {
rc = rte_eal_hotplug_add("pci", bdf, "");
} while (rc == -ENOMSG && ++i <= DPDK_HOTPLUG_RETRY_COUNT);
if (i > 1 && rc == -EEXIST) {
/* Even though the previous request timed out, the device
* was attached successfully.
*/
rc = 0;
}
#else
rc = rte_eal_dev_attach(bdf, "");
#endif
driver->cb_arg = NULL;
driver->cb_fn = NULL;
cleanup_pci_devices();
return rc == 0 ? 0 : -1;
}
/* Note: You can call spdk_pci_enumerate from more than one thread
* simultaneously safely, but you cannot call spdk_pci_enumerate
* and rte_eal_pci_probe simultaneously.
*/
int
spdk_pci_enumerate(struct spdk_pci_driver *driver,
spdk_pci_enum_cb enum_cb,
void *enum_ctx)
{
struct spdk_pci_device *dev;
int rc;
cleanup_pci_devices();
pthread_mutex_lock(&g_pci_mutex);
TAILQ_FOREACH(dev, &g_pci_devices, internal.tailq) {
if (dev->internal.attached ||
dev->internal.driver != driver ||
dev->internal.pending_removal) {
continue;
}
rc = enum_cb(enum_ctx, dev);
if (rc == 0) {
dev->internal.attached = true;
} else if (rc < 0) {
pthread_mutex_unlock(&g_pci_mutex);
return -1;
}
}
pthread_mutex_unlock(&g_pci_mutex);
if (!driver->is_registered) {
driver->is_registered = true;
rte_pci_register(&driver->driver);
}
driver->cb_fn = enum_cb;
driver->cb_arg = enum_ctx;
if (rte_bus_scan() != 0 || rte_bus_probe() != 0) {
driver->cb_arg = NULL;
driver->cb_fn = NULL;
return -1;
}
driver->cb_arg = NULL;
driver->cb_fn = NULL;
cleanup_pci_devices();
return 0;
}
struct spdk_pci_device *
spdk_pci_get_first_device(void)
{
return TAILQ_FIRST(&g_pci_devices);
}
struct spdk_pci_device *
spdk_pci_get_next_device(struct spdk_pci_device *prev)
{
return TAILQ_NEXT(prev, internal.tailq);
}
int
spdk_pci_device_map_bar(struct spdk_pci_device *dev, uint32_t bar,
void **mapped_addr, uint64_t *phys_addr, uint64_t *size)
{
return dev->map_bar(dev, bar, mapped_addr, phys_addr, size);
}
int
spdk_pci_device_unmap_bar(struct spdk_pci_device *dev, uint32_t bar, void *addr)
{
return dev->unmap_bar(dev, bar, addr);
}
uint32_t
spdk_pci_device_get_domain(struct spdk_pci_device *dev)
{
return dev->addr.domain;
}
uint8_t
spdk_pci_device_get_bus(struct spdk_pci_device *dev)
{
return dev->addr.bus;
}
uint8_t
spdk_pci_device_get_dev(struct spdk_pci_device *dev)
{
return dev->addr.dev;
}
uint8_t
spdk_pci_device_get_func(struct spdk_pci_device *dev)
{
return dev->addr.func;
}
uint16_t
spdk_pci_device_get_vendor_id(struct spdk_pci_device *dev)
{
return dev->id.vendor_id;
}
uint16_t
spdk_pci_device_get_device_id(struct spdk_pci_device *dev)
{
return dev->id.device_id;
}
uint16_t
spdk_pci_device_get_subvendor_id(struct spdk_pci_device *dev)
{
return dev->id.subvendor_id;
}
uint16_t
spdk_pci_device_get_subdevice_id(struct spdk_pci_device *dev)
{
return dev->id.subdevice_id;
}
struct spdk_pci_id
spdk_pci_device_get_id(struct spdk_pci_device *dev)
{
return dev->id;
}
int
spdk_pci_device_get_socket_id(struct spdk_pci_device *dev)
{
return dev->socket_id;
}
int
spdk_pci_device_cfg_read(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset)
{
return dev->cfg_read(dev, value, len, offset);
}
int
spdk_pci_device_cfg_write(struct spdk_pci_device *dev, void *value, uint32_t len, uint32_t offset)
{
return dev->cfg_write(dev, value, len, offset);
}
int
spdk_pci_device_cfg_read8(struct spdk_pci_device *dev, uint8_t *value, uint32_t offset)
{
return spdk_pci_device_cfg_read(dev, value, 1, offset);
}
int
spdk_pci_device_cfg_write8(struct spdk_pci_device *dev, uint8_t value, uint32_t offset)
{
return spdk_pci_device_cfg_write(dev, &value, 1, offset);
}
int
spdk_pci_device_cfg_read16(struct spdk_pci_device *dev, uint16_t *value, uint32_t offset)
{
return spdk_pci_device_cfg_read(dev, value, 2, offset);
}
int
spdk_pci_device_cfg_write16(struct spdk_pci_device *dev, uint16_t value, uint32_t offset)
{
return spdk_pci_device_cfg_write(dev, &value, 2, offset);
}
int
spdk_pci_device_cfg_read32(struct spdk_pci_device *dev, uint32_t *value, uint32_t offset)
{
return spdk_pci_device_cfg_read(dev, value, 4, offset);
}
int
spdk_pci_device_cfg_write32(struct spdk_pci_device *dev, uint32_t value, uint32_t offset)
{
return spdk_pci_device_cfg_write(dev, &value, 4, offset);
}
int
spdk_pci_device_get_serial_number(struct spdk_pci_device *dev, char *sn, size_t len)
{
int err;
uint32_t pos, header = 0;
uint32_t i, buf[2];
if (len < 17) {
return -1;
}
err = spdk_pci_device_cfg_read32(dev, &header, PCI_CFG_SIZE);
if (err || !header) {
return -1;
}
pos = PCI_CFG_SIZE;
while (1) {
if ((header & 0x0000ffff) == PCI_EXT_CAP_ID_SN) {
if (pos) {
/* skip the header */
pos += 4;
for (i = 0; i < 2; i++) {
err = spdk_pci_device_cfg_read32(dev, &buf[i], pos + 4 * i);
if (err) {
return -1;
}
}
snprintf(sn, len, "%08x%08x", buf[1], buf[0]);
return 0;
}
}
pos = (header >> 20) & 0xffc;
/* 0 if no other items exist */
if (pos < PCI_CFG_SIZE) {
return -1;
}
err = spdk_pci_device_cfg_read32(dev, &header, pos);
if (err) {
return -1;
}
}
return -1;
}
struct spdk_pci_addr
spdk_pci_device_get_addr(struct spdk_pci_device *dev)
{
return dev->addr;
}
bool
spdk_pci_device_is_removed(struct spdk_pci_device *dev)
{
return dev->internal.pending_removal;
}
int
spdk_pci_addr_compare(const struct spdk_pci_addr *a1, const struct spdk_pci_addr *a2)
{
if (a1->domain > a2->domain) {
return 1;
} else if (a1->domain < a2->domain) {
return -1;
} else if (a1->bus > a2->bus) {
return 1;
} else if (a1->bus < a2->bus) {
return -1;
} else if (a1->dev > a2->dev) {
return 1;
} else if (a1->dev < a2->dev) {
return -1;
} else if (a1->func > a2->func) {
return 1;
} else if (a1->func < a2->func) {
return -1;
}
return 0;
}
#ifdef __linux__
int
spdk_pci_device_claim(struct spdk_pci_device *dev)
{
int dev_fd;
char dev_name[64];
int pid;
void *dev_map;
struct flock pcidev_lock = {
.l_type = F_WRLCK,
.l_whence = SEEK_SET,
.l_start = 0,
.l_len = 0,
};
snprintf(dev_name, sizeof(dev_name), "/tmp/spdk_pci_lock_%04x:%02x:%02x.%x",
dev->addr.domain, dev->addr.bus, dev->addr.dev, dev->addr.func);
dev_fd = open(dev_name, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
if (dev_fd == -1) {
fprintf(stderr, "could not open %s\n", dev_name);
return -errno;
}
if (ftruncate(dev_fd, sizeof(int)) != 0) {
fprintf(stderr, "could not truncate %s\n", dev_name);
close(dev_fd);
return -errno;
}
dev_map = mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE,
MAP_SHARED, dev_fd, 0);
if (dev_map == MAP_FAILED) {
fprintf(stderr, "could not mmap dev %s (%d)\n", dev_name, errno);
close(dev_fd);
return -errno;
}
if (fcntl(dev_fd, F_SETLK, &pcidev_lock) != 0) {
pid = *(int *)dev_map;
fprintf(stderr, "Cannot create lock on device %s, probably"
" process %d has claimed it\n", dev_name, pid);
munmap(dev_map, sizeof(int));
close(dev_fd);
/* F_SETLK returns unspecified errnos, normalize them */
return -EACCES;
}
*(int *)dev_map = (int)getpid();
munmap(dev_map, sizeof(int));
dev->internal.claim_fd = dev_fd;
/* Keep dev_fd open to maintain the lock. */
return 0;
}
void
spdk_pci_device_unclaim(struct spdk_pci_device *dev)
{
char dev_name[64];
snprintf(dev_name, sizeof(dev_name), "/tmp/spdk_pci_lock_%04x:%02x:%02x.%x",
dev->addr.domain, dev->addr.bus, dev->addr.dev, dev->addr.func);
close(dev->internal.claim_fd);
dev->internal.claim_fd = -1;
unlink(dev_name);
}
#endif /* __linux__ */
#ifdef __FreeBSD__
int
spdk_pci_device_claim(struct spdk_pci_device *dev)
{
/* TODO */
return 0;
}
void
spdk_pci_device_unclaim(struct spdk_pci_device *dev)
{
/* TODO */
}
#endif /* __FreeBSD__ */
int
spdk_pci_addr_parse(struct spdk_pci_addr *addr, const char *bdf)
{
unsigned domain, bus, dev, func;
if (addr == NULL || bdf == NULL) {
return -EINVAL;
}
if ((sscanf(bdf, "%x:%x:%x.%x", &domain, &bus, &dev, &func) == 4) ||
(sscanf(bdf, "%x.%x.%x.%x", &domain, &bus, &dev, &func) == 4)) {
/* Matched a full address - all variables are initialized */
} else if (sscanf(bdf, "%x:%x:%x", &domain, &bus, &dev) == 3) {
func = 0;
} else if ((sscanf(bdf, "%x:%x.%x", &bus, &dev, &func) == 3) ||
(sscanf(bdf, "%x.%x.%x", &bus, &dev, &func) == 3)) {
domain = 0;
} else if ((sscanf(bdf, "%x:%x", &bus, &dev) == 2) ||
(sscanf(bdf, "%x.%x", &bus, &dev) == 2)) {
domain = 0;
func = 0;
} else {
return -EINVAL;
}
if (bus > 0xFF || dev > 0x1F || func > 7) {
return -EINVAL;
}
addr->domain = domain;
addr->bus = bus;
addr->dev = dev;
addr->func = func;
return 0;
}
int
spdk_pci_addr_fmt(char *bdf, size_t sz, const struct spdk_pci_addr *addr)
{
int rc;
rc = snprintf(bdf, sz, "%04x:%02x:%02x.%x",
addr->domain, addr->bus,
addr->dev, addr->func);
if (rc > 0 && (size_t)rc < sz) {
return 0;
}
return -1;
}
void
spdk_pci_hook_device(struct spdk_pci_driver *drv, struct spdk_pci_device *dev)
{
assert(dev->map_bar != NULL);
assert(dev->unmap_bar != NULL);
assert(dev->cfg_read != NULL);
assert(dev->cfg_write != NULL);
assert(dev->detach != NULL);
dev->internal.driver = drv;
TAILQ_INSERT_TAIL(&g_pci_devices, dev, internal.tailq);
}
void
spdk_pci_unhook_device(struct spdk_pci_device *dev)
{
assert(!dev->internal.attached);
TAILQ_REMOVE(&g_pci_devices, dev, internal.tailq);
}
const char *
spdk_pci_device_get_type(const struct spdk_pci_device *dev)
{
return dev->type;
}