6368d6c0f5
With this new API, callers can attach one specific ctrlr identified by the transport ID directly along with optional ctrlr opts. If connecting to multiple controllers, it is still suggested to use spdk_nvme_probe() and filter the requested controllers with the probe callback. Two primary use cases: 1) connecting to the NVMe-oF discovery controller 2) more straightforward way to connect a specific controller (avoiding the probe callback) A typical usage of this API with specific ctrlr_opts: 1. struct spdk_nvme_ctrlr_opts user_opts = {} 2. Call spdk_nvme_ctrlr_get_default_ctrlr_opts(&user_opts, sizeof(user_opts)) 3. Modify the content of the initialized user_opts with user required value like user_opts.num_io_queues = 8 4. Call spdk_nvme_connect(&trid, &user_opts, sizeof(user_opts)) Change-Id: Idf67ee5966f6753918c12604342c892d2f3bbe3a Signed-off-by: GangCao <gang.cao@intel.com> Reviewed-on: https://review.gerrithub.io/370634 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com>
769 lines
20 KiB
C
769 lines
20 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/nvmf_spec.h"
|
|
#include "nvme_internal.h"
|
|
|
|
#include <uuid/uuid.h>
|
|
|
|
#define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"
|
|
|
|
struct nvme_driver *g_spdk_nvme_driver;
|
|
|
|
int32_t spdk_nvme_retry_count;
|
|
|
|
/* gross timeout of 180 seconds in milliseconds */
|
|
static int g_nvme_driver_timeout_ms = 3 * 60 * 1000;
|
|
|
|
int
|
|
spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
nvme_ctrlr_proc_put_ref(ctrlr);
|
|
|
|
if (nvme_ctrlr_get_ref_count(ctrlr) == 0) {
|
|
TAILQ_REMOVE(&g_spdk_nvme_driver->attached_ctrlrs, ctrlr, tailq);
|
|
nvme_ctrlr_destruct(ctrlr);
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_completion_poll_status *status = arg;
|
|
|
|
/*
|
|
* Copy status into the argument passed by the caller, so that
|
|
* the caller can check the status to determine if the
|
|
* the request passed or failed.
|
|
*/
|
|
memcpy(&status->cpl, cpl, sizeof(*cpl));
|
|
status->done = true;
|
|
}
|
|
|
|
struct nvme_request *
|
|
nvme_allocate_request(struct spdk_nvme_qpair *qpair,
|
|
const struct nvme_payload *payload, uint32_t payload_size,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct nvme_request *req;
|
|
|
|
req = STAILQ_FIRST(&qpair->free_req);
|
|
if (req == NULL) {
|
|
return req;
|
|
}
|
|
|
|
STAILQ_REMOVE_HEAD(&qpair->free_req, stailq);
|
|
|
|
/*
|
|
* Only memset up to (but not including) the children
|
|
* TAILQ_ENTRY. children, and following members, are
|
|
* only used as part of I/O splitting so we avoid
|
|
* memsetting them until it is actually needed.
|
|
* They will be initialized in nvme_request_add_child()
|
|
* if the request is split.
|
|
*/
|
|
memset(req, 0, offsetof(struct nvme_request, children));
|
|
req->cb_fn = cb_fn;
|
|
req->cb_arg = cb_arg;
|
|
req->payload = *payload;
|
|
req->payload_size = payload_size;
|
|
req->qpair = qpair;
|
|
req->pid = getpid();
|
|
|
|
return req;
|
|
}
|
|
|
|
struct nvme_request *
|
|
nvme_allocate_request_contig(struct spdk_nvme_qpair *qpair,
|
|
void *buffer, uint32_t payload_size,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct nvme_payload payload;
|
|
|
|
payload.type = NVME_PAYLOAD_TYPE_CONTIG;
|
|
payload.u.contig = buffer;
|
|
payload.md = NULL;
|
|
|
|
return nvme_allocate_request(qpair, &payload, payload_size, cb_fn, cb_arg);
|
|
}
|
|
|
|
struct nvme_request *
|
|
nvme_allocate_request_null(struct spdk_nvme_qpair *qpair, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
return nvme_allocate_request_contig(qpair, NULL, 0, cb_fn, cb_arg);
|
|
}
|
|
|
|
static void
|
|
nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_request *req = arg;
|
|
enum spdk_nvme_data_transfer xfer;
|
|
|
|
if (req->user_buffer && req->payload_size) {
|
|
/* Copy back to the user buffer and free the contig buffer */
|
|
assert(req->payload.type == NVME_PAYLOAD_TYPE_CONTIG);
|
|
xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
|
|
if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
|
|
xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
|
|
assert(req->pid == getpid());
|
|
memcpy(req->user_buffer, req->payload.u.contig, req->payload_size);
|
|
}
|
|
|
|
spdk_dma_free(req->payload.u.contig);
|
|
}
|
|
|
|
/* Call the user's original callback now that the buffer has been copied */
|
|
req->user_cb_fn(req->user_cb_arg, cpl);
|
|
}
|
|
|
|
/**
|
|
* Allocate a request as well as a physically contiguous buffer to copy to/from the user's buffer.
|
|
*
|
|
* This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
|
|
* where the overhead of a copy is not a problem.
|
|
*/
|
|
struct nvme_request *
|
|
nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
|
|
void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
|
|
void *cb_arg, bool host_to_controller)
|
|
{
|
|
struct nvme_request *req;
|
|
void *contig_buffer = NULL;
|
|
uint64_t phys_addr;
|
|
|
|
if (buffer && payload_size) {
|
|
contig_buffer = spdk_dma_zmalloc(payload_size, 4096, &phys_addr);
|
|
if (!contig_buffer) {
|
|
return NULL;
|
|
}
|
|
|
|
if (host_to_controller) {
|
|
memcpy(contig_buffer, buffer, payload_size);
|
|
}
|
|
}
|
|
|
|
req = nvme_allocate_request_contig(qpair, contig_buffer, payload_size, nvme_user_copy_cmd_complete,
|
|
NULL);
|
|
if (!req) {
|
|
spdk_dma_free(contig_buffer);
|
|
return NULL;
|
|
}
|
|
|
|
req->user_cb_fn = cb_fn;
|
|
req->user_cb_arg = cb_arg;
|
|
req->user_buffer = buffer;
|
|
req->cb_arg = req;
|
|
|
|
return req;
|
|
}
|
|
|
|
void
|
|
nvme_free_request(struct nvme_request *req)
|
|
{
|
|
assert(req != NULL);
|
|
assert(req->num_children == 0);
|
|
assert(req->qpair != NULL);
|
|
|
|
STAILQ_INSERT_HEAD(&req->qpair->free_req, req, stailq);
|
|
}
|
|
|
|
int
|
|
nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
|
|
{
|
|
int rc = 0;
|
|
|
|
#ifdef __FreeBSD__
|
|
pthread_mutex_init(mtx, NULL);
|
|
#else
|
|
pthread_mutexattr_t attr;
|
|
|
|
if (pthread_mutexattr_init(&attr)) {
|
|
return -1;
|
|
}
|
|
if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
|
|
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
|
|
pthread_mutex_init(mtx, &attr)) {
|
|
rc = -1;
|
|
}
|
|
pthread_mutexattr_destroy(&attr);
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_driver_init(void)
|
|
{
|
|
uuid_t host_id;
|
|
int ret = 0;
|
|
/* Any socket ID */
|
|
int socket_id = -1;
|
|
|
|
/*
|
|
* Only one thread from one process will do this driver init work.
|
|
* The primary process will reserve the shared memory and do the
|
|
* initialization.
|
|
* The secondary process will lookup the existing reserved memory.
|
|
*/
|
|
if (spdk_process_is_primary()) {
|
|
/* The unique named memzone already reserved. */
|
|
if (g_spdk_nvme_driver != NULL) {
|
|
assert(g_spdk_nvme_driver->initialized == true);
|
|
|
|
return 0;
|
|
} else {
|
|
g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
|
|
sizeof(struct nvme_driver), socket_id, 0);
|
|
}
|
|
|
|
if (g_spdk_nvme_driver == NULL) {
|
|
SPDK_ERRLOG("primary process failed to reserve memory\n");
|
|
|
|
return -1;
|
|
}
|
|
} else {
|
|
g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);
|
|
|
|
/* The unique named memzone already reserved by the primary process. */
|
|
if (g_spdk_nvme_driver != NULL) {
|
|
int ms_waited = 0;
|
|
|
|
/* Wait the nvme driver to get initialized. */
|
|
while ((g_spdk_nvme_driver->initialized == false) &&
|
|
(ms_waited < g_nvme_driver_timeout_ms)) {
|
|
ms_waited++;
|
|
nvme_delay(1000); /* delay 1ms */
|
|
}
|
|
if (g_spdk_nvme_driver->initialized == false) {
|
|
SPDK_ERRLOG("timeout waiting for primary process to init\n");
|
|
|
|
return -1;
|
|
}
|
|
} else {
|
|
SPDK_ERRLOG("primary process is not started yet\n");
|
|
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* At this moment, only one thread from the primary process will do
|
|
* the g_spdk_nvme_driver initialization
|
|
*/
|
|
assert(spdk_process_is_primary());
|
|
|
|
ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
|
|
if (ret != 0) {
|
|
SPDK_ERRLOG("failed to initialize mutex\n");
|
|
spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
|
|
return ret;
|
|
}
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
g_spdk_nvme_driver->initialized = false;
|
|
|
|
TAILQ_INIT(&g_spdk_nvme_driver->init_ctrlrs);
|
|
TAILQ_INIT(&g_spdk_nvme_driver->attached_ctrlrs);
|
|
|
|
SPDK_STATIC_ASSERT(sizeof(host_id) == sizeof(g_spdk_nvme_driver->default_extended_host_id),
|
|
"host ID size mismatch");
|
|
uuid_generate(host_id);
|
|
memcpy(g_spdk_nvme_driver->default_extended_host_id, host_id, sizeof(host_id));
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid, void *devhandle,
|
|
spdk_nvme_probe_cb probe_cb, void *cb_ctx)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
struct spdk_nvme_ctrlr_opts opts;
|
|
|
|
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
|
|
|
|
if (!probe_cb || probe_cb(cb_ctx, trid, &opts)) {
|
|
ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle);
|
|
if (ctrlr == NULL) {
|
|
SPDK_ERRLOG("Failed to construct NVMe controller\n");
|
|
return -1;
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
nvme_init_controllers(void *cb_ctx, spdk_nvme_attach_cb attach_cb)
|
|
{
|
|
int rc = 0;
|
|
int start_rc;
|
|
struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
/* Initialize all new controllers in the init_ctrlrs list in parallel. */
|
|
while (!TAILQ_EMPTY(&g_spdk_nvme_driver->init_ctrlrs)) {
|
|
TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->init_ctrlrs, tailq, ctrlr_tmp) {
|
|
/* Drop the driver lock while calling nvme_ctrlr_process_init()
|
|
* since it needs to acquire the driver lock internally when calling
|
|
* nvme_ctrlr_start().
|
|
*
|
|
* TODO: Rethink the locking - maybe reset should take the lock so that start() and
|
|
* the functions it calls (in particular nvme_ctrlr_set_num_qpairs())
|
|
* can assume it is held.
|
|
*/
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
start_rc = nvme_ctrlr_process_init(ctrlr);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
if (start_rc) {
|
|
/* Controller failed to initialize. */
|
|
TAILQ_REMOVE(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq);
|
|
nvme_ctrlr_destruct(ctrlr);
|
|
rc = -1;
|
|
break;
|
|
}
|
|
|
|
if (ctrlr->state == NVME_CTRLR_STATE_READY) {
|
|
/*
|
|
* Controller has been initialized.
|
|
* Move it to the attached_ctrlrs list.
|
|
*/
|
|
TAILQ_REMOVE(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq);
|
|
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->attached_ctrlrs, ctrlr, tailq);
|
|
|
|
/*
|
|
* Increase the ref count before calling attach_cb() as the user may
|
|
* call nvme_detach() immediately.
|
|
*/
|
|
nvme_ctrlr_proc_get_ref(ctrlr);
|
|
|
|
/*
|
|
* Unlock while calling attach_cb() so the user can call other functions
|
|
* that may take the driver lock, like nvme_detach().
|
|
*/
|
|
if (attach_cb) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
attach_cb(cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
g_spdk_nvme_driver->initialized = true;
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
return rc;
|
|
}
|
|
|
|
/* This function must not be called while holding g_spdk_nvme_driver->lock */
|
|
static struct spdk_nvme_ctrlr *
|
|
spdk_nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = NULL;
|
|
bool found = false;
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->attached_ctrlrs, tailq) {
|
|
if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
return (found == true) ? ctrlr : NULL;
|
|
}
|
|
|
|
/* This function must only be called while holding g_spdk_nvme_driver->lock */
|
|
static int
|
|
spdk_nvme_probe_internal(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
|
|
spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
|
|
spdk_nvme_remove_cb remove_cb, struct spdk_nvme_ctrlr **connected_ctrlr)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
bool direct_connect = (connected_ctrlr != NULL);
|
|
|
|
if (!spdk_nvme_transport_available(trid->trtype)) {
|
|
SPDK_ERRLOG("NVMe trtype %u not available\n", trid->trtype);
|
|
return -1;
|
|
}
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
nvme_transport_ctrlr_scan(trid, cb_ctx, probe_cb, remove_cb, direct_connect);
|
|
|
|
/*
|
|
* The RDMA trtype will always construct the ctrlr and go through the
|
|
* normal process.
|
|
*/
|
|
if (!spdk_process_is_primary() && (trid->trtype == SPDK_NVME_TRANSPORT_PCIE)) {
|
|
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->attached_ctrlrs, tailq) {
|
|
/* Do not attach other ctrlrs if user specify a valid trid */
|
|
if ((strlen(trid->traddr) != 0) &&
|
|
(spdk_nvme_transport_id_compare(trid, &ctrlr->trid))) {
|
|
continue;
|
|
}
|
|
|
|
nvme_ctrlr_proc_get_ref(ctrlr);
|
|
|
|
/*
|
|
* Unlock while calling attach_cb() so the user can call other functions
|
|
* that may take the driver lock, like nvme_detach().
|
|
*/
|
|
if (attach_cb) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
attach_cb(cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
rc = 0;
|
|
|
|
goto exit;
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
/*
|
|
* Keep going even if one or more nvme_attach() calls failed,
|
|
* but maintain the value of rc to signal errors when we return.
|
|
*/
|
|
|
|
rc = nvme_init_controllers(cb_ctx, attach_cb);
|
|
|
|
exit:
|
|
if (connected_ctrlr) {
|
|
*connected_ctrlr = spdk_nvme_get_ctrlr_by_trid(trid);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
|
|
spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
|
|
spdk_nvme_remove_cb remove_cb)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_transport_id trid_pcie;
|
|
|
|
rc = nvme_driver_init();
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
if (trid == NULL) {
|
|
memset(&trid_pcie, 0, sizeof(trid_pcie));
|
|
trid_pcie.trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
trid = &trid_pcie;
|
|
}
|
|
|
|
return spdk_nvme_probe_internal(trid, cb_ctx, probe_cb, attach_cb, remove_cb, NULL);
|
|
}
|
|
|
|
static bool
|
|
spdk_nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
struct spdk_nvme_ctrlr_connect_opts *requested_opts = cb_ctx;
|
|
|
|
assert(requested_opts->opts);
|
|
|
|
assert(requested_opts->opts_size != 0);
|
|
|
|
memcpy(opts, requested_opts->opts, spdk_min(sizeof(*opts), requested_opts->opts_size));
|
|
|
|
return true;
|
|
}
|
|
|
|
struct spdk_nvme_ctrlr *
|
|
spdk_nvme_connect(const struct spdk_nvme_transport_id *trid,
|
|
const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_ctrlr_connect_opts connect_opts = {};
|
|
struct spdk_nvme_ctrlr_connect_opts *user_connect_opts = NULL;
|
|
struct spdk_nvme_ctrlr *ctrlr = NULL;
|
|
spdk_nvme_probe_cb probe_cb = NULL;
|
|
|
|
if (trid == NULL) {
|
|
SPDK_ERRLOG("No transport ID specified\n");
|
|
return NULL;
|
|
}
|
|
|
|
rc = nvme_driver_init();
|
|
if (rc != 0) {
|
|
return NULL;
|
|
}
|
|
|
|
if (opts && opts_size > 0) {
|
|
connect_opts.opts = opts;
|
|
connect_opts.opts_size = opts_size;
|
|
user_connect_opts = &connect_opts;
|
|
probe_cb = spdk_nvme_connect_probe_cb;
|
|
}
|
|
|
|
spdk_nvme_probe_internal(trid, user_connect_opts, probe_cb, NULL, NULL, &ctrlr);
|
|
|
|
return ctrlr;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str)
|
|
{
|
|
if (trtype == NULL || str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (strcasecmp(str, "PCIe") == 0) {
|
|
*trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
} else if (strcasecmp(str, "RDMA") == 0) {
|
|
*trtype = SPDK_NVME_TRANSPORT_RDMA;
|
|
} else {
|
|
return -ENOENT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const char *
|
|
spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
|
|
{
|
|
switch (trtype) {
|
|
case SPDK_NVME_TRANSPORT_PCIE:
|
|
return "PCIe";
|
|
case SPDK_NVME_TRANSPORT_RDMA:
|
|
return "RDMA";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str)
|
|
{
|
|
if (adrfam == NULL || str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (strcasecmp(str, "IPv4") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_IPV4;
|
|
} else if (strcasecmp(str, "IPv6") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_IPV6;
|
|
} else if (strcasecmp(str, "IB") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_IB;
|
|
} else if (strcasecmp(str, "FC") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_FC;
|
|
} else {
|
|
return -ENOENT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const char *
|
|
spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam)
|
|
{
|
|
switch (adrfam) {
|
|
case SPDK_NVMF_ADRFAM_IPV4:
|
|
return "IPv4";
|
|
case SPDK_NVMF_ADRFAM_IPV6:
|
|
return "IPv6";
|
|
case SPDK_NVMF_ADRFAM_IB:
|
|
return "IB";
|
|
case SPDK_NVMF_ADRFAM_FC:
|
|
return "FC";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str)
|
|
{
|
|
const char *sep;
|
|
const char *whitespace = " \t\n";
|
|
size_t key_len, val_len;
|
|
char key[32];
|
|
char val[1024];
|
|
|
|
if (trid == NULL || str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (*str != '\0') {
|
|
str += strspn(str, whitespace);
|
|
|
|
sep = strchr(str, ':');
|
|
if (!sep) {
|
|
sep = strchr(str, '=');
|
|
if (!sep) {
|
|
SPDK_ERRLOG("Key without ':' or '=' separator\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
key_len = sep - str;
|
|
if (key_len >= sizeof(key)) {
|
|
SPDK_ERRLOG("Transport key length %zu greater than maximum allowed %zu\n",
|
|
key_len, sizeof(key) - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(key, str, key_len);
|
|
key[key_len] = '\0';
|
|
|
|
str += key_len + 1; /* Skip key: */
|
|
val_len = strcspn(str, whitespace);
|
|
if (val_len == 0) {
|
|
SPDK_ERRLOG("Key without value\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (val_len >= sizeof(val)) {
|
|
SPDK_ERRLOG("Transport value length %zu greater than maximum allowed %zu\n",
|
|
val_len, sizeof(val) - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(val, str, val_len);
|
|
val[val_len] = '\0';
|
|
|
|
str += val_len;
|
|
|
|
if (strcasecmp(key, "trtype") == 0) {
|
|
if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) {
|
|
SPDK_ERRLOG("Unknown trtype '%s'\n", val);
|
|
return -EINVAL;
|
|
}
|
|
} else if (strcasecmp(key, "adrfam") == 0) {
|
|
if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) {
|
|
SPDK_ERRLOG("Unknown adrfam '%s'\n", val);
|
|
return -EINVAL;
|
|
}
|
|
} else if (strcasecmp(key, "traddr") == 0) {
|
|
if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
|
|
SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_TRADDR_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(trid->traddr, val, val_len + 1);
|
|
} else if (strcasecmp(key, "trsvcid") == 0) {
|
|
if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
|
|
SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(trid->trsvcid, val, val_len + 1);
|
|
} else if (strcasecmp(key, "subnqn") == 0) {
|
|
if (val_len > SPDK_NVMF_NQN_MAX_LEN) {
|
|
SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_NQN_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(trid->subnqn, val, val_len + 1);
|
|
} else {
|
|
SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cmp_int(int a, int b)
|
|
{
|
|
return a - b;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1,
|
|
const struct spdk_nvme_transport_id *trid2)
|
|
{
|
|
int cmp;
|
|
|
|
cmp = cmp_int(trid1->trtype, trid2->trtype);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
cmp = strcasecmp(trid1->traddr, trid2->traddr);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
/* PCIe transport ID only uses trtype and traddr */
|
|
return 0;
|
|
}
|
|
|
|
cmp = cmp_int(trid1->adrfam, trid2->adrfam);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
cmp = strcmp(trid1->subnqn, trid2->subnqn);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SPDK_LOG_REGISTER_TRACE_FLAG("nvme", SPDK_TRACE_NVME)
|