numam-spdk/lib/bdev/nvme/blockdev_nvme.c
Tsuyoshi Uchida 438064c925 bdev/nvme: change name of variables to lower case (#77)
LunSizeInMB -> lun_size_in_mb
LunSizeInsector -> lun_size_in_sector
2016-11-28 11:08:26 -07:00

791 lines
20 KiB
C

/*-
* BSD LICENSE
*
* Copyright (C) 2008-2012 Daisuke Aoyama <aoyama@peach.ne.jp>.
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "blockdev_nvme.h"
#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/param.h>
#include <pthread.h>
#include "spdk/conf.h"
#include "spdk/endian.h"
#include "spdk/bdev.h"
#include "spdk/json.h"
#include "spdk/nvme.h"
#include "spdk/io_channel.h"
#include "spdk_internal/log.h"
#include "bdev_module.h"
static void blockdev_nvme_get_spdk_running_config(FILE *fp);
struct nvme_device {
/**
* points to pinned, physically contiguous memory region;
* contains 4KB IDENTIFY structure for controller which is
* target for CONTROLLER IDENTIFY command during initialization
*/
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_pci_addr pci_addr;
/** linked list pointer for device list */
TAILQ_ENTRY(nvme_device) tailq;
int id;
};
struct nvme_blockdev {
struct spdk_bdev disk;
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
uint64_t lba_start;
uint64_t lba_end;
uint64_t blocklen;
};
struct nvme_io_channel {
struct spdk_nvme_qpair *qpair;
struct spdk_poller *poller;
};
#define NVME_DEFAULT_MAX_UNMAP_BDESC_COUNT 1
struct nvme_blockio {
/** array of iovecs to transfer. */
struct iovec *iovs;
/** Number of iovecs in iovs array. */
int iovcnt;
/** Current iovec position. */
int iovpos;
/** Offset in current iovec. */
uint32_t iov_offset;
};
enum data_direction {
BDEV_DISK_READ = 0,
BDEV_DISK_WRITE = 1
};
static struct nvme_blockdev g_blockdev[NVME_MAX_BLOCKDEVS];
static int blockdev_index_max = 0;
static int nvme_luns_per_ns = 1;
static int nvme_controller_index = 0;
static int lun_size_in_mb = 0;
static int num_controllers = -1;
static TAILQ_HEAD(, nvme_device) g_nvme_devices = TAILQ_HEAD_INITIALIZER(g_nvme_devices);;
static void nvme_ctrlr_initialize_blockdevs(struct spdk_nvme_ctrlr *ctrlr,
int bdev_per_ns, int ctrlr_id);
static int nvme_library_init(void);
static void nvme_library_fini(void);
static int nvme_queue_cmd(struct nvme_blockdev *bdev, struct spdk_nvme_qpair *qpair,
struct nvme_blockio *bio,
int direction, struct iovec *iov, int iovcnt, uint64_t nbytes,
uint64_t offset);
static int
nvme_get_ctx_size(void)
{
return sizeof(struct nvme_blockio);
}
SPDK_BDEV_MODULE_REGISTER(nvme_library_init, NULL, blockdev_nvme_get_spdk_running_config,
nvme_get_ctx_size)
static int64_t
blockdev_nvme_readv(struct nvme_blockdev *nbdev, struct spdk_io_channel *ch,
struct nvme_blockio *bio,
struct iovec *iov, int iovcnt, uint64_t nbytes, uint64_t offset)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
int64_t rc;
SPDK_TRACELOG(SPDK_TRACE_BDEV_NVME, "read %lu bytes with offset %#lx\n",
nbytes, offset);
rc = nvme_queue_cmd(nbdev, nvme_ch->qpair, bio, BDEV_DISK_READ,
iov, iovcnt, nbytes, offset);
if (rc < 0)
return -1;
return nbytes;
}
static int64_t
blockdev_nvme_writev(struct nvme_blockdev *nbdev, struct spdk_io_channel *ch,
struct nvme_blockio *bio,
struct iovec *iov, int iovcnt, size_t len, uint64_t offset)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
int64_t rc;
SPDK_TRACELOG(SPDK_TRACE_BDEV_NVME, "write %lu bytes with offset %#lx\n",
len, offset);
rc = nvme_queue_cmd(nbdev, nvme_ch->qpair, bio, BDEV_DISK_WRITE,
iov, iovcnt, len, offset);
if (rc < 0)
return -1;
return len;
}
static void
blockdev_nvme_poll(void *arg)
{
struct spdk_nvme_qpair *qpair = arg;
spdk_nvme_qpair_process_completions(qpair, 0);
}
static int
blockdev_nvme_destruct(struct spdk_bdev *bdev)
{
return 0;
}
static int
blockdev_nvme_flush(struct nvme_blockdev *nbdev, struct nvme_blockio *bio,
uint64_t offset, uint64_t nbytes)
{
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), SPDK_BDEV_IO_STATUS_SUCCESS);
return 0;
}
static int
blockdev_nvme_reset(struct nvme_blockdev *nbdev, struct nvme_blockio *bio)
{
int rc;
enum spdk_bdev_io_status status;
status = SPDK_BDEV_IO_STATUS_SUCCESS;
rc = spdk_nvme_ctrlr_reset(nbdev->ctrlr);
if (rc != 0) {
status = SPDK_BDEV_IO_STATUS_FAILED;
}
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), status);
return rc;
}
static int
blockdev_nvme_unmap(struct nvme_blockdev *nbdev, struct spdk_io_channel *ch,
struct nvme_blockio *bio,
struct spdk_scsi_unmap_bdesc *umap_d,
uint16_t bdesc_count);
static void blockdev_nvme_get_rbuf_cb(struct spdk_bdev_io *bdev_io)
{
int ret;
ret = blockdev_nvme_readv((struct nvme_blockdev *)bdev_io->ctx,
bdev_io->ch,
(struct nvme_blockio *)bdev_io->driver_ctx,
bdev_io->u.read.iovs,
bdev_io->u.read.iovcnt,
bdev_io->u.read.len,
bdev_io->u.read.offset);
if (ret < 0) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
static int _blockdev_nvme_submit_request(struct spdk_bdev_io *bdev_io)
{
switch (bdev_io->type) {
case SPDK_BDEV_IO_TYPE_READ:
spdk_bdev_io_get_rbuf(bdev_io, blockdev_nvme_get_rbuf_cb);
return 0;
case SPDK_BDEV_IO_TYPE_WRITE:
return blockdev_nvme_writev((struct nvme_blockdev *)bdev_io->ctx,
bdev_io->ch,
(struct nvme_blockio *)bdev_io->driver_ctx,
bdev_io->u.write.iovs,
bdev_io->u.write.iovcnt,
bdev_io->u.write.len,
bdev_io->u.write.offset);
case SPDK_BDEV_IO_TYPE_UNMAP:
return blockdev_nvme_unmap((struct nvme_blockdev *)bdev_io->ctx,
bdev_io->ch,
(struct nvme_blockio *)bdev_io->driver_ctx,
bdev_io->u.unmap.unmap_bdesc,
bdev_io->u.unmap.bdesc_count);
case SPDK_BDEV_IO_TYPE_RESET:
return blockdev_nvme_reset((struct nvme_blockdev *)bdev_io->ctx,
(struct nvme_blockio *)bdev_io->driver_ctx);
case SPDK_BDEV_IO_TYPE_FLUSH:
return blockdev_nvme_flush((struct nvme_blockdev *)bdev_io->ctx,
(struct nvme_blockio *)bdev_io->driver_ctx,
bdev_io->u.flush.offset,
bdev_io->u.flush.length);
default:
return -1;
}
return 0;
}
static void blockdev_nvme_submit_request(struct spdk_bdev_io *bdev_io)
{
if (_blockdev_nvme_submit_request(bdev_io) < 0) {
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
}
}
static bool
blockdev_nvme_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type)
{
struct nvme_blockdev *nbdev = (struct nvme_blockdev *)bdev;
const struct spdk_nvme_ctrlr_data *cdata;
switch (io_type) {
case SPDK_BDEV_IO_TYPE_READ:
case SPDK_BDEV_IO_TYPE_WRITE:
case SPDK_BDEV_IO_TYPE_RESET:
case SPDK_BDEV_IO_TYPE_FLUSH:
return true;
case SPDK_BDEV_IO_TYPE_UNMAP:
cdata = spdk_nvme_ctrlr_get_data(nbdev->ctrlr);
return cdata->oncs.dsm;
default:
return false;
}
}
static int
blockdev_nvme_create_cb(void *io_device, uint32_t priority, void *ctx_buf, void *unique_ctx)
{
struct spdk_nvme_ctrlr *ctrlr = io_device;
struct nvme_io_channel *ch = ctx_buf;
ch->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ctrlr, 0);
if (ch->qpair == NULL) {
return -1;
}
spdk_poller_register(&ch->poller, blockdev_nvme_poll, ch->qpair,
spdk_app_get_current_core(), NULL, 0);
return 0;
}
static void
blockdev_nvme_destroy_cb(void *io_device, void *ctx_buf)
{
struct nvme_io_channel *ch = ctx_buf;
spdk_nvme_ctrlr_free_io_qpair(ch->qpair);
spdk_poller_unregister(&ch->poller, NULL);
}
static struct spdk_io_channel *
blockdev_nvme_get_io_channel(struct spdk_bdev *bdev, uint32_t priority)
{
struct nvme_blockdev *nvme_bdev = (struct nvme_blockdev *)bdev;
return spdk_get_io_channel(nvme_bdev->ctrlr, priority, false, NULL);
}
static int
blockdev_nvme_dump_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
{
struct nvme_blockdev *nvme_bdev = (struct nvme_blockdev *)bdev;
spdk_json_write_name(w, "nvme");
spdk_json_write_object_begin(w);
spdk_json_write_name(w, "nsid");
spdk_json_write_uint32(w, spdk_nvme_ns_get_id(nvme_bdev->ns));
spdk_json_write_object_end(w);
return 0;
}
static const struct spdk_bdev_fn_table nvmelib_fn_table = {
.destruct = blockdev_nvme_destruct,
.submit_request = blockdev_nvme_submit_request,
.io_type_supported = blockdev_nvme_io_type_supported,
.get_io_channel = blockdev_nvme_get_io_channel,
.dump_config_json = blockdev_nvme_dump_config_json,
};
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_probe_info *probe_info,
struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_ctx *ctx = cb_ctx;
int i;
bool claim_device = false;
SPDK_NOTICELOG("Probing device %x:%x:%x.%x\n",
probe_info->pci_addr.domain,
probe_info->pci_addr.bus,
probe_info->pci_addr.dev,
probe_info->pci_addr.func);
if (ctx->controllers_remaining == 0) {
return false;
}
if (ctx->num_whitelist_controllers == 0) {
claim_device = true;
} else {
for (i = 0; i < NVME_MAX_CONTROLLERS; i++) {
if (spdk_pci_addr_compare(&probe_info->pci_addr, &ctx->whitelist[i]) == 0) {
claim_device = true;
break;
}
}
}
if (!claim_device) {
return false;
}
/* Claim the device in case conflict with other process */
if (spdk_pci_device_claim(&probe_info->pci_addr) != 0) {
return false;
}
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_probe_info *probe_info,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
struct nvme_probe_ctx *ctx = cb_ctx;
struct nvme_device *dev;
dev = malloc(sizeof(struct nvme_device));
if (dev == NULL) {
SPDK_ERRLOG("Failed to allocate device struct\n");
return;
}
dev->ctrlr = ctrlr;
dev->pci_addr = probe_info->pci_addr;
dev->id = nvme_controller_index++;
nvme_ctrlr_initialize_blockdevs(dev->ctrlr, nvme_luns_per_ns, dev->id);
spdk_io_device_register(ctrlr, blockdev_nvme_create_cb, blockdev_nvme_destroy_cb,
sizeof(struct nvme_io_channel));
TAILQ_INSERT_TAIL(&g_nvme_devices, dev, tailq);
if (ctx->controllers_remaining > 0) {
ctx->controllers_remaining--;
}
}
static bool
blockdev_nvme_exist(struct nvme_probe_ctx *ctx)
{
int i;
struct nvme_device *nvme_dev;
for (i = 0; i < ctx->num_whitelist_controllers; i++) {
TAILQ_FOREACH(nvme_dev, &g_nvme_devices, tailq) {
if (spdk_pci_addr_compare(&nvme_dev->pci_addr, &ctx->whitelist[i]) == 0) {
return true;
}
}
}
return false;
}
int
spdk_bdev_nvme_create(struct nvme_probe_ctx *ctx)
{
int prev_index_max, i;
if (blockdev_nvme_exist(ctx)) {
return -1;
}
prev_index_max = blockdev_index_max;
if (spdk_nvme_probe(ctx, probe_cb, attach_cb, NULL)) {
return -1;
}
/*
* Report the new bdevs that were created in this call.
* There can be more than one bdev per NVMe controller since one bdev is created per namespace.
*/
ctx->num_created_bdevs = 0;
for (i = prev_index_max; i < blockdev_index_max; i++) {
ctx->created_bdevs[ctx->num_created_bdevs++] = &g_blockdev[i].disk;
}
return 0;
}
static int
nvme_library_init(void)
{
struct spdk_conf_section *sp;
const char *val;
int i;
struct nvme_probe_ctx probe_ctx;
sp = spdk_conf_find_section(NULL, "Nvme");
if (sp == NULL) {
/*
* If configuration file did not specify the Nvme section, do
* not take the time to initialize the NVMe devices.
*/
return 0;
}
nvme_luns_per_ns = spdk_conf_section_get_intval(sp, "NvmeLunsPerNs");
if (nvme_luns_per_ns < 1)
nvme_luns_per_ns = 1;
if (nvme_luns_per_ns > NVME_MAX_BLOCKDEVS_PER_CONTROLLER) {
SPDK_ERRLOG("The input value nvme_luns_per_ns(%d) exceeds the maximal "
"value(%d)\n", nvme_luns_per_ns, NVME_MAX_BLOCKDEVS_PER_CONTROLLER);
return -1;
}
lun_size_in_mb = spdk_conf_section_get_intval(sp, "LunSizeInMB");
if (lun_size_in_mb < 0)
lun_size_in_mb = 0;
spdk_nvme_retry_count = spdk_conf_section_get_intval(sp, "NvmeRetryCount");
if (spdk_nvme_retry_count < 0)
spdk_nvme_retry_count = SPDK_NVME_DEFAULT_RETRY_COUNT;
/*
* If NumControllers is not found, this will return -1, which we
* will later use to denote that we should initialize all
* controllers.
*/
num_controllers = spdk_conf_section_get_intval(sp, "NumControllers");
/* Init the whitelist */
probe_ctx.num_whitelist_controllers = 0;
if (num_controllers > 0) {
for (i = 0; ; i++) {
val = spdk_conf_section_get_nmval(sp, "BDF", i, 0);
if (val == NULL) {
break;
}
if (spdk_pci_addr_parse(&probe_ctx.whitelist[probe_ctx.num_whitelist_controllers], val) < 0) {
SPDK_ERRLOG("Invalid format for BDF: %s\n", val);
return -1;
}
probe_ctx.num_whitelist_controllers++;
}
}
probe_ctx.controllers_remaining = num_controllers;
return spdk_bdev_nvme_create(&probe_ctx);
}
__attribute__((destructor)) void
nvme_library_fini(void)
{
struct nvme_device *dev;
while (!TAILQ_EMPTY(&g_nvme_devices)) {
dev = TAILQ_FIRST(&g_nvme_devices);
TAILQ_REMOVE(&g_nvme_devices, dev, tailq);
spdk_nvme_detach(dev->ctrlr);
free(dev);
}
}
void
nvme_ctrlr_initialize_blockdevs(struct spdk_nvme_ctrlr *ctrlr, int bdev_per_ns, int ctrlr_id)
{
struct nvme_blockdev *bdev;
struct spdk_nvme_ns *ns;
const struct spdk_nvme_ctrlr_data *cdata;
uint64_t bdev_size, lba_offset, sectors_per_stripe;
int ns_id, num_ns, bdev_idx;
uint64_t lun_size_in_sector;
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
for (ns_id = 1; ns_id <= num_ns; ns_id++) {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, ns_id);
if (!spdk_nvme_ns_is_active(ns)) {
SPDK_TRACELOG(SPDK_TRACE_BDEV_NVME, "Skipping inactive NS %d\n", ns_id);
continue;
}
bdev_size = spdk_nvme_ns_get_num_sectors(ns) / bdev_per_ns;
/*
* Align each blockdev on a 1MB boundary - this helps cover Fultondale case
* where I/O that span a 128KB boundary must be split for optimal performance.
* Using a 1MB hardcoded boundary here so that we do not have to export
* stripe size information from the NVMe driver for now.
*/
sectors_per_stripe = (1 << 20) / spdk_nvme_ns_get_sector_size(ns);
lun_size_in_sector = ((uint64_t)lun_size_in_mb << 20) / spdk_nvme_ns_get_sector_size(ns);
if ((lun_size_in_mb > 0) && (lun_size_in_sector < bdev_size))
bdev_size = lun_size_in_sector;
bdev_size &= ~(sectors_per_stripe - 1);
lba_offset = 0;
for (bdev_idx = 0; bdev_idx < bdev_per_ns; bdev_idx++) {
if (blockdev_index_max >= NVME_MAX_BLOCKDEVS)
return;
bdev = &g_blockdev[blockdev_index_max];
bdev->ctrlr = ctrlr;
bdev->ns = ns;
bdev->lba_start = lba_offset;
bdev->lba_end = lba_offset + bdev_size - 1;
lba_offset += bdev_size;
snprintf(bdev->disk.name, SPDK_BDEV_MAX_NAME_LENGTH,
"Nvme%dn%dp%d", ctrlr_id, spdk_nvme_ns_get_id(ns), bdev_idx);
snprintf(bdev->disk.product_name, SPDK_BDEV_MAX_PRODUCT_NAME_LENGTH,
"NVMe disk");
if (cdata->oncs.dsm) {
/*
* Enable the thin provisioning
* if nvme controller supports
* DataSet Management command.
*/
bdev->disk.thin_provisioning = 1;
bdev->disk.max_unmap_bdesc_count =
NVME_DEFAULT_MAX_UNMAP_BDESC_COUNT;
}
bdev->disk.write_cache = 0;
if (cdata->vwc.present) {
/* Enable if the Volatile Write Cache exists */
bdev->disk.write_cache = 1;
}
bdev->blocklen = spdk_nvme_ns_get_sector_size(ns);
bdev->disk.blocklen = bdev->blocklen;
bdev->disk.blockcnt = bdev->lba_end - bdev->lba_start + 1;
bdev->disk.ctxt = bdev;
bdev->disk.fn_table = &nvmelib_fn_table;
spdk_bdev_register(&bdev->disk);
blockdev_index_max++;
}
}
}
static void
queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
{
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx((struct nvme_blockio *)ref);
enum spdk_bdev_io_status status;
if (spdk_nvme_cpl_is_error(cpl)) {
bdev_io->error.nvme.sct = cpl->status.sct;
bdev_io->error.nvme.sc = cpl->status.sc;
status = SPDK_BDEV_IO_STATUS_NVME_ERROR;
} else {
status = SPDK_BDEV_IO_STATUS_SUCCESS;
}
spdk_bdev_io_complete(bdev_io, status);
}
static void
queued_reset_sgl(void *ref, uint32_t sgl_offset)
{
struct nvme_blockio *bio = ref;
struct iovec *iov;
bio->iov_offset = sgl_offset;
for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
iov = &bio->iovs[bio->iovpos];
if (bio->iov_offset < iov->iov_len)
break;
bio->iov_offset -= iov->iov_len;
}
}
#define min(a, b) (((a)<(b))?(a):(b))
#define _2MB_OFFSET(ptr) (((uintptr_t)ptr) & (0x200000 - 1))
static int
queued_next_sge(void *ref, void **address, uint32_t *length)
{
struct nvme_blockio *bio = ref;
struct iovec *iov;
assert(bio->iovpos < bio->iovcnt);
iov = &bio->iovs[bio->iovpos];
*address = iov->iov_base;
*length = iov->iov_len;
if (bio->iov_offset) {
assert(bio->iov_offset <= iov->iov_len);
*address += bio->iov_offset;
*length -= bio->iov_offset;
}
*length = min(*length, 0x200000 - _2MB_OFFSET(*address));
bio->iov_offset += *length;
if (bio->iov_offset == iov->iov_len) {
bio->iovpos++;
bio->iov_offset = 0;
}
return 0;
}
int
nvme_queue_cmd(struct nvme_blockdev *bdev, struct spdk_nvme_qpair *qpair,
struct nvme_blockio *bio,
int direction, struct iovec *iov, int iovcnt, uint64_t nbytes,
uint64_t offset)
{
uint32_t ss = spdk_nvme_ns_get_sector_size(bdev->ns);
uint32_t lba_count;
uint64_t relative_lba = offset / bdev->blocklen;
uint64_t next_lba = relative_lba + bdev->lba_start;
int rc;
if (nbytes % ss) {
SPDK_ERRLOG("Unaligned IO request length\n");
return -1;
}
lba_count = nbytes / ss;
bio->iovs = iov;
bio->iovcnt = iovcnt;
bio->iovpos = 0;
bio->iov_offset = 0;
if (direction == BDEV_DISK_READ) {
rc = spdk_nvme_ns_cmd_readv(bdev->ns, qpair, next_lba,
lba_count, queued_done, bio, 0,
queued_reset_sgl, queued_next_sge);
} else {
rc = spdk_nvme_ns_cmd_writev(bdev->ns, qpair, next_lba,
lba_count, queued_done, bio, 0,
queued_reset_sgl, queued_next_sge);
}
if (rc != 0) {
SPDK_ERRLOG("IO failed\n");
}
return rc;
}
static int
blockdev_nvme_unmap(struct nvme_blockdev *nbdev, struct spdk_io_channel *ch,
struct nvme_blockio *bio,
struct spdk_scsi_unmap_bdesc *unmap_d,
uint16_t bdesc_count)
{
struct nvme_io_channel *nvme_ch = spdk_io_channel_get_ctx(ch);
int rc = 0, i;
struct spdk_nvme_dsm_range dsm_range[NVME_DEFAULT_MAX_UNMAP_BDESC_COUNT];
if (bdesc_count > NVME_DEFAULT_MAX_UNMAP_BDESC_COUNT) {
return -1;
}
for (i = 0; i < bdesc_count; i++) {
dsm_range[i].starting_lba = nbdev->lba_start + from_be64(&unmap_d->lba);
dsm_range[i].length = from_be32(&unmap_d->block_count);
dsm_range[i].attributes.raw = 0;
unmap_d++;
}
rc = spdk_nvme_ns_cmd_dataset_management(nbdev->ns, nvme_ch->qpair,
SPDK_NVME_DSM_ATTR_DEALLOCATE,
dsm_range, bdesc_count,
queued_done, bio);
if (rc != 0)
return -1;
return 0;
}
static void
blockdev_nvme_get_spdk_running_config(FILE *fp)
{
fprintf(fp,
"\n"
"# Users may change this to partition an NVMe namespace into multiple LUNs.\n"
"[Nvme]\n"
" NvmeLunsPerNs %d\n",
nvme_luns_per_ns);
if (num_controllers != -1) {
fprintf(fp, " NumControllers %d\n", num_controllers);
}
if (lun_size_in_mb != 0) {
fprintf(fp, " LunSizeInMB %d\n", lun_size_in_mb);
}
}
SPDK_LOG_REGISTER_TRACE_FLAG("bdev_nvme", SPDK_TRACE_BDEV_NVME)