numam-spdk/lib/nvme/nvme_ns_cmd.c
Alexey Marchuk 110335f192 nvme: Add functions spdk_nvme_ns_cmd_readv/writev_ext
These functions accept extendable structure with IO request options.
The options structure contains a memory domain that can be used to
translate or fetch data, metadata pointer and end-to-end data
protection parameters

Change-Id: I65bfba279904e77539348520c3dfac7aadbe80d9
Signed-off-by: Alexey Marchuk <alexeymar@mellanox.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/6270
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com>
Community-CI: Mellanox Build Bot
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Ziye Yang <ziye.yang@intel.com>
2021-08-20 07:26:10 +00:00

1352 lines
41 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
* Copyright (c) 2021 Mellanox Technologies LTD. All rights reserved.
* Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "nvme_internal.h"
static inline struct nvme_request *_nvme_ns_cmd_rw(struct spdk_nvme_ns *ns,
struct spdk_nvme_qpair *qpair,
const struct nvme_payload *payload, uint32_t payload_offset, uint32_t md_offset,
uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn,
void *cb_arg, uint32_t opc, uint32_t io_flags,
uint16_t apptag_mask, uint16_t apptag, bool check_sgl, int *rc);
static bool
nvme_ns_check_request_length(uint32_t lba_count, uint32_t sectors_per_max_io,
uint32_t sectors_per_stripe, uint32_t qdepth)
{
uint32_t child_per_io = UINT32_MAX;
/* After a namespace is destroyed(e.g. hotplug), all the fields associated with the
* namespace will be cleared to zero, the function will return TRUE for this case,
* and -EINVAL will be returned to caller.
*/
if (sectors_per_stripe > 0) {
child_per_io = (lba_count + sectors_per_stripe - 1) / sectors_per_stripe;
} else if (sectors_per_max_io > 0) {
child_per_io = (lba_count + sectors_per_max_io - 1) / sectors_per_max_io;
}
SPDK_DEBUGLOG(nvme, "checking maximum i/o length %d\n", child_per_io);
return child_per_io >= qdepth;
}
static inline int
nvme_ns_map_failure_rc(uint32_t lba_count, uint32_t sectors_per_max_io,
uint32_t sectors_per_stripe, uint32_t qdepth, int rc)
{
assert(rc);
if (rc == -ENOMEM &&
nvme_ns_check_request_length(lba_count, sectors_per_max_io, sectors_per_stripe, qdepth)) {
return -EINVAL;
}
return rc;
}
static inline bool
_nvme_md_excluded_from_xfer(struct spdk_nvme_ns *ns, uint32_t io_flags)
{
return (io_flags & SPDK_NVME_IO_FLAGS_PRACT) &&
(ns->flags & SPDK_NVME_NS_EXTENDED_LBA_SUPPORTED) &&
(ns->flags & SPDK_NVME_NS_DPS_PI_SUPPORTED) &&
(ns->md_size == 8);
}
static inline uint32_t
_nvme_get_host_buffer_sector_size(struct spdk_nvme_ns *ns, uint32_t io_flags)
{
return _nvme_md_excluded_from_xfer(ns, io_flags) ?
ns->sector_size : ns->extended_lba_size;
}
static inline uint32_t
_nvme_get_sectors_per_max_io(struct spdk_nvme_ns *ns, uint32_t io_flags)
{
return _nvme_md_excluded_from_xfer(ns, io_flags) ?
ns->sectors_per_max_io_no_md : ns->sectors_per_max_io;
}
static struct nvme_request *
_nvme_add_child_request(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
const struct nvme_payload *payload,
uint32_t payload_offset, uint32_t md_offset,
uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t opc,
uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag,
struct nvme_request *parent, bool check_sgl, int *rc)
{
struct nvme_request *child;
child = _nvme_ns_cmd_rw(ns, qpair, payload, payload_offset, md_offset, lba, lba_count, cb_fn,
cb_arg, opc, io_flags, apptag_mask, apptag, check_sgl, rc);
if (child == NULL) {
nvme_request_free_children(parent);
nvme_free_request(parent);
return NULL;
}
nvme_request_add_child(parent, child);
return child;
}
static struct nvme_request *
_nvme_ns_cmd_split_request(struct spdk_nvme_ns *ns,
struct spdk_nvme_qpair *qpair,
const struct nvme_payload *payload,
uint32_t payload_offset, uint32_t md_offset,
uint64_t lba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t opc,
uint32_t io_flags, struct nvme_request *req,
uint32_t sectors_per_max_io, uint32_t sector_mask,
uint16_t apptag_mask, uint16_t apptag, int *rc)
{
uint32_t sector_size = _nvme_get_host_buffer_sector_size(ns, io_flags);
uint32_t remaining_lba_count = lba_count;
struct nvme_request *child;
while (remaining_lba_count > 0) {
lba_count = sectors_per_max_io - (lba & sector_mask);
lba_count = spdk_min(remaining_lba_count, lba_count);
child = _nvme_add_child_request(ns, qpair, payload, payload_offset, md_offset,
lba, lba_count, cb_fn, cb_arg, opc,
io_flags, apptag_mask, apptag, req, true, rc);
if (child == NULL) {
return NULL;
}
remaining_lba_count -= lba_count;
lba += lba_count;
payload_offset += lba_count * sector_size;
md_offset += lba_count * ns->md_size;
}
return req;
}
static inline bool
_is_io_flags_valid(uint32_t io_flags)
{
if (io_flags & ~SPDK_NVME_IO_FLAGS_VALID_MASK) {
/* Invalid io_flags */
SPDK_ERRLOG("Invalid io_flags 0x%x\n", io_flags);
return false;
}
return true;
}
static void
_nvme_ns_cmd_setup_request(struct spdk_nvme_ns *ns, struct nvme_request *req,
uint32_t opc, uint64_t lba, uint32_t lba_count,
uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag)
{
struct spdk_nvme_cmd *cmd;
assert(_is_io_flags_valid(io_flags));
cmd = &req->cmd;
cmd->opc = opc;
cmd->nsid = ns->id;
*(uint64_t *)&cmd->cdw10 = lba;
if (ns->flags & SPDK_NVME_NS_DPS_PI_SUPPORTED) {
switch (ns->pi_type) {
case SPDK_NVME_FMT_NVM_PROTECTION_TYPE1:
case SPDK_NVME_FMT_NVM_PROTECTION_TYPE2:
cmd->cdw14 = (uint32_t)lba;
break;
}
}
cmd->fuse = (io_flags & SPDK_NVME_IO_FLAGS_FUSE_MASK);
cmd->cdw12 = lba_count - 1;
cmd->cdw12 |= (io_flags & SPDK_NVME_IO_FLAGS_CDW12_MASK);
cmd->cdw15 = apptag_mask;
cmd->cdw15 = (cmd->cdw15 << 16 | apptag);
}
static struct nvme_request *
_nvme_ns_cmd_split_request_prp(struct spdk_nvme_ns *ns,
struct spdk_nvme_qpair *qpair,
const struct nvme_payload *payload,
uint32_t payload_offset, uint32_t md_offset,
uint64_t lba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t opc,
uint32_t io_flags, struct nvme_request *req,
uint16_t apptag_mask, uint16_t apptag, int *rc)
{
spdk_nvme_req_reset_sgl_cb reset_sgl_fn = req->payload.reset_sgl_fn;
spdk_nvme_req_next_sge_cb next_sge_fn = req->payload.next_sge_fn;
void *sgl_cb_arg = req->payload.contig_or_cb_arg;
bool start_valid, end_valid, last_sge, child_equals_parent;
uint64_t child_lba = lba;
uint32_t req_current_length = 0;
uint32_t child_length = 0;
uint32_t sge_length;
uint32_t page_size = qpair->ctrlr->page_size;
uintptr_t address;
reset_sgl_fn(sgl_cb_arg, payload_offset);
next_sge_fn(sgl_cb_arg, (void **)&address, &sge_length);
while (req_current_length < req->payload_size) {
if (sge_length == 0) {
continue;
} else if (req_current_length + sge_length > req->payload_size) {
sge_length = req->payload_size - req_current_length;
}
/*
* The start of the SGE is invalid if the start address is not page aligned,
* unless it is the first SGE in the child request.
*/
start_valid = child_length == 0 || _is_page_aligned(address, page_size);
/* Boolean for whether this is the last SGE in the parent request. */
last_sge = (req_current_length + sge_length == req->payload_size);
/*
* The end of the SGE is invalid if the end address is not page aligned,
* unless it is the last SGE in the parent request.
*/
end_valid = last_sge || _is_page_aligned(address + sge_length, page_size);
/*
* This child request equals the parent request, meaning that no splitting
* was required for the parent request (the one passed into this function).
* In this case, we do not create a child request at all - we just send
* the original request as a single request at the end of this function.
*/
child_equals_parent = (child_length + sge_length == req->payload_size);
if (start_valid) {
/*
* The start of the SGE is valid, so advance the length parameters,
* to include this SGE with previous SGEs for this child request
* (if any). If it is not valid, we do not advance the length
* parameters nor get the next SGE, because we must send what has
* been collected before this SGE as a child request.
*/
child_length += sge_length;
req_current_length += sge_length;
if (req_current_length < req->payload_size) {
next_sge_fn(sgl_cb_arg, (void **)&address, &sge_length);
/*
* If the next SGE is not page aligned, we will need to create a
* child request for what we have so far, and then start a new
* child request for the next SGE.
*/
start_valid = _is_page_aligned(address, page_size);
}
}
if (start_valid && end_valid && !last_sge) {
continue;
}
/*
* We need to create a split here. Send what we have accumulated so far as a child
* request. Checking if child_equals_parent allows us to *not* create a child request
* when no splitting is required - in that case we will fall-through and just create
* a single request with no children for the entire I/O.
*/
if (!child_equals_parent) {
struct nvme_request *child;
uint32_t child_lba_count;
if ((child_length % ns->extended_lba_size) != 0) {
SPDK_ERRLOG("child_length %u not even multiple of lba_size %u\n",
child_length, ns->extended_lba_size);
*rc = -EINVAL;
return NULL;
}
child_lba_count = child_length / ns->extended_lba_size;
/*
* Note the last parameter is set to "false" - this tells the recursive
* call to _nvme_ns_cmd_rw() to not bother with checking for SGL splitting
* since we have already verified it here.
*/
child = _nvme_add_child_request(ns, qpair, payload, payload_offset, md_offset,
child_lba, child_lba_count,
cb_fn, cb_arg, opc, io_flags,
apptag_mask, apptag, req, false, rc);
if (child == NULL) {
return NULL;
}
payload_offset += child_length;
md_offset += child_lba_count * ns->md_size;
child_lba += child_lba_count;
child_length = 0;
}
}
if (child_length == req->payload_size) {
/* No splitting was required, so setup the whole payload as one request. */
_nvme_ns_cmd_setup_request(ns, req, opc, lba, lba_count, io_flags, apptag_mask, apptag);
}
return req;
}
static struct nvme_request *
_nvme_ns_cmd_split_request_sgl(struct spdk_nvme_ns *ns,
struct spdk_nvme_qpair *qpair,
const struct nvme_payload *payload,
uint32_t payload_offset, uint32_t md_offset,
uint64_t lba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t opc,
uint32_t io_flags, struct nvme_request *req,
uint16_t apptag_mask, uint16_t apptag, int *rc)
{
spdk_nvme_req_reset_sgl_cb reset_sgl_fn = req->payload.reset_sgl_fn;
spdk_nvme_req_next_sge_cb next_sge_fn = req->payload.next_sge_fn;
void *sgl_cb_arg = req->payload.contig_or_cb_arg;
uint64_t child_lba = lba;
uint32_t req_current_length = 0;
uint32_t child_length = 0;
uint32_t sge_length;
uint16_t max_sges, num_sges;
uintptr_t address;
max_sges = ns->ctrlr->max_sges;
reset_sgl_fn(sgl_cb_arg, payload_offset);
num_sges = 0;
while (req_current_length < req->payload_size) {
next_sge_fn(sgl_cb_arg, (void **)&address, &sge_length);
if (req_current_length + sge_length > req->payload_size) {
sge_length = req->payload_size - req_current_length;
}
child_length += sge_length;
req_current_length += sge_length;
num_sges++;
if (num_sges < max_sges && req_current_length < req->payload_size) {
continue;
}
/*
* We need to create a split here. Send what we have accumulated so far as a child
* request. Checking if the child equals the full payload allows us to *not*
* create a child request when no splitting is required - in that case we will
* fall-through and just create a single request with no children for the entire I/O.
*/
if (child_length != req->payload_size) {
struct nvme_request *child;
uint32_t child_lba_count;
if ((child_length % ns->extended_lba_size) != 0) {
SPDK_ERRLOG("child_length %u not even multiple of lba_size %u\n",
child_length, ns->extended_lba_size);
*rc = -EINVAL;
return NULL;
}
child_lba_count = child_length / ns->extended_lba_size;
/*
* Note the last parameter is set to "false" - this tells the recursive
* call to _nvme_ns_cmd_rw() to not bother with checking for SGL splitting
* since we have already verified it here.
*/
child = _nvme_add_child_request(ns, qpair, payload, payload_offset, md_offset,
child_lba, child_lba_count,
cb_fn, cb_arg, opc, io_flags,
apptag_mask, apptag, req, false, rc);
if (child == NULL) {
return NULL;
}
payload_offset += child_length;
md_offset += child_lba_count * ns->md_size;
child_lba += child_lba_count;
child_length = 0;
num_sges = 0;
}
}
if (child_length == req->payload_size) {
/* No splitting was required, so setup the whole payload as one request. */
_nvme_ns_cmd_setup_request(ns, req, opc, lba, lba_count, io_flags, apptag_mask, apptag);
}
return req;
}
static inline struct nvme_request *
_nvme_ns_cmd_rw(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
const struct nvme_payload *payload, uint32_t payload_offset, uint32_t md_offset,
uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t opc,
uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag, bool check_sgl, int *rc)
{
struct nvme_request *req;
uint32_t sector_size = _nvme_get_host_buffer_sector_size(ns, io_flags);
uint32_t sectors_per_max_io = _nvme_get_sectors_per_max_io(ns, io_flags);
uint32_t sectors_per_stripe = ns->sectors_per_stripe;
assert(rc != NULL);
assert(*rc == 0);
req = nvme_allocate_request(qpair, payload, lba_count * sector_size, lba_count * ns->md_size,
cb_fn, cb_arg);
if (req == NULL) {
*rc = -ENOMEM;
return NULL;
}
req->payload_offset = payload_offset;
req->md_offset = md_offset;
/* Zone append commands cannot be split. */
if (opc == SPDK_NVME_OPC_ZONE_APPEND) {
assert(ns->csi == SPDK_NVME_CSI_ZNS);
/*
* As long as we disable driver-assisted striping for Zone append commands,
* _nvme_ns_cmd_rw() should never cause a proper request to be split.
* If a request is split, after all, error handling is done in caller functions.
*/
sectors_per_stripe = 0;
}
/*
* Intel DC P3*00 NVMe controllers benefit from driver-assisted striping.
* If this controller defines a stripe boundary and this I/O spans a stripe
* boundary, split the request into multiple requests and submit each
* separately to hardware.
*/
if (sectors_per_stripe > 0 &&
(((lba & (sectors_per_stripe - 1)) + lba_count) > sectors_per_stripe)) {
return _nvme_ns_cmd_split_request(ns, qpair, payload, payload_offset, md_offset, lba, lba_count,
cb_fn,
cb_arg, opc,
io_flags, req, sectors_per_stripe, sectors_per_stripe - 1, apptag_mask, apptag, rc);
} else if (lba_count > sectors_per_max_io) {
return _nvme_ns_cmd_split_request(ns, qpair, payload, payload_offset, md_offset, lba, lba_count,
cb_fn,
cb_arg, opc,
io_flags, req, sectors_per_max_io, 0, apptag_mask, apptag, rc);
} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL && check_sgl) {
if (ns->ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
return _nvme_ns_cmd_split_request_sgl(ns, qpair, payload, payload_offset, md_offset,
lba, lba_count, cb_fn, cb_arg, opc, io_flags,
req, apptag_mask, apptag, rc);
} else {
return _nvme_ns_cmd_split_request_prp(ns, qpair, payload, payload_offset, md_offset,
lba, lba_count, cb_fn, cb_arg, opc, io_flags,
req, apptag_mask, apptag, rc);
}
}
_nvme_ns_cmd_setup_request(ns, req, opc, lba, lba_count, io_flags, apptag_mask, apptag);
return req;
}
int
spdk_nvme_ns_cmd_compare(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, void *buffer,
uint64_t lba,
uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg,
uint32_t io_flags)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
payload = NVME_PAYLOAD_CONTIG(buffer, NULL);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg,
SPDK_NVME_OPC_COMPARE,
io_flags, 0,
0, false, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_compare_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
void *buffer,
void *metadata,
uint64_t lba,
uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg,
uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
payload = NVME_PAYLOAD_CONTIG(buffer, metadata);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg,
SPDK_NVME_OPC_COMPARE,
io_flags,
apptag_mask, apptag, false, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_comparev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint64_t lba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags,
spdk_nvme_req_reset_sgl_cb reset_sgl_fn,
spdk_nvme_req_next_sge_cb next_sge_fn)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
if (reset_sgl_fn == NULL || next_sge_fn == NULL) {
return -EINVAL;
}
payload = NVME_PAYLOAD_SGL(reset_sgl_fn, next_sge_fn, cb_arg, NULL);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg,
SPDK_NVME_OPC_COMPARE,
io_flags, 0, 0, true, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_comparev_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint64_t lba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags,
spdk_nvme_req_reset_sgl_cb reset_sgl_fn,
spdk_nvme_req_next_sge_cb next_sge_fn, void *metadata,
uint16_t apptag_mask, uint16_t apptag)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
if (reset_sgl_fn == NULL || next_sge_fn == NULL) {
return -EINVAL;
}
payload = NVME_PAYLOAD_SGL(reset_sgl_fn, next_sge_fn, cb_arg, metadata);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg,
SPDK_NVME_OPC_COMPARE, io_flags, apptag_mask, apptag, true, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_read(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, void *buffer,
uint64_t lba,
uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg,
uint32_t io_flags)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
payload = NVME_PAYLOAD_CONTIG(buffer, NULL);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_READ,
io_flags, 0,
0, false, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_read_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, void *buffer,
void *metadata,
uint64_t lba,
uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg,
uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
payload = NVME_PAYLOAD_CONTIG(buffer, metadata);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_READ,
io_flags,
apptag_mask, apptag, false, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_readv(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint64_t lba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags,
spdk_nvme_req_reset_sgl_cb reset_sgl_fn,
spdk_nvme_req_next_sge_cb next_sge_fn)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
if (reset_sgl_fn == NULL || next_sge_fn == NULL) {
return -EINVAL;
}
payload = NVME_PAYLOAD_SGL(reset_sgl_fn, next_sge_fn, cb_arg, NULL);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_READ,
io_flags, 0, 0, true, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_readv_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint64_t lba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags,
spdk_nvme_req_reset_sgl_cb reset_sgl_fn,
spdk_nvme_req_next_sge_cb next_sge_fn, void *metadata,
uint16_t apptag_mask, uint16_t apptag)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
if (reset_sgl_fn == NULL || next_sge_fn == NULL) {
return -EINVAL;
}
payload = NVME_PAYLOAD_SGL(reset_sgl_fn, next_sge_fn, cb_arg, metadata);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_READ,
io_flags, apptag_mask, apptag, true, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_readv_ext(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint64_t lba, uint32_t lba_count, spdk_nvme_cmd_cb cb_fn,
void *cb_arg, spdk_nvme_req_reset_sgl_cb reset_sgl_fn,
spdk_nvme_req_next_sge_cb next_sge_fn,
struct spdk_nvme_ns_cmd_ext_io_opts *opts)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (reset_sgl_fn == NULL || next_sge_fn == NULL) {
return -EINVAL;
}
payload = NVME_PAYLOAD_SGL(reset_sgl_fn, next_sge_fn, cb_arg, NULL);
if (opts) {
if (spdk_unlikely(!_is_io_flags_valid(opts->io_flags))) {
return -EINVAL;
}
payload.opts = opts;
payload.md = opts->metadata;
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_READ,
opts->io_flags, opts->apptag_mask, opts->apptag, true, &rc);
} else {
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_READ,
0, 0, 0, true, &rc);
}
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_write(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
void *buffer, uint64_t lba,
uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg,
uint32_t io_flags)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
payload = NVME_PAYLOAD_CONTIG(buffer, NULL);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_WRITE,
io_flags, 0, 0, false, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
static int
nvme_ns_cmd_check_zone_append(struct spdk_nvme_ns *ns, uint32_t lba_count, uint32_t io_flags)
{
uint32_t sector_size;
/* Not all NVMe Zoned Namespaces support the zone append command. */
if (!(ns->ctrlr->flags & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED)) {
return -EINVAL;
}
sector_size = _nvme_get_host_buffer_sector_size(ns, io_flags);
/* Fail a too large zone append command early. */
if (lba_count * sector_size > ns->ctrlr->max_zone_append_size) {
return -EINVAL;
}
return 0;
}
int
nvme_ns_cmd_zone_append_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
void *buffer, void *metadata, uint64_t zslba,
uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg,
uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
rc = nvme_ns_cmd_check_zone_append(ns, lba_count, io_flags);
if (rc) {
return rc;
}
payload = NVME_PAYLOAD_CONTIG(buffer, metadata);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, zslba, lba_count, cb_fn, cb_arg,
SPDK_NVME_OPC_ZONE_APPEND,
io_flags, apptag_mask, apptag, false, &rc);
if (req != NULL) {
/*
* Zone append commands cannot be split (num_children has to be 0).
* For NVME_PAYLOAD_TYPE_CONTIG, _nvme_ns_cmd_rw() should never cause a split
* to happen, since a too large request would have already been failed by
* nvme_ns_cmd_check_zone_append(), since zasl <= mdts.
*/
assert(req->num_children == 0);
if (req->num_children) {
nvme_request_free_children(req);
nvme_free_request(req);
return -EINVAL;
}
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
nvme_ns_cmd_zone_appendv_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint64_t zslba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags,
spdk_nvme_req_reset_sgl_cb reset_sgl_fn,
spdk_nvme_req_next_sge_cb next_sge_fn, void *metadata,
uint16_t apptag_mask, uint16_t apptag)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
if (reset_sgl_fn == NULL || next_sge_fn == NULL) {
return -EINVAL;
}
rc = nvme_ns_cmd_check_zone_append(ns, lba_count, io_flags);
if (rc) {
return rc;
}
payload = NVME_PAYLOAD_SGL(reset_sgl_fn, next_sge_fn, cb_arg, metadata);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, zslba, lba_count, cb_fn, cb_arg,
SPDK_NVME_OPC_ZONE_APPEND,
io_flags, apptag_mask, apptag, true, &rc);
if (req != NULL) {
/*
* Zone append commands cannot be split (num_children has to be 0).
* For NVME_PAYLOAD_TYPE_SGL, _nvme_ns_cmd_rw() can cause a split.
* However, _nvme_ns_cmd_split_request_sgl() and _nvme_ns_cmd_split_request_prp()
* do not always cause a request to be split. These functions verify payload size,
* verify num sge < max_sge, and verify SGE alignment rules (in case of PRPs).
* If any of the verifications fail, they will split the request.
* In our case, a split is very unlikely, since we already verified the size using
* nvme_ns_cmd_check_zone_append(), however, we still need to call these functions
* in order to perform the verification part. If they do cause a split, we return
* an error here. For proper requests, these functions will never cause a split.
*/
if (req->num_children) {
nvme_request_free_children(req);
nvme_free_request(req);
return -EINVAL;
}
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_write_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
void *buffer, void *metadata, uint64_t lba,
uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg,
uint32_t io_flags, uint16_t apptag_mask, uint16_t apptag)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
payload = NVME_PAYLOAD_CONTIG(buffer, metadata);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_WRITE,
io_flags, apptag_mask, apptag, false, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_writev(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint64_t lba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags,
spdk_nvme_req_reset_sgl_cb reset_sgl_fn,
spdk_nvme_req_next_sge_cb next_sge_fn)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
if (reset_sgl_fn == NULL || next_sge_fn == NULL) {
return -EINVAL;
}
payload = NVME_PAYLOAD_SGL(reset_sgl_fn, next_sge_fn, cb_arg, NULL);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_WRITE,
io_flags, 0, 0, true, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_writev_with_md(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint64_t lba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, uint32_t io_flags,
spdk_nvme_req_reset_sgl_cb reset_sgl_fn,
spdk_nvme_req_next_sge_cb next_sge_fn, void *metadata,
uint16_t apptag_mask, uint16_t apptag)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
if (reset_sgl_fn == NULL || next_sge_fn == NULL) {
return -EINVAL;
}
payload = NVME_PAYLOAD_SGL(reset_sgl_fn, next_sge_fn, cb_arg, metadata);
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_WRITE,
io_flags, apptag_mask, apptag, true, &rc);
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_writev_ext(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair, uint64_t lba,
uint32_t lba_count, spdk_nvme_cmd_cb cb_fn, void *cb_arg,
spdk_nvme_req_reset_sgl_cb reset_sgl_fn,
spdk_nvme_req_next_sge_cb next_sge_fn,
struct spdk_nvme_ns_cmd_ext_io_opts *opts)
{
struct nvme_request *req;
struct nvme_payload payload;
int rc = 0;
if (reset_sgl_fn == NULL || next_sge_fn == NULL) {
return -EINVAL;
}
payload = NVME_PAYLOAD_SGL(reset_sgl_fn, next_sge_fn, cb_arg, NULL);
if (opts) {
if (spdk_unlikely(!_is_io_flags_valid(opts->io_flags))) {
return -EINVAL;
}
payload.opts = opts;
payload.md = opts->metadata;
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_WRITE,
opts->io_flags, opts->apptag_mask, opts->apptag, true, &rc);
} else {
req = _nvme_ns_cmd_rw(ns, qpair, &payload, 0, 0, lba, lba_count, cb_fn, cb_arg, SPDK_NVME_OPC_WRITE,
0, 0, 0, true, &rc);
}
if (req != NULL) {
return nvme_qpair_submit_request(qpair, req);
} else {
return nvme_ns_map_failure_rc(lba_count,
ns->sectors_per_max_io,
ns->sectors_per_stripe,
qpair->ctrlr->opts.io_queue_requests,
rc);
}
}
int
spdk_nvme_ns_cmd_write_zeroes(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint64_t lba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg,
uint32_t io_flags)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
uint64_t *tmp_lba;
if (!_is_io_flags_valid(io_flags)) {
return -EINVAL;
}
if (lba_count == 0 || lba_count > UINT16_MAX + 1) {
return -EINVAL;
}
req = nvme_allocate_request_null(qpair, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_WRITE_ZEROES;
cmd->nsid = ns->id;
tmp_lba = (uint64_t *)&cmd->cdw10;
*tmp_lba = lba;
cmd->cdw12 = lba_count - 1;
cmd->fuse = (io_flags & SPDK_NVME_IO_FLAGS_FUSE_MASK);
cmd->cdw12 |= (io_flags & SPDK_NVME_IO_FLAGS_CDW12_MASK);
return nvme_qpair_submit_request(qpair, req);
}
int
spdk_nvme_ns_cmd_write_uncorrectable(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint64_t lba, uint32_t lba_count,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
uint64_t *tmp_lba;
if (lba_count == 0 || lba_count > UINT16_MAX + 1) {
return -EINVAL;
}
req = nvme_allocate_request_null(qpair, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_WRITE_UNCORRECTABLE;
cmd->nsid = ns->id;
tmp_lba = (uint64_t *)&cmd->cdw10;
*tmp_lba = lba;
cmd->cdw12 = lba_count - 1;
return nvme_qpair_submit_request(qpair, req);
}
int
spdk_nvme_ns_cmd_dataset_management(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
uint32_t type,
const struct spdk_nvme_dsm_range *ranges, uint16_t num_ranges,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
if (num_ranges == 0 || num_ranges > SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES) {
return -EINVAL;
}
if (ranges == NULL) {
return -EINVAL;
}
req = nvme_allocate_request_user_copy(qpair, (void *)ranges,
num_ranges * sizeof(struct spdk_nvme_dsm_range),
cb_fn, cb_arg, true);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_DATASET_MANAGEMENT;
cmd->nsid = ns->id;
cmd->cdw10_bits.dsm.nr = num_ranges - 1;
cmd->cdw11 = type;
return nvme_qpair_submit_request(qpair, req);
}
int
spdk_nvme_ns_cmd_copy(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
const struct spdk_nvme_scc_source_range *ranges,
uint16_t num_ranges, uint64_t dest_lba,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
if (num_ranges == 0) {
return -EINVAL;
}
if (ranges == NULL) {
return -EINVAL;
}
req = nvme_allocate_request_user_copy(qpair, (void *)ranges,
num_ranges * sizeof(struct spdk_nvme_scc_source_range),
cb_fn, cb_arg, true);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_COPY;
cmd->nsid = ns->id;
*(uint64_t *)&cmd->cdw10 = dest_lba;
cmd->cdw12 = num_ranges - 1;
return nvme_qpair_submit_request(qpair, req);
}
int
spdk_nvme_ns_cmd_flush(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(qpair, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_FLUSH;
cmd->nsid = ns->id;
return nvme_qpair_submit_request(qpair, req);
}
int
spdk_nvme_ns_cmd_reservation_register(struct spdk_nvme_ns *ns,
struct spdk_nvme_qpair *qpair,
struct spdk_nvme_reservation_register_data *payload,
bool ignore_key,
enum spdk_nvme_reservation_register_action action,
enum spdk_nvme_reservation_register_cptpl cptpl,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_user_copy(qpair,
payload, sizeof(struct spdk_nvme_reservation_register_data),
cb_fn, cb_arg, true);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_RESERVATION_REGISTER;
cmd->nsid = ns->id;
cmd->cdw10_bits.resv_register.rrega = action;
cmd->cdw10_bits.resv_register.iekey = ignore_key;
cmd->cdw10_bits.resv_register.cptpl = cptpl;
return nvme_qpair_submit_request(qpair, req);
}
int
spdk_nvme_ns_cmd_reservation_release(struct spdk_nvme_ns *ns,
struct spdk_nvme_qpair *qpair,
struct spdk_nvme_reservation_key_data *payload,
bool ignore_key,
enum spdk_nvme_reservation_release_action action,
enum spdk_nvme_reservation_type type,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_user_copy(qpair,
payload, sizeof(struct spdk_nvme_reservation_key_data), cb_fn,
cb_arg, true);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_RESERVATION_RELEASE;
cmd->nsid = ns->id;
cmd->cdw10_bits.resv_release.rrela = action;
cmd->cdw10_bits.resv_release.iekey = ignore_key;
cmd->cdw10_bits.resv_release.rtype = type;
return nvme_qpair_submit_request(qpair, req);
}
int
spdk_nvme_ns_cmd_reservation_acquire(struct spdk_nvme_ns *ns,
struct spdk_nvme_qpair *qpair,
struct spdk_nvme_reservation_acquire_data *payload,
bool ignore_key,
enum spdk_nvme_reservation_acquire_action action,
enum spdk_nvme_reservation_type type,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_user_copy(qpair,
payload, sizeof(struct spdk_nvme_reservation_acquire_data),
cb_fn, cb_arg, true);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_RESERVATION_ACQUIRE;
cmd->nsid = ns->id;
cmd->cdw10_bits.resv_acquire.racqa = action;
cmd->cdw10_bits.resv_acquire.iekey = ignore_key;
cmd->cdw10_bits.resv_acquire.rtype = type;
return nvme_qpair_submit_request(qpair, req);
}
int
spdk_nvme_ns_cmd_reservation_report(struct spdk_nvme_ns *ns,
struct spdk_nvme_qpair *qpair,
void *payload, uint32_t len,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
uint32_t num_dwords;
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
if (len % 4) {
return -EINVAL;
}
num_dwords = len / 4;
req = nvme_allocate_request_user_copy(qpair, payload, len, cb_fn, cb_arg, false);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_RESERVATION_REPORT;
cmd->nsid = ns->id;
cmd->cdw10 = num_dwords;
return nvme_qpair_submit_request(qpair, req);
}