Ziye Yang 4a0c1021fc nvme: update nvme perf program to test nvmf target
1 update nvme_rdma.c to fix the I/O queue creation bug.
2 update examples/nvme/perf/perf.c
3 add perf.sh

Change-Id: Ic7d4845219deb93bc042e34abbb7b2e05793ccd8
Signed-off-by: Ziye Yang <ziye.yang@intel.com>
2016-12-02 08:41:12 -07:00

1254 lines
29 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <rte_config.h>
#include <rte_mempool.h>
#include <rte_lcore.h>
#include "spdk/fd.h"
#include "spdk/nvme.h"
#include "spdk/env.h"
#include "spdk/string.h"
#include "spdk/nvme_intel.h"
#if HAVE_LIBAIO
#include <libaio.h>
#include <sys/stat.h>
#include <fcntl.h>
#endif
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_intel_rw_latency_page *latency_page;
struct ctrlr_entry *next;
char name[1024];
};
enum entry_type {
ENTRY_TYPE_NVME_NS,
ENTRY_TYPE_AIO_FILE,
};
struct ns_entry {
enum entry_type type;
union {
struct {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
} nvme;
#if HAVE_LIBAIO
struct {
int fd;
} aio;
#endif
} u;
struct ns_entry *next;
uint32_t io_size_blocks;
uint64_t size_in_ios;
char name[1024];
};
struct ns_worker_ctx {
struct ns_entry *entry;
uint64_t io_completed;
uint64_t total_tsc;
uint64_t min_tsc;
uint64_t max_tsc;
uint64_t current_queue_depth;
uint64_t offset_in_ios;
bool is_draining;
union {
struct {
struct spdk_nvme_qpair *qpair;
} nvme;
#if HAVE_LIBAIO
struct {
struct io_event *events;
io_context_t ctx;
} aio;
#endif
} u;
struct ns_worker_ctx *next;
};
struct perf_task {
struct ns_worker_ctx *ns_ctx;
void *buf;
uint64_t submit_tsc;
#if HAVE_LIBAIO
struct iocb iocb;
#endif
};
struct worker_thread {
struct ns_worker_ctx *ns_ctx;
struct worker_thread *next;
unsigned lcore;
};
static int g_outstanding_commands;
static bool g_latency_tracking_enable = false;
static struct rte_mempool *task_pool;
static struct ctrlr_entry *g_controllers = NULL;
static struct ns_entry *g_namespaces = NULL;
static int g_num_namespaces = 0;
static struct worker_thread *g_workers = NULL;
static int g_num_workers = 0;
static uint64_t g_tsc_rate;
static uint32_t g_io_size_bytes;
static int g_rw_percentage;
static int g_is_random;
static int g_queue_depth;
static int g_time_in_sec;
static uint32_t g_max_completions;
static int g_dpdk_mem;
static const char *g_core_mask;
static char *g_nvmf_discover_info;
static int g_aio_optind; /* Index of first AIO filename in argv */
static void
task_complete(struct perf_task *task);
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
return;
}
if (spdk_nvme_ns_get_size(ns) < g_io_size_bytes ||
spdk_nvme_ns_get_sector_size(ns) > g_io_size_bytes) {
printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid "
"ns size %" PRIu64 " / block size %u for I/O size %u\n",
cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns),
spdk_nvme_ns_get_size(ns), spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes);
return;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->type = ENTRY_TYPE_NVME_NS;
entry->u.nvme.ctrlr = ctrlr;
entry->u.nvme.ns = ns;
entry->size_in_ios = spdk_nvme_ns_get_size(ns) /
g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / spdk_nvme_ns_get_sector_size(ns);
snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
g_num_namespaces++;
entry->next = g_namespaces;
g_namespaces = entry;
}
static void
unregister_namespaces(void)
{
struct ns_entry *entry = g_namespaces;
while (entry) {
struct ns_entry *next = entry->next;
free(entry);
entry = next;
}
}
static void
enable_latency_tracking_complete(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
if (spdk_nvme_cpl_is_error(cpl)) {
printf("enable_latency_tracking_complete failed\n");
}
g_outstanding_commands--;
}
static void
set_latency_tracking_feature(struct spdk_nvme_ctrlr *ctrlr, bool enable)
{
int res;
union spdk_nvme_intel_feat_latency_tracking latency_tracking;
if (enable) {
latency_tracking.bits.enable = 0x01;
} else {
latency_tracking.bits.enable = 0x00;
}
res = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING,
latency_tracking.raw, 0, NULL, 0, enable_latency_tracking_complete, NULL);
if (res) {
printf("fail to allocate nvme request.\n");
return;
}
g_outstanding_commands++;
while (g_outstanding_commands) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
}
}
static void
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
int nsid, num_ns;
struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry));
const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
entry->latency_page = spdk_zmalloc(sizeof(struct spdk_nvme_intel_rw_latency_page),
4096, NULL);
if (entry->latency_page == NULL) {
printf("Allocation error (latency page)\n");
exit(1);
}
snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
entry->ctrlr = ctrlr;
entry->next = g_controllers;
g_controllers = entry;
if (g_latency_tracking_enable &&
spdk_nvme_ctrlr_is_feature_supported(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING))
set_latency_tracking_feature(ctrlr, true);
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
for (nsid = 1; nsid <= num_ns; nsid++) {
register_ns(ctrlr, spdk_nvme_ctrlr_get_ns(ctrlr, nsid));
}
}
#if HAVE_LIBAIO
static int
register_aio_file(const char *path)
{
struct ns_entry *entry;
int flags, fd;
uint64_t size;
uint32_t blklen;
if (g_rw_percentage == 100) {
flags = O_RDONLY;
} else if (g_rw_percentage == 0) {
flags = O_WRONLY;
} else {
flags = O_RDWR;
}
flags |= O_DIRECT;
fd = open(path, flags);
if (fd < 0) {
fprintf(stderr, "Could not open AIO device %s: %s\n", path, strerror(errno));
return -1;
}
size = spdk_fd_get_size(fd);
if (size == 0) {
fprintf(stderr, "Could not determine size of AIO device %s\n", path);
close(fd);
return -1;
}
blklen = spdk_fd_get_blocklen(fd);
if (blklen == 0) {
fprintf(stderr, "Could not determine block size of AIO device %s\n", path);
close(fd);
return -1;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
close(fd);
perror("aio ns_entry malloc");
return -1;
}
entry->type = ENTRY_TYPE_AIO_FILE;
entry->u.aio.fd = fd;
entry->size_in_ios = size / g_io_size_bytes;
entry->io_size_blocks = g_io_size_bytes / blklen;
snprintf(entry->name, sizeof(entry->name), "%s", path);
g_num_namespaces++;
entry->next = g_namespaces;
g_namespaces = entry;
return 0;
}
static int
aio_submit(io_context_t aio_ctx, struct iocb *iocb, int fd, enum io_iocb_cmd cmd, void *buf,
unsigned long nbytes, uint64_t offset, void *cb_ctx)
{
iocb->aio_fildes = fd;
iocb->aio_reqprio = 0;
iocb->aio_lio_opcode = cmd;
iocb->u.c.buf = buf;
iocb->u.c.nbytes = nbytes;
iocb->u.c.offset = offset;
iocb->data = cb_ctx;
if (io_submit(aio_ctx, 1, &iocb) < 0) {
printf("io_submit");
return -1;
}
return 0;
}
static void
aio_check_io(struct ns_worker_ctx *ns_ctx)
{
int count, i;
struct timespec timeout;
timeout.tv_sec = 0;
timeout.tv_nsec = 0;
count = io_getevents(ns_ctx->u.aio.ctx, 1, g_queue_depth, ns_ctx->u.aio.events, &timeout);
if (count < 0) {
fprintf(stderr, "io_getevents error\n");
exit(1);
}
for (i = 0; i < count; i++) {
task_complete(ns_ctx->u.aio.events[i].data);
}
}
#endif /* HAVE_LIBAIO */
static void task_ctor(struct rte_mempool *mp, void *arg, void *__task, unsigned id)
{
struct perf_task *task = __task;
task->buf = spdk_zmalloc(g_io_size_bytes, 0x200, NULL);
if (task->buf == NULL) {
fprintf(stderr, "task->buf spdk_zmalloc failed\n");
exit(1);
}
memset(task->buf, id % 8, g_io_size_bytes);
}
static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion);
static __thread unsigned int seed = 0;
static void
submit_single_io(struct ns_worker_ctx *ns_ctx)
{
struct perf_task *task = NULL;
uint64_t offset_in_ios;
int rc;
struct ns_entry *entry = ns_ctx->entry;
if (rte_mempool_get(task_pool, (void **)&task) != 0) {
fprintf(stderr, "task_pool rte_mempool_get failed\n");
exit(1);
}
task->ns_ctx = ns_ctx;
if (g_is_random) {
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
} else {
offset_in_ios = ns_ctx->offset_in_ios++;
if (ns_ctx->offset_in_ios == entry->size_in_ios) {
ns_ctx->offset_in_ios = 0;
}
}
task->submit_tsc = spdk_get_ticks();
if ((g_rw_percentage == 100) ||
(g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) {
#if HAVE_LIBAIO
if (entry->type == ENTRY_TYPE_AIO_FILE) {
rc = aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PREAD, task->buf,
g_io_size_bytes, offset_in_ios * g_io_size_bytes, task);
} else
#endif
{
rc = spdk_nvme_ns_cmd_read(entry->u.nvme.ns, ns_ctx->u.nvme.qpair, task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task, 0);
}
} else {
#if HAVE_LIBAIO
if (entry->type == ENTRY_TYPE_AIO_FILE) {
rc = aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PWRITE, task->buf,
g_io_size_bytes, offset_in_ios * g_io_size_bytes, task);
} else
#endif
{
rc = spdk_nvme_ns_cmd_write(entry->u.nvme.ns, ns_ctx->u.nvme.qpair, task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task, 0);
}
}
if (rc != 0) {
fprintf(stderr, "starting I/O failed\n");
}
ns_ctx->current_queue_depth++;
}
static void
task_complete(struct perf_task *task)
{
struct ns_worker_ctx *ns_ctx;
uint64_t tsc_diff;
ns_ctx = task->ns_ctx;
ns_ctx->current_queue_depth--;
ns_ctx->io_completed++;
tsc_diff = spdk_get_ticks() - task->submit_tsc;
ns_ctx->total_tsc += tsc_diff;
if (ns_ctx->min_tsc > tsc_diff) {
ns_ctx->min_tsc = tsc_diff;
}
if (ns_ctx->max_tsc < tsc_diff) {
ns_ctx->max_tsc = tsc_diff;
}
rte_mempool_put(task_pool, task);
/*
* is_draining indicates when time has expired for the test run
* and we are just waiting for the previously submitted I/O
* to complete. In this case, do not submit a new I/O to replace
* the one just completed.
*/
if (!ns_ctx->is_draining) {
submit_single_io(ns_ctx);
}
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *completion)
{
task_complete((struct perf_task *)ctx);
}
static void
check_io(struct ns_worker_ctx *ns_ctx)
{
#if HAVE_LIBAIO
if (ns_ctx->entry->type == ENTRY_TYPE_AIO_FILE) {
aio_check_io(ns_ctx);
} else
#endif
{
spdk_nvme_qpair_process_completions(ns_ctx->u.nvme.qpair, g_max_completions);
}
}
static void
submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
while (queue_depth-- > 0) {
submit_single_io(ns_ctx);
}
}
static void
drain_io(struct ns_worker_ctx *ns_ctx)
{
ns_ctx->is_draining = true;
while (ns_ctx->current_queue_depth > 0) {
check_io(ns_ctx);
}
}
static int
init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
if (ns_ctx->entry->type == ENTRY_TYPE_AIO_FILE) {
#ifdef HAVE_LIBAIO
ns_ctx->u.aio.events = calloc(g_queue_depth, sizeof(struct io_event));
if (!ns_ctx->u.aio.events) {
return -1;
}
ns_ctx->u.aio.ctx = 0;
if (io_setup(g_queue_depth, &ns_ctx->u.aio.ctx) < 0) {
free(ns_ctx->u.aio.events);
perror("io_setup");
return -1;
}
#endif
} else {
/*
* TODO: If a controller has multiple namespaces, they could all use the same queue.
* For now, give each namespace/thread combination its own queue.
*/
ns_ctx->u.nvme.qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_ctx->entry->u.nvme.ctrlr, 0);
if (!ns_ctx->u.nvme.qpair) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n");
return -1;
}
}
return 0;
}
static void
cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
if (ns_ctx->entry->type == ENTRY_TYPE_AIO_FILE) {
#ifdef HAVE_LIBAIO
io_destroy(ns_ctx->u.aio.ctx);
free(ns_ctx->u.aio.events);
#endif
} else {
spdk_nvme_ctrlr_free_io_qpair(ns_ctx->u.nvme.qpair);
}
}
static int
work_fn(void *arg)
{
uint64_t tsc_end;
struct worker_thread *worker = (struct worker_thread *)arg;
struct ns_worker_ctx *ns_ctx = NULL;
printf("Starting thread on core %u\n", worker->lcore);
/* Allocate a queue pair for each namespace. */
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
if (init_ns_worker_ctx(ns_ctx) != 0) {
printf("ERROR: init_ns_worker_ctx() failed\n");
return 1;
}
ns_ctx = ns_ctx->next;
}
tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate;
/* Submit initial I/O for each namespace. */
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
submit_io(ns_ctx, g_queue_depth);
ns_ctx = ns_ctx->next;
}
while (1) {
/*
* Check for completed I/O for each controller. A new
* I/O will be submitted in the io_complete callback
* to replace each I/O that is completed.
*/
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
check_io(ns_ctx);
ns_ctx = ns_ctx->next;
}
if (spdk_get_ticks() > tsc_end) {
break;
}
}
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
drain_io(ns_ctx);
cleanup_ns_worker_ctx(ns_ctx);
ns_ctx = ns_ctx->next;
}
return 0;
}
static void usage(char *program_name)
{
printf("%s options", program_name);
#if HAVE_LIBAIO
printf(" [AIO device(s)]...");
#endif
printf("\n");
printf("\t[-q io depth]\n");
printf("\t[-s io size in bytes]\n");
printf("\t[-w io pattern type, must be one of\n");
printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
printf("\t[-l enable latency tracking, default: disabled]\n");
printf("\t[-t time in seconds]\n");
printf("\t[-c core mask for I/O submission/completion.]\n");
printf("\t\t(default: 1)]\n");
printf("\t[-r discover info of remote NVMe over Fabrics target:\n");
printf("\t Format: TRTYPE:TRADDR:TRVCSID e.g., rdma:192.168.100.8:4420]\n");
printf("\t[-d DPDK huge memory size in MB.]\n");
printf("\t[-m max completions per poll]\n");
printf("\t\t(default: 0 - unlimited)\n");
}
static void
print_performance(void)
{
uint64_t total_io_completed;
float io_per_second, mb_per_second, average_latency, min_latency, max_latency;
float total_io_per_second, total_mb_per_second;
float sum_ave_latency, sum_min_latency, sum_max_latency;
int ns_count;
struct worker_thread *worker;
struct ns_worker_ctx *ns_ctx;
total_io_per_second = 0;
total_mb_per_second = 0;
total_io_completed = 0;
sum_ave_latency = 0;
sum_min_latency = 0;
sum_max_latency = 0;
ns_count = 0;
printf("========================================================\n");
printf("%103s\n", "Latency(us)");
printf("%-55s: %10s %10s %10s %10s %10s\n",
"Device Information", "IOPS", "MB/s", "Average", "min", "max");
worker = g_workers;
while (worker) {
ns_ctx = worker->ns_ctx;
while (ns_ctx) {
io_per_second = (float)ns_ctx->io_completed / g_time_in_sec;
mb_per_second = io_per_second * g_io_size_bytes / (1024 * 1024);
average_latency = (float)(ns_ctx->total_tsc / ns_ctx->io_completed) * 1000 * 1000 / g_tsc_rate;
min_latency = (float)ns_ctx->min_tsc * 1000 * 1000 / g_tsc_rate;
max_latency = (float)ns_ctx->max_tsc * 1000 * 1000 / g_tsc_rate;
printf("%-43.43s from core %u: %10.2f %10.2f %10.2f %10.2f %10.2f\n",
ns_ctx->entry->name, worker->lcore,
io_per_second, mb_per_second,
average_latency, min_latency, max_latency);
total_io_per_second += io_per_second;
total_mb_per_second += mb_per_second;
total_io_completed += ns_ctx->io_completed;
sum_ave_latency += average_latency;
sum_min_latency += min_latency;
sum_max_latency += max_latency;
ns_count++;
ns_ctx = ns_ctx->next;
}
worker = worker->next;
}
assert(ns_count != 0);
printf("========================================================\n");
printf("%-55s: %10.2f %10.2f %10.2f %10.2f %10.2f\n",
"Total", total_io_per_second, total_mb_per_second,
sum_ave_latency / ns_count, sum_min_latency / ns_count,
sum_max_latency / ns_count);
printf("\n");
}
static void
print_latency_page(struct ctrlr_entry *entry)
{
int i;
printf("\n");
printf("%s\n", entry->name);
printf("--------------------------------------------------------\n");
for (i = 0; i < 32; i++) {
if (entry->latency_page->buckets_32us[i])
printf("Bucket %dus - %dus: %d\n", i * 32, (i + 1) * 32, entry->latency_page->buckets_32us[i]);
}
for (i = 0; i < 31; i++) {
if (entry->latency_page->buckets_1ms[i])
printf("Bucket %dms - %dms: %d\n", i + 1, i + 2, entry->latency_page->buckets_1ms[i]);
}
for (i = 0; i < 31; i++) {
if (entry->latency_page->buckets_32ms[i])
printf("Bucket %dms - %dms: %d\n", (i + 1) * 32, (i + 2) * 32,
entry->latency_page->buckets_32ms[i]);
}
}
static void
print_latency_statistics(const char *op_name, enum spdk_nvme_intel_log_page log_page)
{
struct ctrlr_entry *ctrlr;
printf("%s Latency Statistics:\n", op_name);
printf("========================================================\n");
ctrlr = g_controllers;
while (ctrlr) {
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) {
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr->ctrlr, log_page, SPDK_NVME_GLOBAL_NS_TAG,
ctrlr->latency_page, sizeof(struct spdk_nvme_intel_rw_latency_page),
enable_latency_tracking_complete,
NULL)) {
printf("nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
g_outstanding_commands++;
} else {
printf("Controller %s: %s latency statistics not supported\n", ctrlr->name, op_name);
}
ctrlr = ctrlr->next;
}
while (g_outstanding_commands) {
ctrlr = g_controllers;
while (ctrlr) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr->ctrlr);
ctrlr = ctrlr->next;
}
}
ctrlr = g_controllers;
while (ctrlr) {
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) {
print_latency_page(ctrlr);
}
ctrlr = ctrlr->next;
}
printf("\n");
}
static void
print_stats(void)
{
print_performance();
if (g_latency_tracking_enable) {
if (g_rw_percentage != 0) {
print_latency_statistics("Read", SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY);
}
if (g_rw_percentage != 100) {
print_latency_statistics("Write", SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY);
}
}
}
static int
parse_args(int argc, char **argv)
{
const char *workload_type;
int op;
bool mix_specified = false;
/* default value*/
g_queue_depth = 0;
g_io_size_bytes = 0;
workload_type = NULL;
g_time_in_sec = 0;
g_rw_percentage = -1;
g_core_mask = NULL;
g_max_completions = 0;
while ((op = getopt(argc, argv, "c:d:lm:q:r:s:t:w:M:")) != -1) {
switch (op) {
case 'c':
g_core_mask = optarg;
break;
case 'd':
g_dpdk_mem = atoi(optarg);
break;
case 'l':
g_latency_tracking_enable = true;
break;
case 'm':
g_max_completions = atoi(optarg);
break;
case 'q':
g_queue_depth = atoi(optarg);
break;
case 'r':
g_nvmf_discover_info = optarg;
break;
case 's':
g_io_size_bytes = atoi(optarg);
break;
case 't':
g_time_in_sec = atoi(optarg);
break;
case 'w':
workload_type = optarg;
break;
case 'M':
g_rw_percentage = atoi(optarg);
mix_specified = true;
break;
default:
usage(argv[0]);
return 1;
}
}
if (!g_queue_depth) {
usage(argv[0]);
return 1;
}
if (!g_io_size_bytes) {
usage(argv[0]);
return 1;
}
if (!workload_type) {
usage(argv[0]);
return 1;
}
if (!g_time_in_sec) {
usage(argv[0]);
return 1;
}
if (strcmp(workload_type, "read") &&
strcmp(workload_type, "write") &&
strcmp(workload_type, "randread") &&
strcmp(workload_type, "randwrite") &&
strcmp(workload_type, "rw") &&
strcmp(workload_type, "randrw")) {
fprintf(stderr,
"io pattern type must be one of\n"
"(read, write, randread, randwrite, rw, randrw)\n");
return 1;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread")) {
g_rw_percentage = 100;
}
if (!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
g_rw_percentage = 0;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
if (mix_specified) {
fprintf(stderr, "Ignoring -M option... Please use -M option"
" only when using rw or randrw.\n");
}
}
if (!strcmp(workload_type, "rw") ||
!strcmp(workload_type, "randrw")) {
if (g_rw_percentage < 0 || g_rw_percentage > 100) {
fprintf(stderr,
"-M must be specified to value from 0 to 100 "
"for rw or randrw.\n");
return 1;
}
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "rw")) {
g_is_random = 0;
} else {
g_is_random = 1;
}
g_aio_optind = optind;
optind = 1;
return 0;
}
static int
register_workers(void)
{
unsigned lcore;
struct worker_thread *worker;
struct worker_thread *prev_worker;
worker = malloc(sizeof(struct worker_thread));
if (worker == NULL) {
perror("worker_thread malloc");
return -1;
}
memset(worker, 0, sizeof(struct worker_thread));
worker->lcore = rte_get_master_lcore();
g_workers = worker;
g_num_workers = 1;
RTE_LCORE_FOREACH_SLAVE(lcore) {
prev_worker = worker;
worker = malloc(sizeof(struct worker_thread));
if (worker == NULL) {
perror("worker_thread malloc");
return -1;
}
memset(worker, 0, sizeof(struct worker_thread));
worker->lcore = lcore;
prev_worker->next = worker;
g_num_workers++;
}
return 0;
}
static void
unregister_workers(void)
{
struct worker_thread *worker = g_workers;
/* Free namespace context and worker thread */
while (worker) {
struct worker_thread *next_worker = worker->next;
struct ns_worker_ctx *ns_ctx = worker->ns_ctx;
while (ns_ctx) {
struct ns_worker_ctx *next_ns_ctx = ns_ctx->next;
free(ns_ctx);
ns_ctx = next_ns_ctx;
}
free(worker);
worker = next_worker;
}
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_probe_info *probe_info,
struct spdk_nvme_ctrlr_opts *opts)
{
if (probe_info->subnqn[0]) {
printf("Attaching to NVMe over Fabrics controller at %s:%s: %s\n",
probe_info->traddr, probe_info->trsvcid, probe_info->subnqn);
} else {
printf("Attaching to NVMe Controller at %04x:%02x:%02x.%x [%04x:%04x]\n",
probe_info->pci_addr.domain, probe_info->pci_addr.bus,
probe_info->pci_addr.dev, probe_info->pci_addr.func,
probe_info->pci_id.vendor_id, probe_info->pci_id.device_id);
}
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_probe_info *probe_info,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
if (probe_info->subnqn[0]) {
printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n",
probe_info->traddr, probe_info->trsvcid, probe_info->subnqn);
} else {
printf("Attached to NVMe Controller at %04x:%02x:%02x.%x [%04x:%04x]\n",
probe_info->pci_addr.domain, probe_info->pci_addr.bus,
probe_info->pci_addr.dev, probe_info->pci_addr.func,
probe_info->pci_id.vendor_id, probe_info->pci_id.device_id);
}
register_ctrlr(ctrlr);
}
static int
register_controllers(void)
{
struct spdk_nvme_discover_info info;
char *p, *p1;
int n;
printf("Initializing NVMe Controllers\n");
if (spdk_nvme_probe(NULL, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
}
/* The format of g_nvmf_discover_info should be: TRTYPE:TRADDR:TRVCSID */
if (g_nvmf_discover_info) {
info.subnqn = SPDK_NVMF_DISCOVERY_NQN;
p = (char *)g_nvmf_discover_info;
p1 = strchr(p, ':');
if (p1 == NULL) {
fprintf(stderr, "wrong format of discover info\n");
return 0;
}
n = p1 - p;
if (n == 0) {
fprintf(stderr, "wrong format of discover info\n");
return 0;
}
p[n] = '\0';
if (strncmp(p, "rdma", 4) != 0) {
fprintf(stderr, "wrong transport type \n");
return 0;
}
info.trtype = SPDK_NVMF_TRTYPE_RDMA;
p = (char *)p1 + 1;
p1 = strchr(p, ':');
if (p1 == NULL) {
fprintf(stderr, "wrong format of discover info\n");
return 0;
}
n = p1 - p;
if ((n == 0) || (n > SPDK_NVMF_TRADDR_MAX_LEN)) {
fprintf(stderr, "wrong format of discover info\n");
return 0;
}
p[n] = '\0';
info.traddr = p;
p = (char *)p1 + 1;
info.trsvcid = p;
if (spdk_nvme_discover(&info, NULL, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_discover() failed\n");
}
}
return 0;
}
static void
unregister_controllers(void)
{
struct ctrlr_entry *entry = g_controllers;
while (entry) {
struct ctrlr_entry *next = entry->next;
spdk_free(entry->latency_page);
if (g_latency_tracking_enable &&
spdk_nvme_ctrlr_is_feature_supported(entry->ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING))
set_latency_tracking_feature(entry->ctrlr, false);
spdk_nvme_detach(entry->ctrlr);
free(entry);
entry = next;
}
}
static int
register_aio_files(int argc, char **argv)
{
#if HAVE_LIBAIO
int i;
/* Treat everything after the options as files for AIO */
for (i = g_aio_optind; i < argc; i++) {
if (register_aio_file(argv[i]) != 0) {
return 1;
}
}
#endif /* HAVE_LIBAIO */
return 0;
}
static int
associate_workers_with_ns(void)
{
struct ns_entry *entry = g_namespaces;
struct worker_thread *worker = g_workers;
struct ns_worker_ctx *ns_ctx;
int i, count;
count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers;
for (i = 0; i < count; i++) {
if (entry == NULL) {
break;
}
ns_ctx = malloc(sizeof(struct ns_worker_ctx));
if (!ns_ctx) {
return -1;
}
memset(ns_ctx, 0, sizeof(*ns_ctx));
printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
ns_ctx->min_tsc = UINT64_MAX;
ns_ctx->entry = entry;
ns_ctx->next = worker->ns_ctx;
worker->ns_ctx = ns_ctx;
worker = worker->next;
if (worker == NULL) {
worker = g_workers;
}
entry = entry->next;
if (entry == NULL) {
entry = g_namespaces;
}
}
return 0;
}
static char *ealargs[] = {
"perf",
"-c 0x1", /* This must be the second parameter. It is overwritten by index in main(). */
"-n 4",
"-m 512", /* This can be overwritten by index in main(). */
"--proc-type=auto",
};
int main(int argc, char **argv)
{
int rc;
struct worker_thread *worker;
char task_pool_name[30];
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
ealargs[1] = spdk_sprintf_alloc("-c %s", g_core_mask ? g_core_mask : "0x1");
if (ealargs[1] == NULL) {
perror("ealargs spdk_sprintf_alloc");
return 1;
}
ealargs[3] = spdk_sprintf_alloc("-m %d", g_dpdk_mem ? g_dpdk_mem : 512);
if (ealargs[3] == NULL) {
free(ealargs[1]);
perror("ealargs spdk_sprintf_alloc");
return 1;
}
rc = rte_eal_init(sizeof(ealargs) / sizeof(ealargs[0]), ealargs);
free(ealargs[1]);
free(ealargs[3]);
if (rc < 0) {
fprintf(stderr, "could not initialize dpdk\n");
return 1;
}
snprintf(task_pool_name, sizeof(task_pool_name), "task_pool_%d", getpid());
task_pool = rte_mempool_create(task_pool_name, 8192,
sizeof(struct perf_task),
64, 0, NULL, NULL, task_ctor, NULL,
SOCKET_ID_ANY, 0);
if (task_pool == NULL) {
fprintf(stderr, "could not initialize task pool\n");
return 1;
}
g_tsc_rate = spdk_get_ticks_hz();
if (register_workers() != 0) {
rc = -1;
goto cleanup;
}
if (register_aio_files(argc, argv) != 0) {
rc = -1;
goto cleanup;
}
if (register_controllers() != 0) {
rc = -1;
goto cleanup;
}
if (associate_workers_with_ns() != 0) {
rc = -1;
goto cleanup;
}
printf("Initialization complete. Launching workers.\n");
/* Launch all of the slave workers */
worker = g_workers->next;
while (worker != NULL) {
rte_eal_remote_launch(work_fn, worker, worker->lcore);
worker = worker->next;
}
rc = work_fn(g_workers);
worker = g_workers->next;
while (worker != NULL) {
if (rte_eal_wait_lcore(worker->lcore) < 0) {
rc = -1;
}
worker = worker->next;
}
print_stats();
cleanup:
unregister_namespaces();
unregister_controllers();
unregister_workers();
if (rc != 0) {
fprintf(stderr, "%s: errors occured\n", argv[0]);
}
return rc;
}