numam-spdk/lib/nvmf/rdma.c
Ben Walker 4bf7878521 nvmf: Combine nvmf recv and send cqs
ibv_poll_cq is actually an expensive call to make, so take
steps to begin to minimize the number of times it is called.

Change-Id: I6fc64979604220eb8cacd612b46e3a3b1bca0924
Signed-off-by: Ben Walker <benjamin.walker@intel.com>
2016-09-22 09:11:38 -07:00

1479 lines
44 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <arpa/inet.h>
#include <fcntl.h>
#include <infiniband/verbs.h>
#include <rdma/rdma_cma.h>
#include <rdma/rdma_verbs.h>
#include <unistd.h>
#include <stdio.h>
#include <stdint.h>
#include <rte_config.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_lcore.h>
#include <rte_malloc.h>
#include "nvmf_internal.h"
#include "request.h"
#include "session.h"
#include "subsystem.h"
#include "transport.h"
#include "spdk/assert.h"
#include "spdk/log.h"
#include "spdk/nvmf_spec.h"
#include "spdk/string.h"
#include "spdk/trace.h"
/*
RDMA Connection Resouce Defaults
*/
#define NVMF_DEFAULT_TX_SGE 1
#define NVMF_DEFAULT_RX_SGE 2
struct spdk_nvmf_rdma_buf {
SLIST_ENTRY(spdk_nvmf_rdma_buf) link;
};
struct spdk_nvmf_rdma_request {
struct spdk_nvmf_request req;
/* In Capsule data buffer */
uint8_t *buf;
TAILQ_ENTRY(spdk_nvmf_rdma_request) link;
};
struct spdk_nvmf_rdma_conn {
struct spdk_nvmf_conn conn;
struct rdma_cm_id *cm_id;
struct ibv_cq *cq;
/* The maximum number of I/O outstanding on this connection at one time */
uint16_t max_queue_depth;
/* The maximum number of active RDMA READ and WRITE operations at one time */
uint16_t max_rw_depth;
/* The current number of I/O outstanding on this connection. This number
* includes all I/O from the time the capsule is first received until it is
* completed.
*/
uint16_t cur_queue_depth;
/* The number of RDMA READ and WRITE requests that are outstanding */
uint16_t cur_rdma_rw_depth;
/* Requests that are waiting to obtain a data buffer */
TAILQ_HEAD(, spdk_nvmf_rdma_request) pending_data_buf_queue;
/* Requests that are waiting to perform an RDMA READ or WRITE */
TAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_rw_queue;
/* Array of size "max_queue_depth" containing RDMA requests. */
struct spdk_nvmf_rdma_request *reqs;
/* Array of size "max_queue_depth" containing 64 byte capsules
* used for receive.
*/
union nvmf_h2c_msg *cmds;
struct ibv_mr *cmds_mr;
/* Array of size "max_queue_depth" containing 16 byte completions
* to be sent back to the user.
*/
union nvmf_c2h_msg *cpls;
struct ibv_mr *cpls_mr;
/* Array of size "max_queue_depth * InCapsuleDataSize" containing
* buffers to be used for in capsule data.
*/
void *bufs;
struct ibv_mr *bufs_mr;
TAILQ_ENTRY(spdk_nvmf_rdma_conn) link;
};
/* List of RDMA connections that have not yet received a CONNECT capsule */
static TAILQ_HEAD(, spdk_nvmf_rdma_conn) g_pending_conns = TAILQ_HEAD_INITIALIZER(g_pending_conns);
struct spdk_nvmf_rdma_session {
SLIST_HEAD(, spdk_nvmf_rdma_buf) data_buf_pool;
uint8_t *buf;
struct ibv_mr *buf_mr;
};
struct spdk_nvmf_rdma_listen_addr {
char *traddr;
char *trsvcid;
struct rdma_cm_id *id;
TAILQ_ENTRY(spdk_nvmf_rdma_listen_addr) link;
};
struct spdk_nvmf_rdma {
struct rdma_event_channel *acceptor_event_channel;
uint16_t max_queue_depth;
uint32_t max_io_size;
uint32_t in_capsule_data_size;
uint32_t num_devices_found;
pthread_mutex_t lock;
TAILQ_HEAD(, spdk_nvmf_rdma_listen_addr) listen_addrs;
};
static struct spdk_nvmf_rdma g_rdma = {
.lock = PTHREAD_MUTEX_INITIALIZER,
.listen_addrs = TAILQ_HEAD_INITIALIZER(g_rdma.listen_addrs),
};
static inline struct spdk_nvmf_rdma_conn *
get_rdma_conn(struct spdk_nvmf_conn *conn)
{
return (struct spdk_nvmf_rdma_conn *)((uintptr_t)conn - offsetof(struct spdk_nvmf_rdma_conn, conn));
}
static inline struct spdk_nvmf_rdma_request *
get_rdma_req(struct spdk_nvmf_request *req)
{
return (struct spdk_nvmf_rdma_request *)((uintptr_t)req - offsetof(struct spdk_nvmf_rdma_request,
req));
}
static int nvmf_post_rdma_recv(struct spdk_nvmf_request *req);
static void
spdk_nvmf_rdma_conn_destroy(struct spdk_nvmf_rdma_conn *rdma_conn)
{
if (rdma_conn->cmds_mr) {
rdma_dereg_mr(rdma_conn->cmds_mr);
}
if (rdma_conn->cpls_mr) {
rdma_dereg_mr(rdma_conn->cpls_mr);
}
if (rdma_conn->bufs_mr) {
rdma_dereg_mr(rdma_conn->bufs_mr);
}
if (rdma_conn->cm_id) {
rdma_destroy_qp(rdma_conn->cm_id);
rdma_destroy_id(rdma_conn->cm_id);
}
if (rdma_conn->cq) {
ibv_destroy_cq(rdma_conn->cq);
}
/* Free all memory */
rte_free(rdma_conn->cmds);
rte_free(rdma_conn->cpls);
rte_free(rdma_conn->bufs);
free(rdma_conn->reqs);
free(rdma_conn);
}
static struct spdk_nvmf_rdma_conn *
spdk_nvmf_rdma_conn_create(struct rdma_cm_id *id, uint16_t max_queue_depth, uint16_t max_rw_depth)
{
struct spdk_nvmf_rdma_conn *rdma_conn;
struct spdk_nvmf_conn *conn;
int rc, i;
struct ibv_qp_init_attr attr;
struct spdk_nvmf_rdma_request *rdma_req;
rdma_conn = calloc(1, sizeof(struct spdk_nvmf_rdma_conn));
if (rdma_conn == NULL) {
SPDK_ERRLOG("Could not allocate new connection.\n");
return NULL;
}
rdma_conn->max_queue_depth = max_queue_depth;
rdma_conn->max_rw_depth = max_rw_depth;
rdma_conn->cm_id = id;
TAILQ_INIT(&rdma_conn->pending_data_buf_queue);
TAILQ_INIT(&rdma_conn->pending_rdma_rw_queue);
rdma_conn->cq = ibv_create_cq(id->verbs, max_queue_depth * 2, NULL, NULL, 0);
if (!rdma_conn->cq) {
SPDK_ERRLOG("Unable to create completion queue\n");
SPDK_ERRLOG("Id: %p Verbs: %p\n", id, id->verbs);
SPDK_ERRLOG("Errno %d: %s\n", errno, strerror(errno));
free(rdma_conn);
return NULL;
}
memset(&attr, 0, sizeof(struct ibv_qp_init_attr));
attr.qp_type = IBV_QPT_RC;
attr.send_cq = rdma_conn->cq;
attr.recv_cq = rdma_conn->cq;
attr.cap.max_send_wr = max_queue_depth; /* SEND, READ, and WRITE operations */
attr.cap.max_recv_wr = max_queue_depth; /* RECV operations */
attr.cap.max_send_sge = NVMF_DEFAULT_TX_SGE;
attr.cap.max_recv_sge = NVMF_DEFAULT_RX_SGE;
rc = rdma_create_qp(rdma_conn->cm_id, NULL, &attr);
if (rc) {
SPDK_ERRLOG("rdma_create_qp failed\n");
spdk_nvmf_rdma_conn_destroy(rdma_conn);
return NULL;
}
conn = &rdma_conn->conn;
conn->transport = &spdk_nvmf_transport_rdma;
id->context = conn;
SPDK_TRACELOG(SPDK_TRACE_RDMA, "New RDMA Connection: %p\n", conn);
rdma_conn->reqs = calloc(max_queue_depth, sizeof(*rdma_conn->reqs));
rdma_conn->cmds = rte_calloc("nvmf_rdma_cmd", max_queue_depth,
sizeof(*rdma_conn->cmds), 0x1000);
rdma_conn->cpls = rte_calloc("nvmf_rdma_cpl", max_queue_depth,
sizeof(*rdma_conn->cpls), 0x1000);
rdma_conn->bufs = rte_calloc("nvmf_rdma_buf", max_queue_depth,
g_rdma.in_capsule_data_size, 0x1000);
if (!rdma_conn->reqs || !rdma_conn->cmds || !rdma_conn->cpls || !rdma_conn->bufs) {
SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
spdk_nvmf_rdma_conn_destroy(rdma_conn);
return NULL;
}
rdma_conn->cmds_mr = rdma_reg_msgs(rdma_conn->cm_id, rdma_conn->cmds,
max_queue_depth * sizeof(*rdma_conn->cmds));
rdma_conn->cpls_mr = rdma_reg_msgs(rdma_conn->cm_id, rdma_conn->cpls,
max_queue_depth * sizeof(*rdma_conn->cpls));
rdma_conn->bufs_mr = rdma_reg_msgs(rdma_conn->cm_id, rdma_conn->bufs,
max_queue_depth * g_rdma.in_capsule_data_size);
if (!rdma_conn->cmds_mr || !rdma_conn->cpls_mr || !rdma_conn->bufs_mr) {
SPDK_ERRLOG("Unable to register required memory for RDMA queue.\n");
spdk_nvmf_rdma_conn_destroy(rdma_conn);
return NULL;
}
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Command Array: %p Length: %lx LKey: %x\n",
rdma_conn->cmds, max_queue_depth * sizeof(*rdma_conn->cmds), rdma_conn->cmds_mr->lkey);
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Completion Array: %p Length: %lx LKey: %x\n",
rdma_conn->cpls, max_queue_depth * sizeof(*rdma_conn->cpls), rdma_conn->cpls_mr->lkey);
SPDK_TRACELOG(SPDK_TRACE_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n",
rdma_conn->bufs, max_queue_depth * g_rdma.in_capsule_data_size, rdma_conn->bufs_mr->lkey);
for (i = 0; i < max_queue_depth; i++) {
rdma_req = &rdma_conn->reqs[i];
rdma_req->buf = (void *)((uintptr_t)rdma_conn->bufs + (i * g_rdma.in_capsule_data_size));
rdma_req->req.cmd = &rdma_conn->cmds[i];
rdma_req->req.rsp = &rdma_conn->cpls[i];
rdma_req->req.conn = &rdma_conn->conn;
if (nvmf_post_rdma_recv(&rdma_req->req)) {
SPDK_ERRLOG("Unable to post capsule for RDMA RECV\n");
spdk_nvmf_rdma_conn_destroy(rdma_conn);
return NULL;
}
}
return rdma_conn;
}
static inline void
nvmf_trace_ibv_sge(struct ibv_sge *sg_list)
{
if (sg_list) {
SPDK_TRACELOG(SPDK_TRACE_RDMA, "local addr %p length 0x%x lkey 0x%x\n",
(void *)sg_list->addr, sg_list->length, sg_list->lkey);
}
}
static inline void
nvmf_ibv_send_wr_init(struct ibv_send_wr *wr,
struct spdk_nvmf_request *req,
struct ibv_sge *sg_list,
enum ibv_wr_opcode opcode,
int send_flags)
{
struct spdk_nvmf_rdma_request *rdma_req = get_rdma_req(req);
RTE_VERIFY(wr != NULL);
RTE_VERIFY(sg_list != NULL);
wr->wr_id = (uint64_t)rdma_req;
wr->opcode = opcode;
wr->send_flags = send_flags;
wr->sg_list = sg_list;
wr->num_sge = 1;
}
static inline void
nvmf_ibv_send_wr_set_rkey(struct ibv_send_wr *wr, struct spdk_nvmf_request *req)
{
struct spdk_nvme_sgl_descriptor *sgl = &req->cmd->nvme_cmd.dptr.sgl1;
RTE_VERIFY(sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK);
wr->wr.rdma.rkey = sgl->keyed.key;
wr->wr.rdma.remote_addr = sgl->address;
SPDK_TRACELOG(SPDK_TRACE_RDMA, "rkey %x remote_addr %p\n",
wr->wr.rdma.rkey, (void *)wr->wr.rdma.remote_addr);
}
static int
nvmf_post_rdma_read(struct spdk_nvmf_request *req)
{
struct ibv_send_wr wr = {};
struct ibv_send_wr *bad_wr = NULL;
struct spdk_nvmf_conn *conn = req->conn;
struct spdk_nvmf_rdma_conn *rdma_conn = get_rdma_conn(conn);
struct spdk_nvmf_rdma_session *rdma_sess;
struct ibv_sge sge;
int rc;
SPDK_TRACELOG(SPDK_TRACE_RDMA, "RDMA READ POSTED. Request: %p Connection: %p\n", req, conn);
sge.addr = (uintptr_t)req->data;
if (req->length > g_rdma.in_capsule_data_size) {
rdma_sess = conn->sess->trctx;
sge.lkey = rdma_sess->buf_mr->lkey;
} else {
sge.lkey = rdma_conn->bufs_mr->lkey;
}
sge.length = req->length;
nvmf_trace_ibv_sge(&sge);
nvmf_ibv_send_wr_init(&wr, req, &sge, IBV_WR_RDMA_READ, IBV_SEND_SIGNALED);
nvmf_ibv_send_wr_set_rkey(&wr, req);
spdk_trace_record(TRACE_RDMA_READ_START, 0, 0, (uintptr_t)req, 0);
rc = ibv_post_send(rdma_conn->cm_id->qp, &wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Failure posting rdma read send, rc = 0x%x\n", rc);
}
return rc;
}
static int
nvmf_post_rdma_write(struct spdk_nvmf_request *req)
{
struct ibv_send_wr wr = {};
struct ibv_send_wr *bad_wr = NULL;
struct spdk_nvmf_conn *conn = req->conn;
struct spdk_nvmf_rdma_conn *rdma_conn = get_rdma_conn(conn);
struct spdk_nvmf_rdma_session *rdma_sess;
struct ibv_sge sge;
int rc;
SPDK_TRACELOG(SPDK_TRACE_RDMA, "RDMA WRITE POSTED. Request: %p Connection: %p\n", req, conn);
sge.addr = (uintptr_t)req->data;
if (req->length > g_rdma.in_capsule_data_size) {
rdma_sess = conn->sess->trctx;
sge.lkey = rdma_sess->buf_mr->lkey;
} else {
sge.lkey = rdma_conn->bufs_mr->lkey;
}
sge.length = req->length;
nvmf_trace_ibv_sge(&sge);
nvmf_ibv_send_wr_init(&wr, req, &sge, IBV_WR_RDMA_WRITE, IBV_SEND_SIGNALED);
nvmf_ibv_send_wr_set_rkey(&wr, req);
spdk_trace_record(TRACE_RDMA_WRITE_START, 0, 0, (uintptr_t)req, 0);
rc = ibv_post_send(rdma_conn->cm_id->qp, &wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Failure posting rdma write send, rc = 0x%x\n", rc);
}
return rc;
}
static int
nvmf_post_rdma_recv(struct spdk_nvmf_request *req)
{
struct ibv_recv_wr wr, *bad_wr = NULL;
struct spdk_nvmf_conn *conn = req->conn;
struct spdk_nvmf_rdma_conn *rdma_conn = get_rdma_conn(conn);
struct spdk_nvmf_rdma_request *rdma_req = get_rdma_req(req);
struct ibv_sge sg_list[2];
int rc;
SPDK_TRACELOG(SPDK_TRACE_RDMA, "RDMA RECV POSTED. Request: %p Connection: %p\n", req, conn);
sg_list[0].addr = (uintptr_t)req->cmd;
sg_list[0].length = sizeof(*req->cmd);
sg_list[0].lkey = rdma_conn->cmds_mr->lkey;
nvmf_trace_ibv_sge(&sg_list[0]);
sg_list[1].addr = (uintptr_t)rdma_req->buf;
sg_list[1].length = g_rdma.in_capsule_data_size;
sg_list[1].lkey = rdma_conn->bufs_mr->lkey;
nvmf_trace_ibv_sge(&sg_list[1]);
memset(&wr, 0, sizeof(wr));
wr.wr_id = (uintptr_t)rdma_req;
wr.next = NULL;
wr.sg_list = sg_list;
wr.num_sge = 2;
rc = ibv_post_recv(rdma_conn->cm_id->qp, &wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Failure posting rdma recv, rc = 0x%x\n", rc);
}
return rc;
}
static int
nvmf_post_rdma_send(struct spdk_nvmf_request *req)
{
struct ibv_send_wr wr = {};
struct ibv_send_wr *bad_wr = NULL;
struct spdk_nvmf_conn *conn = req->conn;
struct spdk_nvmf_rdma_conn *rdma_conn = get_rdma_conn(conn);
struct ibv_sge sge;
int rc;
SPDK_TRACELOG(SPDK_TRACE_RDMA, "RDMA SEND POSTED. Request: %p Connection: %p\n", req, conn);
sge.addr = (uintptr_t)req->rsp;
sge.length = sizeof(*req->rsp);
sge.lkey = rdma_conn->cpls_mr->lkey;
nvmf_trace_ibv_sge(&sge);
nvmf_ibv_send_wr_init(&wr, req, &sge, IBV_WR_SEND, IBV_SEND_SIGNALED);
spdk_trace_record(TRACE_NVMF_IO_COMPLETE, 0, 0, (uintptr_t)req, 0);
rc = ibv_post_send(rdma_conn->cm_id->qp, &wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Failure posting rdma send for NVMf completion, rc = 0x%x\n", rc);
}
return rc;
}
/**
* REQUEST COMPLETION HANDLING
*
* Request completion consists of three steps:
*
* 1) Transfer any data to the host using an RDMA Write. If no data or an NVMe write,
* this step is unnecessary. (spdk_nvmf_rdma_request_transfer_data)
* 2) Upon transfer completion, update sq_head, re-post the recv capsule,
* and send the completion. (spdk_nvmf_rdma_request_send_completion)
* 3) Upon getting acknowledgement of the completion, decrement the internal
* count of number of outstanding requests. (spdk_nvmf_rdma_request_ack_completion)
*
* There are two public interfaces to initiate the process of completing a request,
* exposed as callbacks in the transport layer.
*
* 1) spdk_nvmf_rdma_request_complete, which attempts to do all three steps.
* 2) spdk_nvmf_rdma_request_release, which skips straight to step 3.
**/
static int
spdk_nvmf_rdma_request_transfer_data(struct spdk_nvmf_request *req)
{
int rc;
struct spdk_nvmf_rdma_request *rdma_req = get_rdma_req(req);
struct spdk_nvmf_conn *conn = req->conn;
struct spdk_nvmf_rdma_conn *rdma_conn = get_rdma_conn(conn);
assert(req->xfer != SPDK_NVME_DATA_NONE);
if (rdma_conn->cur_rdma_rw_depth < rdma_conn->max_rw_depth) {
if (req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
rc = nvmf_post_rdma_write(req);
if (rc) {
SPDK_ERRLOG("Unable to transfer data from target to host\n");
return -1;
}
} else if (req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
rc = nvmf_post_rdma_read(req);
if (rc) {
SPDK_ERRLOG("Unable to transfer data from host to target\n");
return -1;
}
}
rdma_conn->cur_rdma_rw_depth++;
} else {
TAILQ_INSERT_TAIL(&rdma_conn->pending_rdma_rw_queue, rdma_req, link);
}
return 0;
}
static int
spdk_nvmf_rdma_request_send_completion(struct spdk_nvmf_request *req)
{
int rc;
struct spdk_nvmf_conn *conn = req->conn;
struct spdk_nvme_cpl *rsp = &req->rsp->nvme_cpl;
struct spdk_nvmf_rdma_session *rdma_sess;
struct spdk_nvmf_rdma_buf *buf;
if (req->length > g_rdma.in_capsule_data_size) {
/* Put the buffer back in the pool */
rdma_sess = conn->sess->trctx;
buf = req->data;
SLIST_INSERT_HEAD(&rdma_sess->data_buf_pool, buf, link);
req->data = NULL;
req->length = 0;
}
/* Advance our sq_head pointer */
if (conn->sq_head == conn->sq_head_max) {
conn->sq_head = 0;
} else {
conn->sq_head++;
}
rsp->sqhd = conn->sq_head;
/* Post the capsule to the recv buffer */
rc = nvmf_post_rdma_recv(req);
if (rc) {
SPDK_ERRLOG("Unable to re-post rx descriptor\n");
return rc;
}
/* Send the completion */
rc = nvmf_post_rdma_send(req);
if (rc) {
SPDK_ERRLOG("Unable to send response capsule\n");
}
return rc;
}
static int
spdk_nvmf_rdma_request_ack_completion(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_conn *conn = req->conn;
struct spdk_nvmf_rdma_conn *rdma_conn = get_rdma_conn(conn);
/* Advance our sq_head pointer */
if (conn->sq_head == conn->sq_head_max) {
conn->sq_head = 0;
} else {
conn->sq_head++;
}
rdma_conn->cur_queue_depth--;
return 0;
}
static int
spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
{
struct spdk_nvme_cpl *rsp = &req->rsp->nvme_cpl;
int rc;
if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
rc = spdk_nvmf_rdma_request_transfer_data(req);
} else {
rc = spdk_nvmf_rdma_request_send_completion(req);
}
return rc;
}
static int
spdk_nvmf_rdma_request_release(struct spdk_nvmf_request *req)
{
return spdk_nvmf_rdma_request_ack_completion(req);
}
static int
nvmf_rdma_connect(struct rdma_cm_event *event)
{
struct spdk_nvmf_rdma_conn *rdma_conn = NULL;
struct ibv_device_attr ibdev_attr;
struct rdma_conn_param *rdma_param = NULL;
struct rdma_conn_param ctrlr_event_data;
const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
struct spdk_nvmf_rdma_accept_private_data accept_data;
uint16_t sts = 0;
uint16_t max_queue_depth;
uint16_t max_rw_depth;
int rc;
/* Check to make sure we know about this rdma device */
if (event->id == NULL) {
SPDK_ERRLOG("connect request: missing cm_id\n");
goto err0;
}
if (event->id->verbs == NULL) {
SPDK_ERRLOG("connect request: missing cm_id ibv_context\n");
goto err0;
}
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n",
event->id->verbs->device->name, event->id->verbs->device->dev_name);
/* Figure out the supported queue depth. This is a multi-step process
* that takes into account hardware maximums, host provided values,
* and our target's internal memory limits */
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Calculating Queue Depth\n");
/* Start with the maximum queue depth allowed by the target */
max_queue_depth = g_rdma.max_queue_depth;
max_rw_depth = g_rdma.max_queue_depth;
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Target Max Queue Depth: %d\n", g_rdma.max_queue_depth);
/* Next check the local NIC's hardware limitations */
rc = ibv_query_device(event->id->verbs, &ibdev_attr);
if (rc) {
SPDK_ERRLOG("Failed to query RDMA device attributes\n");
sts = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
goto err1;
}
SPDK_TRACELOG(SPDK_TRACE_RDMA,
"Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
ibdev_attr.max_qp_wr, ibdev_attr.max_qp_rd_atom);
max_queue_depth = nvmf_min(max_queue_depth, ibdev_attr.max_qp_wr);
max_rw_depth = nvmf_min(max_rw_depth, ibdev_attr.max_qp_rd_atom);
/* Next check the remote NIC's hardware limitations */
rdma_param = &event->param.conn;
SPDK_TRACELOG(SPDK_TRACE_RDMA,
"Host NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
rdma_param->initiator_depth, rdma_param->responder_resources);
max_rw_depth = nvmf_min(max_rw_depth, rdma_param->initiator_depth);
/* Finally check for the host software requested values, which are
* optional. */
if (rdma_param->private_data != NULL &&
rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
private_data = rdma_param->private_data;
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize);
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize);
max_queue_depth = nvmf_min(max_queue_depth, private_data->hrqsize);
max_queue_depth = nvmf_min(max_queue_depth, private_data->hsqsize);
}
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
max_queue_depth, max_rw_depth);
/* Init the NVMf rdma transport connection */
rdma_conn = spdk_nvmf_rdma_conn_create(event->id, max_queue_depth, max_rw_depth);
if (rdma_conn == NULL) {
SPDK_ERRLOG("Error on nvmf connection creation\n");
goto err1;
}
/* Add this RDMA connection to the global list until a CONNECT capsule
* is received. */
TAILQ_INSERT_TAIL(&g_pending_conns, rdma_conn, link);
accept_data.recfmt = 0;
accept_data.crqsize = max_queue_depth;
ctrlr_event_data = *rdma_param;
ctrlr_event_data.private_data = &accept_data;
ctrlr_event_data.private_data_len = sizeof(accept_data);
if (event->id->ps == RDMA_PS_TCP) {
ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
ctrlr_event_data.initiator_depth = max_rw_depth;
}
rc = rdma_accept(event->id, &ctrlr_event_data);
if (rc) {
SPDK_ERRLOG("Error on rdma_accept\n");
goto err1;
}
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Sent back the accept\n");
return 0;
err1: {
struct spdk_nvmf_rdma_reject_private_data rej_data;
rej_data.status.sc = sts;
rdma_reject(event->id, &ctrlr_event_data, sizeof(rej_data));
free(rdma_conn);
}
err0:
return -1;
}
static int
nvmf_rdma_disconnect(struct rdma_cm_event *evt)
{
struct spdk_nvmf_conn *conn;
struct nvmf_session *session;
struct spdk_nvmf_subsystem *subsystem;
struct spdk_nvmf_rdma_conn *rdma_conn;
if (evt->id == NULL) {
SPDK_ERRLOG("disconnect request: missing cm_id\n");
return -1;
}
conn = evt->id->context;
if (conn == NULL) {
SPDK_ERRLOG("disconnect request: no active connection\n");
return -1;
}
/* ack the disconnect event before rdma_destroy_id */
rdma_ack_cm_event(evt);
rdma_conn = get_rdma_conn(conn);
session = conn->sess;
if (session == NULL) {
/* No session has been established yet. That means the conn
* must be in the pending connections list. Remove it. */
TAILQ_REMOVE(&g_pending_conns, rdma_conn, link);
spdk_nvmf_rdma_conn_destroy(rdma_conn);
return 0;
}
subsystem = session->subsys;
subsystem->disconnect_cb(subsystem->cb_ctx, conn);
return 0;
}
#ifdef DEBUG
static const char *CM_EVENT_STR[] = {
"RDMA_CM_EVENT_ADDR_RESOLVED",
"RDMA_CM_EVENT_ADDR_ERROR",
"RDMA_CM_EVENT_ROUTE_RESOLVED",
"RDMA_CM_EVENT_ROUTE_ERROR",
"RDMA_CM_EVENT_CONNECT_REQUEST",
"RDMA_CM_EVENT_CONNECT_RESPONSE",
"RDMA_CM_EVENT_CONNECT_ERROR",
"RDMA_CM_EVENT_UNREACHABLE",
"RDMA_CM_EVENT_REJECTED",
"RDMA_CM_EVENT_ESTABLISHED",
"RDMA_CM_EVENT_DISCONNECTED",
"RDMA_CM_EVENT_DEVICE_REMOVAL",
"RDMA_CM_EVENT_MULTICAST_JOIN",
"RDMA_CM_EVENT_MULTICAST_ERROR",
"RDMA_CM_EVENT_ADDR_CHANGE",
"RDMA_CM_EVENT_TIMEWAIT_EXIT"
};
#endif /* DEBUG */
typedef enum _spdk_nvmf_request_prep_type {
SPDK_NVMF_REQUEST_PREP_ERROR = -1,
SPDK_NVMF_REQUEST_PREP_READY = 0,
SPDK_NVMF_REQUEST_PREP_PENDING_BUFFER = 1,
SPDK_NVMF_REQUEST_PREP_PENDING_DATA = 2,
} spdk_nvmf_request_prep_type;
static spdk_nvmf_request_prep_type
spdk_nvmf_request_prep_data(struct spdk_nvmf_request *req)
{
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
struct spdk_nvme_cpl *rsp = &req->rsp->nvme_cpl;
struct spdk_nvmf_rdma_request *rdma_req = get_rdma_req(req);
struct spdk_nvmf_rdma_session *rdma_sess;
struct spdk_nvme_sgl_descriptor *sgl;
req->length = 0;
req->data = NULL;
if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
req->xfer = spdk_nvme_opc_get_data_transfer(req->cmd->nvmf_cmd.fctype);
} else {
req->xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
}
if (req->xfer == SPDK_NVME_DATA_NONE) {
return SPDK_NVMF_REQUEST_PREP_READY;
}
sgl = &cmd->dptr.sgl1;
if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
(sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
if (sgl->keyed.length > g_rdma.max_io_size) {
SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
sgl->keyed.length, g_rdma.max_io_size);
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return SPDK_NVMF_REQUEST_PREP_ERROR;
}
if (sgl->keyed.length == 0) {
req->xfer = SPDK_NVME_DATA_NONE;
return SPDK_NVMF_REQUEST_PREP_READY;
}
req->length = sgl->keyed.length;
/* TODO: In Capsule Data Size should be tracked per queue (admin, for instance, should always have 4k and no more). */
if (sgl->keyed.length > g_rdma.in_capsule_data_size) {
rdma_sess = req->conn->sess->trctx;
req->data = SLIST_FIRST(&rdma_sess->data_buf_pool);
if (!req->data) {
/* No available buffers. Queue this request up. */
SPDK_TRACELOG(SPDK_TRACE_RDMA, "No available large data buffers. Queueing request %p\n", req);
return SPDK_NVMF_REQUEST_PREP_PENDING_BUFFER;
}
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Request %p took buffer from central pool\n", req);
SLIST_REMOVE_HEAD(&rdma_sess->data_buf_pool, link);
} else {
/* Use the in capsule data buffer, even though this isn't in capsule data */
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Request using in capsule buffer for non-capsule data\n");
req->data = rdma_req->buf;
}
if (req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
return SPDK_NVMF_REQUEST_PREP_PENDING_DATA;
} else {
return SPDK_NVMF_REQUEST_PREP_READY;
}
} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
uint64_t offset = sgl->address;
uint32_t max_len = g_rdma.in_capsule_data_size;
SPDK_TRACELOG(SPDK_TRACE_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
offset, sgl->unkeyed.length);
if (offset > max_len) {
SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
offset, max_len);
rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
return SPDK_NVMF_REQUEST_PREP_ERROR;
}
max_len -= (uint32_t)offset;
if (sgl->unkeyed.length > max_len) {
SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
sgl->unkeyed.length, max_len);
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return SPDK_NVMF_REQUEST_PREP_ERROR;
}
if (sgl->unkeyed.length == 0) {
req->xfer = SPDK_NVME_DATA_NONE;
return SPDK_NVMF_REQUEST_PREP_READY;
}
req->data = rdma_req->buf + offset;
req->length = sgl->unkeyed.length;
return SPDK_NVMF_REQUEST_PREP_READY;
}
SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n",
sgl->generic.type, sgl->generic.subtype);
rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
return SPDK_NVMF_REQUEST_PREP_ERROR;
}
static int spdk_nvmf_rdma_poll(struct spdk_nvmf_conn *conn);
static void
spdk_nvmf_rdma_acceptor_poll(void)
{
struct rdma_cm_event *event;
int rc;
struct spdk_nvmf_rdma_conn *rdma_conn, *tmp;
if (g_rdma.acceptor_event_channel == NULL) {
return;
}
/* Process pending connections for incoming capsules. The only capsule
* this should ever find is a CONNECT request. */
TAILQ_FOREACH_SAFE(rdma_conn, &g_pending_conns, link, tmp) {
rc = spdk_nvmf_rdma_poll(&rdma_conn->conn);
if (rc < 0) {
TAILQ_REMOVE(&g_pending_conns, rdma_conn, link);
spdk_nvmf_rdma_conn_destroy(rdma_conn);
} else if (rc > 0) {
/* At least one request was processed which is assumed to be
* a CONNECT. Remove this connection from our list. */
TAILQ_REMOVE(&g_pending_conns, rdma_conn, link);
}
}
while (1) {
rc = rdma_get_cm_event(g_rdma.acceptor_event_channel, &event);
if (rc == 0) {
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
switch (event->event) {
case RDMA_CM_EVENT_CONNECT_REQUEST:
rc = nvmf_rdma_connect(event);
if (rc < 0) {
SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
break;
}
break;
case RDMA_CM_EVENT_ESTABLISHED:
break;
case RDMA_CM_EVENT_ADDR_CHANGE:
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_DEVICE_REMOVAL:
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
rc = nvmf_rdma_disconnect(event);
if (rc < 0) {
SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
break;
}
continue;
default:
SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
break;
}
rdma_ack_cm_event(event);
} else {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
SPDK_ERRLOG("Acceptor Event Error: %s\n", strerror(errno));
}
break;
}
}
}
static int
spdk_nvmf_rdma_acceptor_init(void)
{
struct sockaddr_in addr;
int rc;
struct spdk_nvmf_rdma_listen_addr *listen_addr, *tmp;
if (g_rdma.num_devices_found == 0) {
return 0;
}
if (g_rdma.acceptor_event_channel == NULL) {
/* create an event channel with rdmacm to receive
connection oriented requests and notifications */
g_rdma.acceptor_event_channel = rdma_create_event_channel();
if (g_rdma.acceptor_event_channel == NULL) {
SPDK_ERRLOG("rdma_create_event_channel() failed\n");
return -1;
}
rc = fcntl(g_rdma.acceptor_event_channel->fd, F_SETFL, O_NONBLOCK);
if (rc < 0) {
SPDK_ERRLOG("fcntl to set fd to non-blocking failed\n");
goto create_id_error;
}
}
pthread_mutex_lock(&g_rdma.lock);
TAILQ_FOREACH_SAFE(listen_addr, &g_rdma.listen_addrs, link, tmp) {
if (listen_addr->id) {
continue;
}
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = inet_addr(listen_addr->traddr);
addr.sin_port = htons((uint16_t)strtoul(listen_addr->trsvcid, NULL, 10));
rc = rdma_create_id(g_rdma.acceptor_event_channel, &listen_addr->id, NULL,
RDMA_PS_TCP);
if (rc < 0) {
SPDK_ERRLOG("rdma_create_id() failed\n");
goto listen_error;
}
rc = rdma_bind_addr(listen_addr->id, (struct sockaddr *)&addr);
if (rc < 0) {
SPDK_ERRLOG("rdma_bind_addr() failed\n");
goto listen_error;
}
rc = rdma_listen(listen_addr->id, 10); /* 10 = backlog */
if (rc < 0) {
SPDK_ERRLOG("rdma_listen() failed\n");
goto listen_error;
}
SPDK_NOTICELOG("*** NVMf Target Listening on %s port %d ***\n",
listen_addr->traddr, ntohs(rdma_get_src_port(listen_addr->id)));
}
pthread_mutex_unlock(&g_rdma.lock);
return 0;
listen_error:
TAILQ_FOREACH_SAFE(listen_addr, &g_rdma.listen_addrs, link, tmp) {
if (listen_addr->id) {
rdma_destroy_id(listen_addr->id);
}
}
pthread_mutex_unlock(&g_rdma.lock);
create_id_error:
rdma_destroy_event_channel(g_rdma.acceptor_event_channel);
return -1;
}
static void
spdk_nvmf_rdma_acceptor_fini(void)
{
struct spdk_nvmf_rdma_listen_addr *listen_addr, *tmp;
pthread_mutex_lock(&g_rdma.lock);
TAILQ_FOREACH_SAFE(listen_addr, &g_rdma.listen_addrs, link, tmp) {
TAILQ_REMOVE(&g_rdma.listen_addrs, listen_addr, link);
free(listen_addr);
}
pthread_mutex_unlock(&g_rdma.lock);
}
static int
spdk_nvmf_rdma_session_init(struct nvmf_session *session, struct spdk_nvmf_conn *conn)
{
struct spdk_nvmf_rdma_session *rdma_sess;
struct spdk_nvmf_rdma_conn *rdma_conn = get_rdma_conn(conn);
int i;
struct spdk_nvmf_rdma_buf *buf;
rdma_sess = calloc(1, sizeof(*rdma_sess));
if (!rdma_sess) {
return -1;
}
/* TODO: Make the number of elements in this pool configurable. For now, one full queue
* worth seems reasonable.
*/
rdma_sess->buf = rte_calloc("large_buf_pool", g_rdma.max_queue_depth, g_rdma.max_io_size,
0x20000);
if (!rdma_sess->buf) {
SPDK_ERRLOG("Large buffer pool allocation failed (%d x %d)\n",
g_rdma.max_queue_depth, g_rdma.max_io_size);
free(rdma_sess);
return -1;
}
rdma_sess->buf_mr = rdma_reg_msgs(rdma_conn->cm_id, rdma_sess->buf,
g_rdma.max_queue_depth * g_rdma.max_io_size);
if (!rdma_sess->buf_mr) {
SPDK_ERRLOG("Large buffer pool registration failed (%d x %d)\n",
g_rdma.max_queue_depth, g_rdma.max_io_size);
rte_free(rdma_sess->buf);
free(rdma_sess);
return -1;
}
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Session Shared Data Pool: %p Length: %x LKey: %x\n",
rdma_sess->buf, g_rdma.max_queue_depth * g_rdma.max_io_size, rdma_sess->buf_mr->lkey);
SLIST_INIT(&rdma_sess->data_buf_pool);
for (i = 0; i < g_rdma.max_queue_depth; i++) {
buf = (struct spdk_nvmf_rdma_buf *)(rdma_sess->buf + (i * g_rdma.max_io_size));
SLIST_INSERT_HEAD(&rdma_sess->data_buf_pool, buf, link);
}
session->transport = conn->transport;
session->trctx = rdma_sess;
return 0;
}
static void
spdk_nvmf_rdma_session_fini(struct nvmf_session *session)
{
struct spdk_nvmf_rdma_session *rdma_sess = session->trctx;
if (!rdma_sess) {
return;
}
rdma_dereg_mr(rdma_sess->buf_mr);
rte_free(rdma_sess->buf);
free(rdma_sess);
session->trctx = NULL;
}
/*
Initialize with RDMA transport. Query OFED for device list.
*/
static int
spdk_nvmf_rdma_init(uint16_t max_queue_depth, uint32_t max_io_size,
uint32_t in_capsule_data_size)
{
struct ibv_device **dev_list;
struct ibv_context *ibdev_ctx = NULL;
struct ibv_device_attr ibdev_attr;
int num_of_rdma_devices;
int num_devices_found = 0;
int i, ret;
SPDK_NOTICELOG("*** RDMA Transport Init ***\n");
dev_list = ibv_get_device_list(&num_of_rdma_devices);
if (!dev_list) {
SPDK_NOTICELOG("No RDMA verbs devices found\n");
return 0;
}
SPDK_TRACELOG(SPDK_TRACE_RDMA, "%d RDMA verbs device(s) discovered\n", num_of_rdma_devices);
/* Look through the list of devices for one we support */
for (i = 0; i < num_of_rdma_devices; i++) {
SPDK_TRACELOG(SPDK_TRACE_RDMA, " RDMA Device %d:\n", i);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Node type: %d\n", (int)dev_list[i]->node_type);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Transport type: %d\n", (int)dev_list[i]->transport_type);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Name: %s\n", dev_list[i]->name);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Device Name: %s\n", dev_list[i]->dev_name);
ibdev_ctx = ibv_open_device(dev_list[i]);
if (!ibdev_ctx) {
SPDK_ERRLOG(" No rdma context returned for device %d\n", i);
continue;
}
ret = ibv_query_device(ibdev_ctx, &ibdev_attr);
if (ret) {
SPDK_ERRLOG(" Failed on query for device %d\n", i);
ibv_close_device(ibdev_ctx);
continue;
}
/* display device specific attributes */
SPDK_TRACELOG(SPDK_TRACE_RDMA, " RDMA Device Attributes:\n");
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max MR Size: 0x%llx\n", (long long int)ibdev_attr.max_mr_size);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Page Size Cap: 0x%llx\n",
(long long int)ibdev_attr.page_size_cap);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max QPs: 0x%x\n", (int)ibdev_attr.max_qp);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max QP WRs: 0x%x\n", (int)ibdev_attr.max_qp_wr);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max SGE: 0x%x\n", (int)ibdev_attr.max_sge);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max CQs: 0x%x\n", (int)ibdev_attr.max_cq);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max CQE per CQ: 0x%x\n", (int)ibdev_attr.max_cqe);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max MR: 0x%x\n", (int)ibdev_attr.max_mr);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max PD: 0x%x\n", (int)ibdev_attr.max_pd);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max QP RD Atom: 0x%x\n", (int)ibdev_attr.max_qp_rd_atom);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max QP Init RD Atom: 0x%x\n",
(int)ibdev_attr.max_qp_init_rd_atom);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max Res RD Atom: 0x%x\n", (int)ibdev_attr.max_res_rd_atom);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max EE: 0x%x\n", (int)ibdev_attr.max_ee);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max SRQ: 0x%x\n", (int)ibdev_attr.max_srq);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max SRQ WR: 0x%x\n", (int)ibdev_attr.max_srq_wr);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max SRQ SGE: 0x%x\n", (int)ibdev_attr.max_srq_sge);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Max PKeys: 0x%x\n", (int)ibdev_attr.max_pkeys);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " Phys Port Cnt: %d\n", (int)ibdev_attr.phys_port_cnt);
num_devices_found++;
}
ibv_free_device_list(dev_list);
SPDK_TRACELOG(SPDK_TRACE_RDMA, " %d Fabric Intf(s) active\n", num_devices_found);
g_rdma.max_queue_depth = max_queue_depth;
g_rdma.max_io_size = max_io_size;
g_rdma.in_capsule_data_size = in_capsule_data_size;
g_rdma.num_devices_found = num_devices_found;
return num_devices_found;
}
static int
spdk_nvmf_rdma_fini(void)
{
/* Nothing to do */
return 0;
}
static void
spdk_nvmf_rdma_close_conn(struct spdk_nvmf_conn *conn)
{
struct spdk_nvmf_rdma_conn *rdma_conn = get_rdma_conn(conn);
return spdk_nvmf_rdma_conn_destroy(rdma_conn);
}
static int
spdk_nvmf_rdma_handle_pending_rdma_rw(struct spdk_nvmf_conn *conn)
{
struct spdk_nvmf_rdma_conn *rdma_conn = get_rdma_conn(conn);
struct spdk_nvmf_rdma_session *rdma_sess;
struct spdk_nvmf_rdma_request *rdma_req, *tmp;
int rc;
int count = 0;
/* First, try to assign free data buffers to requests that need one */
if (conn->sess) {
rdma_sess = conn->sess->trctx;
TAILQ_FOREACH_SAFE(rdma_req, &rdma_conn->pending_data_buf_queue, link, tmp) {
assert(rdma_req->req.data == NULL);
rdma_req->req.data = SLIST_FIRST(&rdma_sess->data_buf_pool);
if (!rdma_req->req.data) {
break;
}
SLIST_REMOVE_HEAD(&rdma_sess->data_buf_pool, link);
TAILQ_REMOVE(&rdma_conn->pending_data_buf_queue, rdma_req, link);
if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
TAILQ_INSERT_TAIL(&rdma_conn->pending_rdma_rw_queue, rdma_req, link);
} else {
rc = spdk_nvmf_request_exec(&rdma_req->req);
if (rc < 0) {
return -1;
}
count++;
}
}
}
/* Try to initiate RDMA Reads or Writes on requests that have data buffers */
while (rdma_conn->cur_rdma_rw_depth < rdma_conn->max_rw_depth) {
if (TAILQ_EMPTY(&rdma_conn->pending_rdma_rw_queue)) {
break;
}
rdma_req = TAILQ_FIRST(&rdma_conn->pending_rdma_rw_queue);
TAILQ_REMOVE(&rdma_conn->pending_rdma_rw_queue, rdma_req, link);
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Submitting previously queued for RDMA R/W request %p\n", rdma_req);
rc = spdk_nvmf_rdma_request_transfer_data(&rdma_req->req);
if (rc) {
return -1;
}
}
return count;
}
/* Returns the number of times that spdk_nvmf_request_exec was called,
* or -1 on error.
*/
static int
spdk_nvmf_rdma_poll(struct spdk_nvmf_conn *conn)
{
struct ibv_wc wc;
struct spdk_nvmf_rdma_conn *rdma_conn = get_rdma_conn(conn);
struct spdk_nvmf_rdma_request *rdma_req;
struct spdk_nvmf_request *req;
int rc;
int count = 0;
/* Poll for completing operations. */
while (count < 128) {
rc = ibv_poll_cq(rdma_conn->cq, 1, &wc);
if (rc == 0) {
break;
} else if (rc < 0) {
SPDK_ERRLOG("Error polling Send CQ! (%d): %s\n",
errno, strerror(errno));
return -1;
}
if (wc.status) {
SPDK_ERRLOG("CQ error on Connection %p, Request 0x%lu (%d): %s\n",
conn, wc.wr_id, wc.status, ibv_wc_status_str(wc.status));
return -1;
}
rdma_req = (struct spdk_nvmf_rdma_request *)wc.wr_id;
if (rdma_req == NULL) {
SPDK_ERRLOG("NULL wr_id in RDMA work completion\n");
return -1;
}
req = &rdma_req->req;
switch (wc.opcode) {
case IBV_WC_SEND:
assert(rdma_conn->cur_queue_depth > 0);
SPDK_TRACELOG(SPDK_TRACE_RDMA,
"RDMA SEND Complete. Request: %p Connection: %p Outstanding I/O: %d\n",
req, conn, rdma_conn->cur_queue_depth - 1);
rc = spdk_nvmf_rdma_request_ack_completion(req);
if (rc) {
return -1;
}
break;
case IBV_WC_RDMA_WRITE:
SPDK_TRACELOG(SPDK_TRACE_RDMA, "RDMA WRITE Complete. Request: %p Connection: %p\n",
req, conn);
spdk_trace_record(TRACE_RDMA_WRITE_COMPLETE, 0, 0, (uint64_t)req, 0);
rc = spdk_nvmf_rdma_request_send_completion(req);
if (rc) {
return -1;
}
/* Since an RDMA R/W operation completed, try to submit from the pending list. */
rdma_conn->cur_rdma_rw_depth--;
rc = spdk_nvmf_rdma_handle_pending_rdma_rw(conn);
if (rc < 0) {
return -1;
}
count += rc;
break;
case IBV_WC_RDMA_READ:
SPDK_TRACELOG(SPDK_TRACE_RDMA, "RDMA READ Complete. Request: %p Connection: %p\n",
req, conn);
spdk_trace_record(TRACE_RDMA_READ_COMPLETE, 0, 0, (uint64_t)req, 0);
rc = spdk_nvmf_request_exec(req);
if (rc) {
return -1;
}
count++;
/* Since an RDMA R/W operation completed, try to submit from the pending list. */
rdma_conn->cur_rdma_rw_depth--;
rc = spdk_nvmf_rdma_handle_pending_rdma_rw(conn);
if (rc < 0) {
return -1;
}
count += rc;
break;
case IBV_WC_RECV:
if (wc.byte_len < sizeof(struct spdk_nvmf_capsule_cmd)) {
SPDK_ERRLOG("recv length %u less than capsule header\n", wc.byte_len);
return -1;
}
rdma_conn->cur_queue_depth++;
SPDK_TRACELOG(SPDK_TRACE_RDMA,
"RDMA RECV Complete. Request: %p Connection: %p Outstanding I/O: %d\n",
req, conn, rdma_conn->cur_queue_depth);
spdk_trace_record(TRACE_NVMF_IO_START, 0, 0, (uint64_t)req, 0);
memset(req->rsp, 0, sizeof(*req->rsp));
rc = spdk_nvmf_request_prep_data(req);
switch (rc) {
case SPDK_NVMF_REQUEST_PREP_READY:
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Request %p is ready for execution\n", req);
/* Data is immediately available */
rc = spdk_nvmf_request_exec(req);
if (rc < 0) {
return -1;
}
count++;
break;
case SPDK_NVMF_REQUEST_PREP_PENDING_BUFFER:
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Request %p needs data buffer\n", req);
TAILQ_INSERT_TAIL(&rdma_conn->pending_data_buf_queue, rdma_req, link);
break;
case SPDK_NVMF_REQUEST_PREP_PENDING_DATA:
SPDK_TRACELOG(SPDK_TRACE_RDMA, "Request %p needs data transfer\n", req);
rc = spdk_nvmf_rdma_request_transfer_data(req);
if (rc < 0) {
return -1;
}
break;
case SPDK_NVMF_REQUEST_PREP_ERROR:
return spdk_nvmf_rdma_request_complete(req);
}
break;
default:
SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc.opcode);
return -1;
}
}
return count;
}
static void
spdk_nvmf_rdma_discover(struct spdk_nvmf_listen_addr *listen_addr,
struct spdk_nvmf_discovery_log_page_entry *entry)
{
entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
entry->adrfam = SPDK_NVMF_ADRFAM_IPV4;
entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_SPECIFIED;
spdk_strcpy_pad(entry->trsvcid, listen_addr->trsvcid, sizeof(entry->trsvcid), ' ');
spdk_strcpy_pad(entry->traddr, listen_addr->traddr, sizeof(entry->traddr), ' ');
entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
}
static int
spdk_nvmf_rdma_listen(struct spdk_nvmf_listen_addr *listen_addr)
{
struct spdk_nvmf_rdma_listen_addr *addr, *tmp;
pthread_mutex_lock(&g_rdma.lock);
TAILQ_FOREACH_SAFE(addr, &g_rdma.listen_addrs, link, tmp) {
if ((!strcasecmp(addr->traddr, listen_addr->traddr)) &&
(!strcasecmp(addr->trsvcid, listen_addr->trsvcid))) {
pthread_mutex_unlock(&g_rdma.lock);
return 0;
}
}
addr = calloc(1, sizeof(*addr));
if (!addr) {
pthread_mutex_unlock(&g_rdma.lock);
return -1;
}
addr->traddr = listen_addr->traddr;
addr->trsvcid = listen_addr->trsvcid;
TAILQ_INSERT_TAIL(&g_rdma.listen_addrs, addr, link);
pthread_mutex_unlock(&g_rdma.lock);
return 0;
}
const struct spdk_nvmf_transport spdk_nvmf_transport_rdma = {
.name = "rdma",
.transport_init = spdk_nvmf_rdma_init,
.transport_fini = spdk_nvmf_rdma_fini,
.acceptor_init = spdk_nvmf_rdma_acceptor_init,
.acceptor_poll = spdk_nvmf_rdma_acceptor_poll,
.acceptor_fini = spdk_nvmf_rdma_acceptor_fini,
.listen_addr_add = spdk_nvmf_rdma_listen,
.listen_addr_discover = spdk_nvmf_rdma_discover,
.session_init = spdk_nvmf_rdma_session_init,
.session_fini = spdk_nvmf_rdma_session_fini,
.req_complete = spdk_nvmf_rdma_request_complete,
.req_release = spdk_nvmf_rdma_request_release,
.conn_fini = spdk_nvmf_rdma_close_conn,
.conn_poll = spdk_nvmf_rdma_poll,
};
SPDK_LOG_REGISTER_TRACE_FLAG("rdma", SPDK_TRACE_RDMA)