numam-spdk/lib/nvme/nvme_internal.h
Changpeng Liu 4f7fa18d69 nvme: export internal security send/receive APIs as public APIs
There are synchronous security send/receive APIs defined in nvme.h,
however, we still need the asynchronous APIs so that we can make the
OPAL library can be used in asynchronous way. As the asynchronous APIs
are already defined in nvme_ctrlr_cmd.c, so just export them to public
APIs.

Change-Id: I5646f342a4bf70faad37daa956476f05a1327bcc
Signed-off-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/675
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
2020-02-26 09:22:15 +00:00

1170 lines
34 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __NVME_INTERNAL_H__
#define __NVME_INTERNAL_H__
#include "spdk/config.h"
#include "spdk/likely.h"
#include "spdk/stdinc.h"
#include "spdk/nvme.h"
#if defined(__i386__) || defined(__x86_64__)
#include <x86intrin.h>
#endif
#include "spdk/queue.h"
#include "spdk/barrier.h"
#include "spdk/bit_array.h"
#include "spdk/mmio.h"
#include "spdk/pci_ids.h"
#include "spdk/util.h"
#include "spdk/nvme_intel.h"
#include "spdk/nvmf_spec.h"
#include "spdk/uuid.h"
#include "spdk_internal/assert.h"
#include "spdk_internal/log.h"
#include "spdk_internal/memory.h"
extern pid_t g_spdk_nvme_pid;
/*
* Some Intel devices support vendor-unique read latency log page even
* though the log page directory says otherwise.
*/
#define NVME_INTEL_QUIRK_READ_LATENCY 0x1
/*
* Some Intel devices support vendor-unique write latency log page even
* though the log page directory says otherwise.
*/
#define NVME_INTEL_QUIRK_WRITE_LATENCY 0x2
/*
* The controller needs a delay before starts checking the device
* readiness, which is done by reading the NVME_CSTS_RDY bit.
*/
#define NVME_QUIRK_DELAY_BEFORE_CHK_RDY 0x4
/*
* The controller performs best when I/O is split on particular
* LBA boundaries.
*/
#define NVME_INTEL_QUIRK_STRIPING 0x8
/*
* The controller needs a delay after allocating an I/O queue pair
* before it is ready to accept I/O commands.
*/
#define NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC 0x10
/*
* Earlier NVMe devices do not indicate whether unmapped blocks
* will read all zeroes or not. This define indicates that the
* device does in fact read all zeroes after an unmap event
*/
#define NVME_QUIRK_READ_ZERO_AFTER_DEALLOCATE 0x20
/*
* The controller doesn't handle Identify value others than 0 or 1 correctly.
*/
#define NVME_QUIRK_IDENTIFY_CNS 0x40
/*
* The controller supports Open Channel command set if matching additional
* condition, like the first byte (value 0x1) in the vendor specific
* bits of the namespace identify structure is set.
*/
#define NVME_QUIRK_OCSSD 0x80
/*
* The controller has an Intel vendor ID but does not support Intel vendor-specific
* log pages. This is primarily for QEMU emulated SSDs which report an Intel vendor
* ID but do not support these log pages.
*/
#define NVME_INTEL_QUIRK_NO_LOG_PAGES 0x100
/*
* The controller does not set SHST_COMPLETE in a reasonable amount of time. This
* is primarily seen in virtual VMWare NVMe SSDs. This quirk merely adds an additional
* error message that on VMWare NVMe SSDs, the shutdown timeout may be expected.
*/
#define NVME_QUIRK_SHST_COMPLETE 0x200
/*
* The controller requires an extra delay before starting the initialization process
* during attach.
*/
#define NVME_QUIRK_DELAY_BEFORE_INIT 0x400
/*
* Some SSDs exhibit poor performance with the default SPDK NVMe IO queue size.
* This quirk will increase the default to 1024 which matches other operating
* systems, at the cost of some extra memory usage. Users can still override
* the increased default by changing the spdk_nvme_io_qpair_opts when allocating
* a new queue pair.
*/
#define NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE 0x800
#define NVME_MAX_ASYNC_EVENTS (8)
#define NVME_MAX_ADMIN_TIMEOUT_IN_SECS (30)
/* Maximum log page size to fetch for AERs. */
#define NVME_MAX_AER_LOG_SIZE (4096)
/*
* NVME_MAX_IO_QUEUES in nvme_spec.h defines the 64K spec-limit, but this
* define specifies the maximum number of queues this driver will actually
* try to configure, if available.
*/
#define DEFAULT_MAX_IO_QUEUES (1024)
#define DEFAULT_IO_QUEUE_SIZE (256)
#define DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK (1024) /* Matches Linux kernel driver */
#define DEFAULT_ADMIN_QUEUE_REQUESTS (32)
#define DEFAULT_IO_QUEUE_REQUESTS (512)
#define SPDK_NVME_DEFAULT_RETRY_COUNT (4)
#define MIN_KEEP_ALIVE_TIMEOUT_IN_MS (10000)
/* We want to fit submission and completion rings each in a single 2MB
* hugepage to ensure physical address contiguity.
*/
#define MAX_IO_QUEUE_ENTRIES (VALUE_2MB / spdk_max( \
sizeof(struct spdk_nvme_cmd), \
sizeof(struct spdk_nvme_cpl)))
enum nvme_payload_type {
NVME_PAYLOAD_TYPE_INVALID = 0,
/** nvme_request::u.payload.contig_buffer is valid for this request */
NVME_PAYLOAD_TYPE_CONTIG,
/** nvme_request::u.sgl is valid for this request */
NVME_PAYLOAD_TYPE_SGL,
};
/**
* Descriptor for a request data payload.
*/
struct nvme_payload {
/**
* Functions for retrieving physical addresses for scattered payloads.
*/
spdk_nvme_req_reset_sgl_cb reset_sgl_fn;
spdk_nvme_req_next_sge_cb next_sge_fn;
/**
* If reset_sgl_fn == NULL, this is a contig payload, and contig_or_cb_arg contains the
* virtual memory address of a single virtually contiguous buffer.
*
* If reset_sgl_fn != NULL, this is a SGL payload, and contig_or_cb_arg contains the
* cb_arg that will be passed to the SGL callback functions.
*/
void *contig_or_cb_arg;
/** Virtual memory address of a single virtually contiguous metadata buffer */
void *md;
};
#define NVME_PAYLOAD_CONTIG(contig_, md_) \
(struct nvme_payload) { \
.reset_sgl_fn = NULL, \
.next_sge_fn = NULL, \
.contig_or_cb_arg = (contig_), \
.md = (md_), \
}
#define NVME_PAYLOAD_SGL(reset_sgl_fn_, next_sge_fn_, cb_arg_, md_) \
(struct nvme_payload) { \
.reset_sgl_fn = (reset_sgl_fn_), \
.next_sge_fn = (next_sge_fn_), \
.contig_or_cb_arg = (cb_arg_), \
.md = (md_), \
}
static inline enum nvme_payload_type
nvme_payload_type(const struct nvme_payload *payload) {
return payload->reset_sgl_fn ? NVME_PAYLOAD_TYPE_SGL : NVME_PAYLOAD_TYPE_CONTIG;
}
struct nvme_error_cmd {
bool do_not_submit;
uint64_t timeout_tsc;
uint32_t err_count;
uint8_t opc;
struct spdk_nvme_status status;
TAILQ_ENTRY(nvme_error_cmd) link;
};
struct nvme_request {
struct spdk_nvme_cmd cmd;
uint8_t retries;
uint8_t timed_out : 1;
/**
* True if the request is in the queued_req list.
*/
uint8_t queued : 1;
uint8_t reserved : 6;
/**
* Number of children requests still outstanding for this
* request which was split into multiple child requests.
*/
uint16_t num_children;
/**
* Offset in bytes from the beginning of payload for this request.
* This is used for I/O commands that are split into multiple requests.
*/
uint32_t payload_offset;
uint32_t md_offset;
uint32_t payload_size;
/**
* Timeout ticks for error injection requests, can be extended in future
* to support per-request timeout feature.
*/
uint64_t timeout_tsc;
/**
* Data payload for this request's command.
*/
struct nvme_payload payload;
spdk_nvme_cmd_cb cb_fn;
void *cb_arg;
STAILQ_ENTRY(nvme_request) stailq;
struct spdk_nvme_qpair *qpair;
/*
* The value of spdk_get_ticks() when the request was submitted to the hardware.
* Only set if ctrlr->timeout_enabled is true.
*/
uint64_t submit_tick;
/**
* The active admin request can be moved to a per process pending
* list based on the saved pid to tell which process it belongs
* to. The cpl saves the original completion information which
* is used in the completion callback.
* NOTE: these below two fields are only used for admin request.
*/
pid_t pid;
struct spdk_nvme_cpl cpl;
/**
* The following members should not be reordered with members
* above. These members are only needed when splitting
* requests which is done rarely, and the driver is careful
* to not touch the following fields until a split operation is
* needed, to avoid touching an extra cacheline.
*/
/**
* Points to the outstanding child requests for a parent request.
* Only valid if a request was split into multiple children
* requests, and is not initialized for non-split requests.
*/
TAILQ_HEAD(, nvme_request) children;
/**
* Linked-list pointers for a child request in its parent's list.
*/
TAILQ_ENTRY(nvme_request) child_tailq;
/**
* Points to a parent request if part of a split request,
* NULL otherwise.
*/
struct nvme_request *parent;
/**
* Completion status for a parent request. Initialized to all 0's
* (SUCCESS) before child requests are submitted. If a child
* request completes with error, the error status is copied here,
* to ensure that the parent request is also completed with error
* status once all child requests are completed.
*/
struct spdk_nvme_cpl parent_status;
/**
* The user_cb_fn and user_cb_arg fields are used for holding the original
* callback data when using nvme_allocate_request_user_copy.
*/
spdk_nvme_cmd_cb user_cb_fn;
void *user_cb_arg;
void *user_buffer;
};
struct nvme_completion_poll_status {
struct spdk_nvme_cpl cpl;
bool done;
/* This flag indicates that the request has been timed out and the memory
must be freed in a completion callback */
bool timed_out;
};
struct nvme_async_event_request {
struct spdk_nvme_ctrlr *ctrlr;
struct nvme_request *req;
struct spdk_nvme_cpl cpl;
};
enum nvme_qpair_state {
NVME_QPAIR_DISABLED,
NVME_QPAIR_CONNECTING,
NVME_QPAIR_CONNECTED,
NVME_QPAIR_ENABLING,
NVME_QPAIR_ENABLED,
};
struct spdk_nvme_qpair {
struct spdk_nvme_ctrlr *ctrlr;
uint16_t id;
uint8_t qprio;
uint8_t state : 3;
/*
* Members for handling IO qpair deletion inside of a completion context.
* These are specifically defined as single bits, so that they do not
* push this data structure out to another cacheline.
*/
uint8_t in_completion_context : 1;
uint8_t delete_after_completion_context: 1;
/*
* Set when no deletion notification is needed. For example, the process
* which allocated this qpair exited unexpectedly.
*/
uint8_t no_deletion_notification_needed: 1;
uint8_t first_fused_submitted: 1;
enum spdk_nvme_transport_type trtype;
STAILQ_HEAD(, nvme_request) free_req;
STAILQ_HEAD(, nvme_request) queued_req;
/** Commands opcode in this list will return error */
TAILQ_HEAD(, nvme_error_cmd) err_cmd_head;
/** Requests in this list will return error */
STAILQ_HEAD(, nvme_request) err_req_head;
/* List entry for spdk_nvme_ctrlr::active_io_qpairs */
TAILQ_ENTRY(spdk_nvme_qpair) tailq;
/* List entry for spdk_nvme_ctrlr_process::allocated_io_qpairs */
TAILQ_ENTRY(spdk_nvme_qpair) per_process_tailq;
struct spdk_nvme_ctrlr_process *active_proc;
void *req_buf;
const struct spdk_nvme_transport *transport;
uint8_t transport_failure_reason: 2;
};
struct spdk_nvme_ns {
struct spdk_nvme_ctrlr *ctrlr;
uint32_t sector_size;
/*
* Size of data transferred as part of each block,
* including metadata if FLBAS indicates the metadata is transferred
* as part of the data buffer at the end of each LBA.
*/
uint32_t extended_lba_size;
uint32_t md_size;
uint32_t pi_type;
uint32_t sectors_per_max_io;
uint32_t sectors_per_stripe;
uint32_t id;
uint16_t flags;
/* Namespace Identification Descriptor List (CNS = 03h) */
uint8_t id_desc_list[4096];
};
/**
* State of struct spdk_nvme_ctrlr (in particular, during initialization).
*/
enum nvme_ctrlr_state {
/**
* Wait before initializing the controller.
*/
NVME_CTRLR_STATE_INIT_DELAY,
/**
* Controller has not been initialized yet.
*/
NVME_CTRLR_STATE_INIT,
/**
* Waiting for CSTS.RDY to transition from 0 to 1 so that CC.EN may be set to 0.
*/
NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
/**
* Waiting for CSTS.RDY to transition from 1 to 0 so that CC.EN may be set to 1.
*/
NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
/**
* Enable the controller by writing CC.EN to 1
*/
NVME_CTRLR_STATE_ENABLE,
/**
* Waiting for CSTS.RDY to transition from 0 to 1 after enabling the controller.
*/
NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
/**
* Reset the Admin queue of the controller.
*/
NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
/**
* Identify Controller command will be sent to then controller.
*/
NVME_CTRLR_STATE_IDENTIFY,
/**
* Waiting for Identify Controller command be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
/**
* Set Number of Queues of the controller.
*/
NVME_CTRLR_STATE_SET_NUM_QUEUES,
/**
* Waiting for Set Num of Queues command to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
/**
* Get Number of Queues of the controller.
*/
NVME_CTRLR_STATE_GET_NUM_QUEUES,
/**
* Waiting for Get Num of Queues command to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_GET_NUM_QUEUES,
/**
* Construct Namespace data structures of the controller.
*/
NVME_CTRLR_STATE_CONSTRUCT_NS,
/**
* Get active Namespace list of the controller.
*/
NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
/**
* Get Identify Namespace Data structure for each NS.
*/
NVME_CTRLR_STATE_IDENTIFY_NS,
/**
* Waiting for the Identify Namespace commands to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
/**
* Get Identify Namespace Identification Descriptors.
*/
NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
/**
* Waiting for the Identify Namespace Identification
* Descriptors to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
/**
* Configure AER of the controller.
*/
NVME_CTRLR_STATE_CONFIGURE_AER,
/**
* Waiting for the Configure AER to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
/**
* Set supported log pages of the controller.
*/
NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
/**
* Set supported features of the controller.
*/
NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
/**
* Set Doorbell Buffer Config of the controller.
*/
NVME_CTRLR_STATE_SET_DB_BUF_CFG,
/**
* Waiting for Doorbell Buffer Config to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
/**
* Set Keep Alive Timeout of the controller.
*/
NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT,
/**
* Waiting for Set Keep Alive Timeout to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
/**
* Set Host ID of the controller.
*/
NVME_CTRLR_STATE_SET_HOST_ID,
/**
* Waiting for Set Host ID to be completed.
*/
NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
/**
* Controller initialization has completed and the controller is ready.
*/
NVME_CTRLR_STATE_READY,
/**
* Controller inilialization has an error.
*/
NVME_CTRLR_STATE_ERROR
};
#define NVME_TIMEOUT_INFINITE 0
/*
* Used to track properties for all processes accessing the controller.
*/
struct spdk_nvme_ctrlr_process {
/** Whether it is the primary process */
bool is_primary;
/** Process ID */
pid_t pid;
/** Active admin requests to be completed */
STAILQ_HEAD(, nvme_request) active_reqs;
TAILQ_ENTRY(spdk_nvme_ctrlr_process) tailq;
/** Per process PCI device handle */
struct spdk_pci_device *devhandle;
/** Reference to track the number of attachment to this controller. */
int ref;
/** Allocated IO qpairs */
TAILQ_HEAD(, spdk_nvme_qpair) allocated_io_qpairs;
spdk_nvme_aer_cb aer_cb_fn;
void *aer_cb_arg;
/**
* A function pointer to timeout callback function
*/
spdk_nvme_timeout_cb timeout_cb_fn;
void *timeout_cb_arg;
uint64_t timeout_ticks;
};
/*
* One of these per allocated PCI device.
*/
struct spdk_nvme_ctrlr {
/* Hot data (accessed in I/O path) starts here. */
/** Array of namespaces indexed by nsid - 1 */
struct spdk_nvme_ns *ns;
uint32_t num_ns;
bool is_removed;
bool is_resetting;
bool is_failed;
bool is_shutdown;
bool timeout_enabled;
uint16_t max_sges;
uint16_t cntlid;
/** Controller support flags */
uint64_t flags;
/** NVMEoF in-capsule data size in bytes */
uint32_t ioccsz_bytes;
/** NVMEoF in-capsule data offset in 16 byte units */
uint16_t icdoff;
/* Cold data (not accessed in normal I/O path) is after this point. */
struct spdk_nvme_transport_id trid;
union spdk_nvme_cap_register cap;
union spdk_nvme_vs_register vs;
enum nvme_ctrlr_state state;
uint64_t state_timeout_tsc;
uint64_t next_keep_alive_tick;
uint64_t keep_alive_interval_ticks;
TAILQ_ENTRY(spdk_nvme_ctrlr) tailq;
/** All the log pages supported */
bool log_page_supported[256];
/** All the features supported */
bool feature_supported[256];
/** maximum i/o size in bytes */
uint32_t max_xfer_size;
/** minimum page size supported by this controller in bytes */
uint32_t min_page_size;
/** selected memory page size for this controller in bytes */
uint32_t page_size;
uint32_t num_aers;
struct nvme_async_event_request aer[NVME_MAX_ASYNC_EVENTS];
/** guards access to the controller itself, including admin queues */
pthread_mutex_t ctrlr_lock;
struct spdk_nvme_qpair *adminq;
/** shadow doorbell buffer */
uint32_t *shadow_doorbell;
/** eventidx buffer */
uint32_t *eventidx;
/**
* Identify Controller data.
*/
struct spdk_nvme_ctrlr_data cdata;
/**
* Keep track of active namespaces
*/
uint32_t *active_ns_list;
/**
* Array of Identify Namespace data.
*
* Stored separately from ns since nsdata should not normally be accessed during I/O.
*/
struct spdk_nvme_ns_data *nsdata;
struct spdk_bit_array *free_io_qids;
TAILQ_HEAD(, spdk_nvme_qpair) active_io_qpairs;
struct spdk_nvme_ctrlr_opts opts;
uint64_t quirks;
/* Extra sleep time during controller initialization */
uint64_t sleep_timeout_tsc;
/** Track all the processes manage this controller */
TAILQ_HEAD(, spdk_nvme_ctrlr_process) active_procs;
STAILQ_HEAD(, nvme_request) queued_aborts;
uint32_t outstanding_aborts;
/* CB to notify the user when the ctrlr is removed/failed. */
spdk_nvme_remove_cb remove_cb;
void *cb_ctx;
struct spdk_nvme_qpair *external_io_msgs_qpair;
pthread_mutex_t external_io_msgs_lock;
struct spdk_ring *external_io_msgs;
STAILQ_HEAD(, nvme_io_msg_producer) io_producers;
};
struct spdk_nvme_probe_ctx {
struct spdk_nvme_transport_id trid;
void *cb_ctx;
spdk_nvme_probe_cb probe_cb;
spdk_nvme_attach_cb attach_cb;
spdk_nvme_remove_cb remove_cb;
TAILQ_HEAD(, spdk_nvme_ctrlr) init_ctrlrs;
};
struct nvme_driver {
pthread_mutex_t lock;
/** Multi-process shared attached controller list */
TAILQ_HEAD(, spdk_nvme_ctrlr) shared_attached_ctrlrs;
bool initialized;
struct spdk_uuid default_extended_host_id;
};
extern struct nvme_driver *g_spdk_nvme_driver;
int nvme_driver_init(void);
#define nvme_delay usleep
static inline bool
nvme_qpair_is_admin_queue(struct spdk_nvme_qpair *qpair)
{
return qpair->id == 0;
}
static inline bool
nvme_qpair_is_io_queue(struct spdk_nvme_qpair *qpair)
{
return qpair->id != 0;
}
static inline int
nvme_robust_mutex_lock(pthread_mutex_t *mtx)
{
int rc = pthread_mutex_lock(mtx);
#ifndef __FreeBSD__
if (rc == EOWNERDEAD) {
rc = pthread_mutex_consistent(mtx);
}
#endif
return rc;
}
static inline int
nvme_robust_mutex_unlock(pthread_mutex_t *mtx)
{
return pthread_mutex_unlock(mtx);
}
/* Admin functions */
int nvme_ctrlr_cmd_identify(struct spdk_nvme_ctrlr *ctrlr,
uint8_t cns, uint16_t cntid, uint32_t nsid,
void *payload, size_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_set_num_queues(struct spdk_nvme_ctrlr *ctrlr,
uint32_t num_queues, spdk_nvme_cmd_cb cb_fn,
void *cb_arg);
int nvme_ctrlr_cmd_get_num_queues(struct spdk_nvme_ctrlr *ctrlr,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_set_async_event_config(struct spdk_nvme_ctrlr *ctrlr,
union spdk_nvme_feat_async_event_configuration config,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_set_host_id(struct spdk_nvme_ctrlr *ctrlr, void *host_id, uint32_t host_id_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr,
uint64_t prp1, uint64_t prp2,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, spdk_nvme_cmd_cb cb_fn,
void *cb_arg);
int nvme_ctrlr_cmd_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_format *format, spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_fw_commit(struct spdk_nvme_ctrlr *ctrlr,
const struct spdk_nvme_fw_commit *fw_commit,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_fw_image_download(struct spdk_nvme_ctrlr *ctrlr,
uint32_t size, uint32_t offset, void *payload,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
int nvme_ctrlr_cmd_sanitize(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
struct spdk_nvme_sanitize *sanitize, uint32_t cdw11,
spdk_nvme_cmd_cb cb_fn, void *cb_arg);
void nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl);
int spdk_nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status);
int spdk_nvme_wait_for_completion_robust_lock(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
pthread_mutex_t *robust_mutex);
int spdk_nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
uint64_t timeout_in_secs);
struct spdk_nvme_ctrlr_process *spdk_nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr,
pid_t pid);
struct spdk_nvme_ctrlr_process *spdk_nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle);
void nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr);
struct spdk_pci_device *nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_probe_ctx *probe_ctx, void *devhandle);
int nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove);
int nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ctrlr_connected(struct spdk_nvme_probe_ctx *probe_ctx,
struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
struct nvme_request *req);
int nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap);
int nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs);
int nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz);
void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cap_register *cap,
const union spdk_nvme_vs_register *vs);
void nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair);
int nvme_qpair_init(struct spdk_nvme_qpair *qpair, uint16_t id,
struct spdk_nvme_ctrlr *ctrlr,
enum spdk_nvme_qprio qprio,
uint32_t num_requests);
void nvme_qpair_deinit(struct spdk_nvme_qpair *qpair);
void nvme_qpair_complete_error_reqs(struct spdk_nvme_qpair *qpair);
int nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req);
int nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ns_set_identify_data(struct spdk_nvme_ns *ns);
int nvme_ns_construct(struct spdk_nvme_ns *ns, uint32_t id,
struct spdk_nvme_ctrlr *ctrlr);
void nvme_ns_destruct(struct spdk_nvme_ns *ns);
int nvme_ns_update(struct spdk_nvme_ns *ns);
int nvme_fabric_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value);
int nvme_fabric_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value);
int nvme_fabric_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value);
int nvme_fabric_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx, bool direct_connect);
int nvme_fabric_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value);
int nvme_fabric_ctrlr_discover(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_probe_ctx *probe_ctx);
int nvme_fabric_qpair_connect(struct spdk_nvme_qpair *qpair, uint32_t num_entries);
static inline struct nvme_request *
nvme_allocate_request(struct spdk_nvme_qpair *qpair,
const struct nvme_payload *payload, uint32_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
req = STAILQ_FIRST(&qpair->free_req);
if (req == NULL) {
return req;
}
STAILQ_REMOVE_HEAD(&qpair->free_req, stailq);
/*
* Only memset/zero fields that need it. All other fields
* will be initialized appropriately either later in this
* function, or before they are needed later in the
* submission patch. For example, the children
* TAILQ_ENTRY and following members are
* only used as part of I/O splitting so we avoid
* memsetting them until it is actually needed.
* They will be initialized in nvme_request_add_child()
* if the request is split.
*/
memset(req, 0, offsetof(struct nvme_request, payload_size));
req->cb_fn = cb_fn;
req->cb_arg = cb_arg;
req->payload = *payload;
req->payload_size = payload_size;
req->pid = g_spdk_nvme_pid;
req->submit_tick = 0;
return req;
}
static inline struct nvme_request *
nvme_allocate_request_contig(struct spdk_nvme_qpair *qpair,
void *buffer, uint32_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_payload payload;
payload = NVME_PAYLOAD_CONTIG(buffer, NULL);
return nvme_allocate_request(qpair, &payload, payload_size, cb_fn, cb_arg);
}
static inline struct nvme_request *
nvme_allocate_request_null(struct spdk_nvme_qpair *qpair, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
return nvme_allocate_request_contig(qpair, NULL, 0, cb_fn, cb_arg);
}
struct nvme_request *nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
void *buffer, uint32_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg, bool host_to_controller);
static inline void
nvme_complete_request(spdk_nvme_cmd_cb cb_fn, void *cb_arg, struct spdk_nvme_qpair *qpair,
struct nvme_request *req, struct spdk_nvme_cpl *cpl)
{
struct spdk_nvme_cpl err_cpl;
struct nvme_error_cmd *cmd;
/* error injection at completion path,
* only inject for successful completed commands
*/
if (spdk_unlikely(!TAILQ_EMPTY(&qpair->err_cmd_head) &&
!spdk_nvme_cpl_is_error(cpl))) {
TAILQ_FOREACH(cmd, &qpair->err_cmd_head, link) {
if (cmd->do_not_submit) {
continue;
}
if ((cmd->opc == req->cmd.opc) && cmd->err_count) {
err_cpl = *cpl;
err_cpl.status.sct = cmd->status.sct;
err_cpl.status.sc = cmd->status.sc;
cpl = &err_cpl;
cmd->err_count--;
break;
}
}
}
if (cb_fn) {
cb_fn(cb_arg, cpl);
}
}
static inline void
nvme_free_request(struct nvme_request *req)
{
assert(req != NULL);
assert(req->num_children == 0);
assert(req->qpair != NULL);
STAILQ_INSERT_HEAD(&req->qpair->free_req, req, stailq);
}
static inline void
nvme_qpair_set_state(struct spdk_nvme_qpair *qpair, enum nvme_qpair_state state)
{
qpair->state = state;
}
static inline enum nvme_qpair_state
nvme_qpair_get_state(struct spdk_nvme_qpair *qpair) {
return qpair->state;
}
static inline void
nvme_qpair_free_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
assert(req != NULL);
assert(req->num_children == 0);
STAILQ_INSERT_HEAD(&qpair->free_req, req, stailq);
}
static inline void
nvme_request_remove_child(struct nvme_request *parent, struct nvme_request *child)
{
assert(parent != NULL);
assert(child != NULL);
assert(child->parent == parent);
assert(parent->num_children != 0);
parent->num_children--;
TAILQ_REMOVE(&parent->children, child, child_tailq);
}
static inline void
nvme_cb_complete_child(void *child_arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_request *child = child_arg;
struct nvme_request *parent = child->parent;
nvme_request_remove_child(parent, child);
if (spdk_nvme_cpl_is_error(cpl)) {
memcpy(&parent->parent_status, cpl, sizeof(*cpl));
}
if (parent->num_children == 0) {
nvme_complete_request(parent->cb_fn, parent->cb_arg, parent->qpair,
parent, &parent->parent_status);
nvme_free_request(parent);
}
}
static inline void
nvme_request_add_child(struct nvme_request *parent, struct nvme_request *child)
{
assert(parent->num_children != UINT16_MAX);
if (parent->num_children == 0) {
/*
* Defer initialization of the children TAILQ since it falls
* on a separate cacheline. This ensures we do not touch this
* cacheline except on request splitting cases, which are
* relatively rare.
*/
TAILQ_INIT(&parent->children);
parent->parent = NULL;
memset(&parent->parent_status, 0, sizeof(struct spdk_nvme_cpl));
}
parent->num_children++;
TAILQ_INSERT_TAIL(&parent->children, child, child_tailq);
child->parent = parent;
child->cb_fn = nvme_cb_complete_child;
child->cb_arg = child;
}
static inline void
nvme_request_free_children(struct nvme_request *req)
{
struct nvme_request *child, *tmp;
if (req->num_children == 0) {
return;
}
/* free all child nvme_request */
TAILQ_FOREACH_SAFE(child, &req->children, child_tailq, tmp) {
nvme_request_remove_child(req, child);
nvme_request_free_children(child);
nvme_free_request(child);
}
}
int nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
struct spdk_nvme_ctrlr_process *active_proc, uint64_t now_tick);
uint64_t nvme_get_quirks(const struct spdk_pci_id *id);
int nvme_robust_mutex_init_shared(pthread_mutex_t *mtx);
int nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx);
bool nvme_completion_is_retry(const struct spdk_nvme_cpl *cpl);
struct spdk_nvme_ctrlr *spdk_nvme_get_ctrlr_by_trid_unsafe(
const struct spdk_nvme_transport_id *trid);
const struct spdk_nvme_transport *nvme_get_transport(const char *transport_name);
const struct spdk_nvme_transport *nvme_get_first_transport(void);
const struct spdk_nvme_transport *nvme_get_next_transport(const struct spdk_nvme_transport
*transport);
/* Transport specific functions */
struct spdk_nvme_ctrlr *nvme_transport_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle);
int nvme_transport_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
int nvme_transport_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx, bool direct_connect);
int nvme_transport_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr);
int nvme_transport_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value);
int nvme_transport_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value);
int nvme_transport_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value);
int nvme_transport_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value);
uint32_t nvme_transport_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr);
uint16_t nvme_transport_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr);
struct spdk_nvme_qpair *nvme_transport_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
uint16_t qid, const struct spdk_nvme_io_qpair_opts *opts);
void *nvme_transport_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size);
int nvme_transport_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size);
int nvme_transport_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair);
int nvme_transport_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair);
void nvme_transport_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *qpair);
void nvme_transport_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
int nvme_transport_qpair_reset(struct spdk_nvme_qpair *qpair);
int nvme_transport_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req);
int32_t nvme_transport_qpair_process_completions(struct spdk_nvme_qpair *qpair,
uint32_t max_completions);
void nvme_transport_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair);
/*
* Below ref related functions must be called with the global
* driver lock held for the multi-process condition.
* Within these functions, the per ctrlr ctrlr_lock is also
* acquired for the multi-thread condition.
*/
void nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr);
void nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr);
int nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr);
static inline bool
_is_page_aligned(uint64_t address, uint64_t page_size)
{
return (address & (page_size - 1)) == 0;
}
#endif /* __NVME_INTERNAL_H__ */