numam-spdk/lib/nvmf/request.c
Ben Walker 554543168f nvmf: Delay allocating rdma requests until CONNECT capsule.
The queue type and queue depth are not known until
the connect capsule is processed. Delay allocating more
than 1 recv wqe until then.

Change-Id: I0e68c24bc3d6f37043946de6c2cbcb3198cd5d1b
Signed-off-by: Ben Walker <benjamin.walker@intel.com>
2016-06-29 14:01:54 -07:00

672 lines
21 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <arpa/inet.h>
#include <rte_config.h>
#include <rte_debug.h>
#include "conn.h"
#include "rdma.h"
#include "request.h"
#include "session.h"
#include "subsystem_grp.h"
#include "spdk/log.h"
#include "spdk/nvme.h"
#include "spdk/nvmf_spec.h"
#include "spdk/trace.h"
int
spdk_nvmf_request_complete(struct spdk_nvmf_request *req)
{
struct spdk_nvme_cpl *response = &req->rsp->nvme_cpl;
response->sqid = 0;
response->status.p = 0;
response->sqhd = req->conn->sq_head;
response->cid = req->cmd->nvme_cmd.cid;
SPDK_TRACELOG(SPDK_TRACE_NVMF,
"cpl: cid=%u cdw0=0x%08x rsvd1=%u sqhd=%u status=0x%04x\n",
response->cid, response->cdw0, response->rsvd1, response->sqhd,
*(uint16_t *)&response->status);
if (spdk_nvmf_rdma_request_complete(req->conn, req)) {
SPDK_ERRLOG("Transport request completion error!\n");
return -1;
}
return 0;
}
int
spdk_nvmf_request_release(struct spdk_nvmf_request *req)
{
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
struct spdk_nvmf_capsule_cmd *capsule;
if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
capsule = &req->cmd->nvmf_cmd;
if (capsule->fctype == SPDK_NVMF_FABRIC_COMMAND_CONNECT) {
/* Special case: connect is always the first capsule and new
* work queue entries are allocated in response to this command.
* Instead of re-posting this entry, just free it.
*/
spdk_nvmf_rdma_free_req(req);
return 0;
}
}
return spdk_nvmf_rdma_request_release(req->conn, req);
}
static bool
nvmf_process_admin_cmd(struct spdk_nvmf_request *req)
{
struct nvmf_session *session = req->conn->sess;
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
struct spdk_nvme_cpl *response = &req->rsp->nvme_cpl;
struct spdk_nvmf_subsystem *subsystem = session->subsys;
struct spdk_nvme_ctrlr *ctrlr = NULL;
uint32_t nsid = 0;
int rc = 0;
uint8_t feature;
/* pre-set response details for this command */
response->status.sc = SPDK_NVME_SC_SUCCESS;
response->cid = cmd->cid;
/* verify subsystem */
if (subsystem == NULL) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Subsystem Not Initialized!\n");
response->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
return true;
}
if (cmd->nsid == 0) {
/* may be valid for the requested command. but need
to at least map to a known valid controller.
Note: Issue when in multi-controller subsystem
mode, commands that do not provide ns_id can not
be mapped to valid HW ctrlr! This is where
definition of a virtual controller is required */
ctrlr = subsystem->ns_list_map[0].ctrlr;
nsid = 0;
} else {
/* verify namespace id */
if (cmd->nsid > MAX_PER_SUBSYSTEM_NAMESPACES) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Invalid NS_ID %u\n",
cmd->nsid);
response->status.sc = SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT;
return true;
}
ctrlr = subsystem->ns_list_map[cmd->nsid - 1].ctrlr;
nsid = subsystem->ns_list_map[cmd->nsid - 1].nvme_ns_id;
}
SPDK_TRACELOG(SPDK_TRACE_NVMF, "ctrlr %p nvme ns_id %u\n", ctrlr, nsid);
switch (cmd->opc) {
case SPDK_NVME_OPC_IDENTIFY:
if (req->data == NULL) {
SPDK_ERRLOG("identify command with no buffer\n");
response->status.sc = SPDK_NVME_SC_INVALID_FIELD;
return true;
}
if (cmd->cdw10 == 0) {
/* identify namespace */
struct spdk_nvme_ns *ns;
const struct spdk_nvme_ns_data *nsdata;
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Identify Namespace\n");
if (nsid == 0) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Invalid NS_ID = 0\n");
response->status.sc = SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT;
return true;
}
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
if (ns == NULL) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Unsuccessful query for Namespace reference\n");
response->status.sc = SPDK_NVME_SC_INVALID_FIELD;
return true;
}
nsdata = spdk_nvme_ns_get_data(ns);
memcpy(req->data, (char *)nsdata, sizeof(struct spdk_nvme_ns_data));
return true;
} else if (cmd->cdw10 == 1) {
/* identify controller */
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Identify Controller\n");
/* pull from virtual controller context */
memcpy(req->data, (char *)&session->vcdata, sizeof(struct spdk_nvme_ctrlr_data));
return true;
} else {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Identify Namespace List\n");
response->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
return true;
}
break;
case SPDK_NVME_OPC_GET_FEATURES:
feature = cmd->cdw10 & 0xff; /* mask out the FID value */
switch (feature) {
case SPDK_NVME_FEAT_NUMBER_OF_QUEUES:
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Get Features - Number of Queues\n");
response->cdw0 = ((session->max_io_queues - 1) << 16) | (session->max_io_queues - 1);
return true;
case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Get Features - LBA Range Type\n");
cmd->nsid = nsid;
goto passthrough;
default:
goto passthrough;
}
break;
case SPDK_NVME_OPC_SET_FEATURES:
feature = cmd->cdw10 & 0xff; /* mask out the FID value */
switch (feature) {
case SPDK_NVME_FEAT_NUMBER_OF_QUEUES:
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Set Features - Number of Queues, cdw11 0x%x\n", cmd->cdw11);
/* verify that the contoller is ready to process commands */
if (session->active_queues != 0) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Queue pairs already active!\n");
response->status.sc = SPDK_NVME_SC_COMMAND_SEQUENCE_ERROR;
} else {
response->cdw0 = ((session->max_io_queues - 1) << 16) | (session->max_io_queues - 1);
}
return true;
default:
goto passthrough;
}
break;
case SPDK_NVME_OPC_ASYNC_EVENT_REQUEST:
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Async Event Request\n");
/*
Trap request here and save in the session context
until NVMe library indicates some event.
*/
if (session->aer_req == NULL) {
session->aer_req = req;
return false;
} else {
/* AER already recorded, send error response */
SPDK_TRACELOG(SPDK_TRACE_NVMF, "AER already active!\n");
response->status.sc = SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED;
return true;
}
break;
case SPDK_NVME_OPC_KEEP_ALIVE:
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Keep Alive\n");
/*
To handle keep alive just clear or reset the
session based keep alive duration counter.
When added, a separate timer based process
will monitor if the time since last recorded
keep alive has exceeded the max duration and
take appropriate action.
*/
//session->keep_alive_timestamp = ;
return true;
case SPDK_NVME_OPC_CREATE_IO_SQ:
case SPDK_NVME_OPC_CREATE_IO_CQ:
case SPDK_NVME_OPC_DELETE_IO_SQ:
case SPDK_NVME_OPC_DELETE_IO_CQ:
SPDK_ERRLOG("Admin opc 0x%02X not allowed in NVMf\n", cmd->opc);
response->status.sc = SPDK_NVME_SC_INVALID_OPCODE;
return true;
default:
passthrough:
SPDK_TRACELOG(SPDK_TRACE_NVMF, "admin_cmd passthrough: opc 0x%02x\n", cmd->opc);
cmd->nsid = nsid;
rc = spdk_nvme_ctrlr_cmd_admin_raw(ctrlr,
cmd,
req->data, req->length,
nvmf_complete_cmd,
req);
if (rc) {
SPDK_ERRLOG("Error submitting admin opc 0x%02x\n", cmd->opc);
response->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
return true;
}
return false;
}
}
static bool
nvmf_process_io_cmd(struct spdk_nvmf_request *req)
{
struct nvmf_session *session = req->conn->sess;
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
struct spdk_nvme_cpl *response;
struct spdk_nvmf_subsystem *subsystem = session->subsys;
struct spdk_nvmf_namespace *nvmf_ns;
struct spdk_nvme_ctrlr *ctrlr = NULL;
struct spdk_nvme_ns *ns = NULL;
struct spdk_nvme_qpair *qpair;
uint32_t nsid = 0;
struct nvme_read_cdw12 *cdw12;
uint64_t lba_address;
uint32_t lba_count;
uint32_t io_flags;
int rc = 0;
/* pre-set response details for this command */
response = &req->rsp->nvme_cpl;
response->status.sc = SPDK_NVME_SC_SUCCESS;
response->cid = cmd->cid;
/* verify subsystem */
if (subsystem == NULL) {
SPDK_ERRLOG("Subsystem Not Initialized!\n");
response->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
return true;
}
/* verify that the contoller is ready to process commands */
if (session->vcprop.csts.bits.rdy == 0) {
SPDK_ERRLOG("Subsystem Controller Not Ready!\n");
response->status.sc = SPDK_NVME_SC_NAMESPACE_NOT_READY;
return true;
}
/* verify namespace id */
if (cmd->nsid == 0 || cmd->nsid > MAX_PER_SUBSYSTEM_NAMESPACES) {
SPDK_ERRLOG("Invalid NS_ID %u\n", cmd->nsid);
response->status.sc = SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT;
return true;
}
nvmf_ns = &subsystem->ns_list_map[cmd->nsid - 1];
ctrlr = nvmf_ns->ctrlr;
nsid = nvmf_ns->nvme_ns_id;
ns = nvmf_ns->ns;
qpair = nvmf_ns->qpair;
switch (cmd->opc) {
case SPDK_NVME_OPC_READ:
case SPDK_NVME_OPC_WRITE:
cdw12 = (struct nvme_read_cdw12 *)&cmd->cdw12;
/* NVMe library read/write interface expects non-0based lba_count value */
lba_count = cdw12->nlb + 1;
lba_address = cmd->cdw11;
lba_address = (lba_address << 32) + cmd->cdw10;
io_flags = cmd->cdw12 & 0xFFFF0000U;
if (cmd->opc == SPDK_NVME_OPC_READ) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Read LBA 0x%" PRIx64 ", 0x%x blocks\n",
lba_address, lba_count);
spdk_trace_record(TRACE_NVMF_LIB_READ_START, 0, 0, (uint64_t)req, 0);
rc = spdk_nvme_ns_cmd_read(ns, qpair,
req->data, lba_address, lba_count,
nvmf_complete_cmd,
req, io_flags);
} else {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Write LBA 0x%" PRIx64 ", 0x%x blocks\n",
lba_address, lba_count);
spdk_trace_record(TRACE_NVMF_LIB_WRITE_START, 0, 0, (uint64_t)req, 0);
rc = spdk_nvme_ns_cmd_write(ns, qpair,
req->data, lba_address, lba_count,
nvmf_complete_cmd,
req, io_flags);
}
break;
default:
SPDK_TRACELOG(SPDK_TRACE_NVMF, "io_cmd passthrough: opc 0x%02x\n", cmd->opc);
cmd->nsid = nsid;
rc = spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair,
cmd,
req->data, req->length,
nvmf_complete_cmd,
req);
break;
}
if (rc) {
SPDK_ERRLOG("Failed to submit Opcode 0x%02x\n", cmd->opc);
response->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
return true;
}
return false;
}
static bool
nvmf_process_property_get(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_fabric_prop_get_rsp *response;
struct spdk_nvmf_fabric_prop_get_cmd *cmd;
cmd = &req->cmd->prop_get_cmd;
response = &req->rsp->prop_get_rsp;
nvmf_property_get(req->conn->sess, cmd, response);
return true;
}
static bool
nvmf_process_property_set(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_fabric_prop_set_rsp *response;
struct spdk_nvmf_fabric_prop_set_cmd *cmd;
bool shutdown = false;
cmd = &req->cmd->prop_set_cmd;
response = &req->rsp->prop_set_rsp;
nvmf_property_set(req->conn->sess, cmd, response, &shutdown);
/* TODO: This is not right. It should shut down the whole session.
if (shutdown == true) {
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "Call to set properties has indicated shutdown\n");
conn->state = CONN_STATE_FABRIC_DISCONNECT;
}
*/
return true;
}
static bool
nvmf_process_connect(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_fabric_connect_cmd *connect;
struct spdk_nvmf_fabric_connect_data *connect_data;
struct spdk_nvmf_fabric_connect_rsp *response;
struct spdk_nvmf_conn *conn = req->conn;
struct nvmf_session *session;
if (req->length < sizeof(struct spdk_nvmf_fabric_connect_data)) {
SPDK_ERRLOG("Connect command data length 0x%x too small\n", req->length);
req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INVALID_FIELD;
return true;
}
connect = &req->cmd->connect_cmd;
connect_data = (struct spdk_nvmf_fabric_connect_data *)req->data;
RTE_VERIFY(connect_data != NULL);
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Connect cmd: cid 0x%x recfmt 0x%x qid %u sqsize %u\n",
connect->cid, connect->recfmt, connect->qid, connect->sqsize);
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Connect data:\n");
SPDK_TRACELOG(SPDK_TRACE_NVMF, " cntlid: 0x%04x\n", connect_data->cntlid);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " hostid: %08x-%04x-%04x-%02x%02x-%04x%08x ***\n",
ntohl(*(uint32_t *)&connect_data->hostid[0]),
ntohs(*(uint16_t *)&connect_data->hostid[4]),
ntohs(*(uint16_t *)&connect_data->hostid[6]),
connect_data->hostid[8],
connect_data->hostid[9],
ntohs(*(uint16_t *)&connect_data->hostid[10]),
ntohl(*(uint32_t *)&connect_data->hostid[12]));
SPDK_TRACELOG(SPDK_TRACE_NVMF, " subnqn: \"%s\"\n", (char *)&connect_data->subnqn[0]);
SPDK_TRACELOG(SPDK_TRACE_NVMF, " hostnqn: \"%s\"\n", (char *)&connect_data->hostnqn[0]);
response = &req->rsp->connect_rsp;
session = nvmf_connect((void *)conn, connect, connect_data, response);
if (session != NULL) {
conn->sess = session;
conn->qid = connect->qid;
if (connect->qid > 0) {
conn->type = CONN_TYPE_IOQ; /* I/O Connection */
} else {
/* When session first created, set some attributes */
nvmf_init_conn_properites(conn, session, response);
}
}
/* Allocate RDMA reqs according to the queue depth and conn type*/
if (spdk_nvmf_rdma_alloc_reqs(conn)) {
SPDK_ERRLOG("Unable to allocate sufficient RDMA work requests\n");
req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
return true;
}
SPDK_TRACELOG(SPDK_TRACE_NVMF, "connect capsule response: cntlid = 0x%04x\n",
response->status_code_specific.success.cntlid);
return true;
}
static bool
nvmf_process_fabrics_command(struct spdk_nvmf_request *req)
{
struct spdk_nvmf_capsule_cmd *cap_hdr;
cap_hdr = &req->cmd->nvmf_cmd;
switch (cap_hdr->fctype) {
case SPDK_NVMF_FABRIC_COMMAND_PROPERTY_SET:
return nvmf_process_property_set(req);
case SPDK_NVMF_FABRIC_COMMAND_PROPERTY_GET:
return nvmf_process_property_get(req);
case SPDK_NVMF_FABRIC_COMMAND_CONNECT:
return nvmf_process_connect(req);
default:
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "recv capsule header type invalid [%x]!\n",
cap_hdr->fctype);
req->rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INVALID_OPCODE;
return true;
}
}
static void
nvmf_trace_command(union nvmf_h2c_msg *h2c_msg, enum conn_type conn_type)
{
struct spdk_nvmf_capsule_cmd *cap_hdr = &h2c_msg->nvmf_cmd;
struct spdk_nvme_cmd *cmd = &h2c_msg->nvme_cmd;
struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1;
uint8_t opc;
if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
opc = cap_hdr->fctype;
SPDK_TRACELOG(SPDK_TRACE_NVMF, "%s Fabrics cmd: fctype 0x%02x cid %u\n",
conn_type == CONN_TYPE_AQ ? "Admin" : "I/O",
cap_hdr->fctype, cap_hdr->cid);
} else {
opc = cmd->opc;
SPDK_TRACELOG(SPDK_TRACE_NVMF, "%s cmd: opc 0x%02x fuse %u cid %u nsid %u cdw10 0x%08x\n",
conn_type == CONN_TYPE_AQ ? "Admin" : "I/O",
cmd->opc, cmd->fuse, cmd->cid, cmd->nsid, cmd->cdw10);
if (cmd->mptr) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "mptr 0x%" PRIx64 "\n", cmd->mptr);
}
if (cmd->psdt != SPDK_NVME_PSDT_SGL_MPTR_CONTIG &&
cmd->psdt != SPDK_NVME_PSDT_SGL_MPTR_SGL) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "psdt %u\n", cmd->psdt);
}
}
if (spdk_nvme_opc_get_data_transfer(opc) != SPDK_NVME_DATA_NONE) {
if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK) {
SPDK_TRACELOG(SPDK_TRACE_NVMF,
"SGL: Keyed%s: addr 0x%" PRIx64 " key 0x%x len 0x%x\n",
sgl->generic.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY ? " (Inv)" : "",
sgl->address, sgl->keyed.key, sgl->keyed.length);
} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "SGL: Data block: %s 0x%" PRIx64 " len 0x%x\n",
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET ? "offs" : "addr",
sgl->address, sgl->unkeyed.length);
} else {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "SGL type 0x%x subtype 0x%x\n",
sgl->generic.type, sgl->generic.subtype);
}
}
}
int
spdk_nvmf_request_prep_data(struct spdk_nvmf_request *req,
void *in_cap_data, uint32_t in_cap_len,
void *bb, uint32_t bb_len)
{
struct spdk_nvmf_conn *conn = req->conn;
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
struct spdk_nvme_cpl *rsp = &req->rsp->nvme_cpl;
enum spdk_nvme_data_transfer xfer;
int ret;
nvmf_trace_command(req->cmd, conn->type);
req->length = 0;
req->xfer = SPDK_NVME_DATA_NONE;
req->data = NULL;
if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
xfer = spdk_nvme_opc_get_data_transfer(req->cmd->nvmf_cmd.fctype);
} else {
xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
}
if (xfer != SPDK_NVME_DATA_NONE) {
struct spdk_nvme_sgl_descriptor *sgl = (struct spdk_nvme_sgl_descriptor *)&cmd->dptr.sgl1;
if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
(sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
if (sgl->keyed.length > bb_len) {
SPDK_ERRLOG("SGL length 0x%x exceeds BB length 0x%x\n",
sgl->keyed.length, bb_len);
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return -1;
}
req->data = bb;
req->length = sgl->keyed.length;
} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
uint64_t offset = sgl->address;
uint32_t max_len = in_cap_len;
SPDK_TRACELOG(SPDK_TRACE_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
offset, sgl->unkeyed.length);
if (conn->type == CONN_TYPE_AQ) {
SPDK_ERRLOG("In-capsule data not allowed for admin queue\n");
return -1;
}
if (offset > max_len) {
SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
offset, max_len);
rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
return -1;
}
max_len -= (uint32_t)offset;
if (sgl->unkeyed.length > max_len) {
SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
sgl->unkeyed.length, max_len);
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
return -1;
}
req->data = in_cap_data + offset;
req->length = sgl->unkeyed.length;
} else {
SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n",
sgl->generic.type, sgl->generic.subtype);
rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
return -1;
}
if (req->length == 0) {
xfer = SPDK_NVME_DATA_NONE;
req->data = NULL;
}
req->xfer = xfer;
/*
* For any I/O that requires data to be
* pulled into target BB before processing by
* the backend NVMe device
*/
if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "Initiating Host to Controller data transfer\n");
ret = nvmf_post_rdma_read(conn, req);
if (ret) {
SPDK_ERRLOG("Unable to post rdma read tx descriptor\n");
rsp->status.sc = SPDK_NVME_SC_DATA_TRANSFER_ERROR;
return -1;
}
/* Wait for transfer to complete before executing command. */
return 1;
}
}
}
if (xfer == SPDK_NVME_DATA_NONE) {
SPDK_TRACELOG(SPDK_TRACE_NVMF, "No data to transfer\n");
RTE_VERIFY(req->data == NULL);
RTE_VERIFY(req->length == 0);
} else {
RTE_VERIFY(req->data != NULL);
RTE_VERIFY(req->length != 0);
SPDK_TRACELOG(SPDK_TRACE_NVMF, "%s data ready\n",
xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER ? "Host to Controller" :
"Controller to Host");
}
return 0;
}
int
spdk_nvmf_request_exec(struct spdk_nvmf_request *req)
{
struct spdk_nvme_cmd *cmd = &req->cmd->nvme_cmd;
bool done;
if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
done = nvmf_process_fabrics_command(req);
} else if (req->conn->type == CONN_TYPE_AQ) {
done = nvmf_process_admin_cmd(req);
} else {
done = nvmf_process_io_cmd(req);
}
if (done) {
/* Synchronous command - response is already filled out */
return spdk_nvmf_request_complete(req);
}
/*
* Asynchronous command.
* The completion callback will call spdk_nvmf_request_complete().
*/
return 0;
}