608a2d5875
This helps ensure it gets inlined in the spdk_vtophys code path, now that spdk_vtophys is defined in the same compilation module. Signed-off-by: Jim Harris <james.r.harris@intel.com> Change-Id: I0d0d9bba4295f0d9a7c0657834aa5d39f3b682d8 Reviewed-on: https://review.gerrithub.io/c/445354 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
1367 lines
35 KiB
C
1367 lines
35 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include "env_internal.h"
|
|
|
|
#include <rte_config.h>
|
|
#include <rte_eal_memconfig.h>
|
|
|
|
#include "spdk_internal/assert.h"
|
|
#include "spdk_internal/memory.h"
|
|
|
|
#include "spdk/assert.h"
|
|
#include "spdk/likely.h"
|
|
#include "spdk/queue.h"
|
|
#include "spdk/util.h"
|
|
|
|
#ifdef __FreeBSD__
|
|
#define SPDK_VFIO_ENABLED 0
|
|
#else
|
|
#include <linux/version.h>
|
|
/*
|
|
* DPDK versions before 17.11 don't provide a way to get VFIO information in the public API,
|
|
* and we can't link to internal symbols when built against shared library DPDK,
|
|
* so disable VFIO entirely in that case.
|
|
*/
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) && \
|
|
(RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3) || !defined(RTE_BUILD_SHARED_LIB))
|
|
|
|
#define SPDK_VFIO_ENABLED 1
|
|
#include <linux/vfio.h>
|
|
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
|
|
#include <rte_vfio.h>
|
|
#else
|
|
/* Internal DPDK function forward declaration */
|
|
int pci_vfio_is_enabled(void);
|
|
#endif
|
|
|
|
struct spdk_vfio_dma_map {
|
|
struct vfio_iommu_type1_dma_map map;
|
|
struct vfio_iommu_type1_dma_unmap unmap;
|
|
TAILQ_ENTRY(spdk_vfio_dma_map) tailq;
|
|
};
|
|
|
|
struct vfio_cfg {
|
|
int fd;
|
|
bool enabled;
|
|
bool noiommu_enabled;
|
|
unsigned device_ref;
|
|
TAILQ_HEAD(, spdk_vfio_dma_map) maps;
|
|
pthread_mutex_t mutex;
|
|
};
|
|
|
|
static struct vfio_cfg g_vfio = {
|
|
.fd = -1,
|
|
.enabled = false,
|
|
.noiommu_enabled = false,
|
|
.device_ref = 0,
|
|
.maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps),
|
|
.mutex = PTHREAD_MUTEX_INITIALIZER
|
|
};
|
|
|
|
#else
|
|
#define SPDK_VFIO_ENABLED 0
|
|
#endif
|
|
#endif
|
|
|
|
#if DEBUG
|
|
#define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
|
|
#else
|
|
#define DEBUG_PRINT(...)
|
|
#endif
|
|
|
|
#define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB))
|
|
#define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB))
|
|
|
|
#define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB))
|
|
#define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1))
|
|
|
|
/* Page is registered */
|
|
#define REG_MAP_REGISTERED (1ULL << 62)
|
|
|
|
/* A notification region barrier. The 2MB translation entry that's marked
|
|
* with this flag must be unregistered separately. This allows contiguous
|
|
* regions to be unregistered in the same chunks they were registered.
|
|
*/
|
|
#define REG_MAP_NOTIFY_START (1ULL << 63)
|
|
|
|
/* Translation of a single 2MB page. */
|
|
struct map_2mb {
|
|
uint64_t translation_2mb;
|
|
};
|
|
|
|
/* Second-level map table indexed by bits [21..29] of the virtual address.
|
|
* Each entry contains the address translation or error for entries that haven't
|
|
* been retrieved yet.
|
|
*/
|
|
struct map_1gb {
|
|
struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)];
|
|
};
|
|
|
|
/* Top-level map table indexed by bits [30..47] of the virtual address.
|
|
* Each entry points to a second-level map table or NULL.
|
|
*/
|
|
struct map_256tb {
|
|
struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)];
|
|
};
|
|
|
|
/* Page-granularity memory address translation */
|
|
struct spdk_mem_map {
|
|
struct map_256tb map_256tb;
|
|
pthread_mutex_t mutex;
|
|
uint64_t default_translation;
|
|
struct spdk_mem_map_ops ops;
|
|
void *cb_ctx;
|
|
TAILQ_ENTRY(spdk_mem_map) tailq;
|
|
};
|
|
|
|
/* Registrations map. The 64 bit translations are bit fields with the
|
|
* following layout (starting with the low bits):
|
|
* 0 - 61 : reserved
|
|
* 62 - 63 : flags
|
|
*/
|
|
static struct spdk_mem_map *g_mem_reg_map;
|
|
static TAILQ_HEAD(, spdk_mem_map) g_spdk_mem_maps = TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps);
|
|
static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
/*
|
|
* Walk the currently registered memory via the main memory registration map
|
|
* and call the new map's notify callback for each virtually contiguous region.
|
|
*/
|
|
static int
|
|
spdk_mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action)
|
|
{
|
|
size_t idx_256tb;
|
|
uint64_t idx_1gb;
|
|
uint64_t contig_start = UINT64_MAX;
|
|
uint64_t contig_end = UINT64_MAX;
|
|
struct map_1gb *map_1gb;
|
|
int rc;
|
|
|
|
if (!g_mem_reg_map) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Hold the memory registration map mutex so no new registrations can be added while we are looping. */
|
|
pthread_mutex_lock(&g_mem_reg_map->mutex);
|
|
|
|
for (idx_256tb = 0;
|
|
idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]);
|
|
idx_256tb++) {
|
|
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
|
|
|
|
if (!map_1gb) {
|
|
if (contig_start != UINT64_MAX) {
|
|
/* End of of a virtually contiguous range */
|
|
rc = map->ops.notify_cb(map->cb_ctx, map, action,
|
|
(void *)contig_start,
|
|
contig_end - contig_start + VALUE_2MB);
|
|
/* Don't bother handling unregister failures. It can't be any worse */
|
|
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
|
|
goto err_unregister;
|
|
}
|
|
}
|
|
contig_start = UINT64_MAX;
|
|
continue;
|
|
}
|
|
|
|
for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) {
|
|
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
|
|
(contig_start == UINT64_MAX ||
|
|
(map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
|
|
/* Rebuild the virtual address from the indexes */
|
|
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
|
|
|
|
if (contig_start == UINT64_MAX) {
|
|
contig_start = vaddr;
|
|
}
|
|
|
|
contig_end = vaddr;
|
|
} else {
|
|
if (contig_start != UINT64_MAX) {
|
|
/* End of of a virtually contiguous range */
|
|
rc = map->ops.notify_cb(map->cb_ctx, map, action,
|
|
(void *)contig_start,
|
|
contig_end - contig_start + VALUE_2MB);
|
|
/* Don't bother handling unregister failures. It can't be any worse */
|
|
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
|
|
goto err_unregister;
|
|
}
|
|
|
|
/* This page might be a part of a neighbour region, so process
|
|
* it again. The idx_1gb will be incremented immediately.
|
|
*/
|
|
idx_1gb--;
|
|
}
|
|
contig_start = UINT64_MAX;
|
|
}
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&g_mem_reg_map->mutex);
|
|
return 0;
|
|
|
|
err_unregister:
|
|
/* Unwind to the first empty translation so we don't unregister
|
|
* a region that just failed to register.
|
|
*/
|
|
idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1);
|
|
idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1);
|
|
contig_start = UINT64_MAX;
|
|
contig_end = UINT64_MAX;
|
|
|
|
/* Unregister any memory we managed to register before the failure */
|
|
for (; idx_256tb < SIZE_MAX; idx_256tb--) {
|
|
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
|
|
|
|
if (!map_1gb) {
|
|
if (contig_end != UINT64_MAX) {
|
|
/* End of of a virtually contiguous range */
|
|
map->ops.notify_cb(map->cb_ctx, map,
|
|
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
|
|
(void *)contig_start,
|
|
contig_end - contig_start + VALUE_2MB);
|
|
}
|
|
contig_end = UINT64_MAX;
|
|
continue;
|
|
}
|
|
|
|
for (; idx_1gb < UINT64_MAX; idx_1gb--) {
|
|
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
|
|
(contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
|
|
/* Rebuild the virtual address from the indexes */
|
|
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
|
|
|
|
if (contig_end == UINT64_MAX) {
|
|
contig_end = vaddr;
|
|
}
|
|
contig_start = vaddr;
|
|
} else {
|
|
if (contig_end != UINT64_MAX) {
|
|
/* End of of a virtually contiguous range */
|
|
map->ops.notify_cb(map->cb_ctx, map,
|
|
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
|
|
(void *)contig_start,
|
|
contig_end - contig_start + VALUE_2MB);
|
|
idx_1gb++;
|
|
}
|
|
contig_end = UINT64_MAX;
|
|
}
|
|
}
|
|
idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1;
|
|
}
|
|
|
|
pthread_mutex_unlock(&g_mem_reg_map->mutex);
|
|
return rc;
|
|
}
|
|
|
|
struct spdk_mem_map *
|
|
spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx)
|
|
{
|
|
struct spdk_mem_map *map;
|
|
int rc;
|
|
|
|
map = calloc(1, sizeof(*map));
|
|
if (map == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (pthread_mutex_init(&map->mutex, NULL)) {
|
|
free(map);
|
|
return NULL;
|
|
}
|
|
|
|
map->default_translation = default_translation;
|
|
map->cb_ctx = cb_ctx;
|
|
if (ops) {
|
|
map->ops = *ops;
|
|
}
|
|
|
|
if (ops && ops->notify_cb) {
|
|
pthread_mutex_lock(&g_spdk_mem_map_mutex);
|
|
rc = spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER);
|
|
if (rc != 0) {
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
DEBUG_PRINT("Initial mem_map notify failed\n");
|
|
pthread_mutex_destroy(&map->mutex);
|
|
free(map);
|
|
return NULL;
|
|
}
|
|
TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq);
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
}
|
|
|
|
return map;
|
|
}
|
|
|
|
void
|
|
spdk_mem_map_free(struct spdk_mem_map **pmap)
|
|
{
|
|
struct spdk_mem_map *map;
|
|
size_t i;
|
|
|
|
if (!pmap) {
|
|
return;
|
|
}
|
|
|
|
map = *pmap;
|
|
|
|
if (!map) {
|
|
return;
|
|
}
|
|
|
|
if (map->ops.notify_cb) {
|
|
pthread_mutex_lock(&g_spdk_mem_map_mutex);
|
|
spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER);
|
|
TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq);
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
}
|
|
|
|
for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) {
|
|
free(map->map_256tb.map[i]);
|
|
}
|
|
|
|
pthread_mutex_destroy(&map->mutex);
|
|
|
|
free(map);
|
|
*pmap = NULL;
|
|
}
|
|
|
|
int
|
|
spdk_mem_register(void *vaddr, size_t len)
|
|
{
|
|
struct spdk_mem_map *map;
|
|
int rc;
|
|
void *seg_vaddr;
|
|
size_t seg_len;
|
|
uint64_t reg;
|
|
|
|
if ((uintptr_t)vaddr & ~MASK_256TB) {
|
|
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
|
|
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
|
|
__func__, vaddr, len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (len == 0) {
|
|
return 0;
|
|
}
|
|
|
|
pthread_mutex_lock(&g_spdk_mem_map_mutex);
|
|
|
|
seg_vaddr = vaddr;
|
|
seg_len = len;
|
|
while (seg_len > 0) {
|
|
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
|
|
if (reg & REG_MAP_REGISTERED) {
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
return -EBUSY;
|
|
}
|
|
seg_vaddr += VALUE_2MB;
|
|
seg_len -= VALUE_2MB;
|
|
}
|
|
|
|
seg_vaddr = vaddr;
|
|
seg_len = 0;
|
|
while (len > 0) {
|
|
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB,
|
|
seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED);
|
|
seg_len += VALUE_2MB;
|
|
vaddr += VALUE_2MB;
|
|
len -= VALUE_2MB;
|
|
}
|
|
|
|
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
|
|
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len);
|
|
if (rc != 0) {
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_mem_unregister(void *vaddr, size_t len)
|
|
{
|
|
struct spdk_mem_map *map;
|
|
int rc;
|
|
void *seg_vaddr;
|
|
size_t seg_len;
|
|
uint64_t reg, newreg;
|
|
|
|
if ((uintptr_t)vaddr & ~MASK_256TB) {
|
|
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
|
|
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
|
|
__func__, vaddr, len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pthread_mutex_lock(&g_spdk_mem_map_mutex);
|
|
|
|
/* The first page must be a start of a region. Also check if it's
|
|
* registered to make sure we don't return -ERANGE for non-registered
|
|
* regions.
|
|
*/
|
|
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
|
|
if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) {
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
return -ERANGE;
|
|
}
|
|
|
|
seg_vaddr = vaddr;
|
|
seg_len = len;
|
|
while (seg_len > 0) {
|
|
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
|
|
if ((reg & REG_MAP_REGISTERED) == 0) {
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
return -EINVAL;
|
|
}
|
|
seg_vaddr += VALUE_2MB;
|
|
seg_len -= VALUE_2MB;
|
|
}
|
|
|
|
newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
|
|
/* If the next page is registered, it must be a start of a region as well,
|
|
* otherwise we'd be unregistering only a part of a region.
|
|
*/
|
|
if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) {
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
return -ERANGE;
|
|
}
|
|
seg_vaddr = vaddr;
|
|
seg_len = 0;
|
|
|
|
while (len > 0) {
|
|
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
|
|
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0);
|
|
|
|
if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) {
|
|
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
|
|
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
|
|
if (rc != 0) {
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
seg_vaddr = vaddr;
|
|
seg_len = VALUE_2MB;
|
|
} else {
|
|
seg_len += VALUE_2MB;
|
|
}
|
|
|
|
vaddr += VALUE_2MB;
|
|
len -= VALUE_2MB;
|
|
}
|
|
|
|
if (seg_len > 0) {
|
|
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
|
|
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
|
|
if (rc != 0) {
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static struct map_1gb *
|
|
spdk_mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb)
|
|
{
|
|
struct map_1gb *map_1gb;
|
|
uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb);
|
|
size_t i;
|
|
|
|
if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) {
|
|
return NULL;
|
|
}
|
|
|
|
map_1gb = map->map_256tb.map[idx_256tb];
|
|
|
|
if (!map_1gb) {
|
|
pthread_mutex_lock(&map->mutex);
|
|
|
|
/* Recheck to make sure nobody else got the mutex first. */
|
|
map_1gb = map->map_256tb.map[idx_256tb];
|
|
if (!map_1gb) {
|
|
map_1gb = malloc(sizeof(struct map_1gb));
|
|
if (map_1gb) {
|
|
/* initialize all entries to default translation */
|
|
for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) {
|
|
map_1gb->map[i].translation_2mb = map->default_translation;
|
|
}
|
|
map->map_256tb.map[idx_256tb] = map_1gb;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&map->mutex);
|
|
|
|
if (!map_1gb) {
|
|
DEBUG_PRINT("allocation failed\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return map_1gb;
|
|
}
|
|
|
|
int
|
|
spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size,
|
|
uint64_t translation)
|
|
{
|
|
uint64_t vfn_2mb;
|
|
struct map_1gb *map_1gb;
|
|
uint64_t idx_1gb;
|
|
struct map_2mb *map_2mb;
|
|
|
|
if ((uintptr_t)vaddr & ~MASK_256TB) {
|
|
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* For now, only 2 MB-aligned registrations are supported */
|
|
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
|
|
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
|
|
__func__, vaddr, size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
vfn_2mb = vaddr >> SHIFT_2MB;
|
|
|
|
while (size) {
|
|
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
|
|
if (!map_1gb) {
|
|
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
idx_1gb = MAP_1GB_IDX(vfn_2mb);
|
|
map_2mb = &map_1gb->map[idx_1gb];
|
|
map_2mb->translation_2mb = translation;
|
|
|
|
size -= VALUE_2MB;
|
|
vfn_2mb++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size)
|
|
{
|
|
uint64_t vfn_2mb;
|
|
struct map_1gb *map_1gb;
|
|
uint64_t idx_1gb;
|
|
struct map_2mb *map_2mb;
|
|
|
|
if ((uintptr_t)vaddr & ~MASK_256TB) {
|
|
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* For now, only 2 MB-aligned registrations are supported */
|
|
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
|
|
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
|
|
__func__, vaddr, size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
vfn_2mb = vaddr >> SHIFT_2MB;
|
|
|
|
while (size) {
|
|
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
|
|
if (!map_1gb) {
|
|
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
idx_1gb = MAP_1GB_IDX(vfn_2mb);
|
|
map_2mb = &map_1gb->map[idx_1gb];
|
|
map_2mb->translation_2mb = map->default_translation;
|
|
|
|
size -= VALUE_2MB;
|
|
vfn_2mb++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
inline uint64_t
|
|
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size)
|
|
{
|
|
const struct map_1gb *map_1gb;
|
|
const struct map_2mb *map_2mb;
|
|
uint64_t idx_256tb;
|
|
uint64_t idx_1gb;
|
|
uint64_t vfn_2mb;
|
|
uint64_t cur_size;
|
|
uint64_t prev_translation;
|
|
uint64_t orig_translation;
|
|
|
|
if (spdk_unlikely(vaddr & ~MASK_256TB)) {
|
|
DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr);
|
|
return map->default_translation;
|
|
}
|
|
|
|
vfn_2mb = vaddr >> SHIFT_2MB;
|
|
idx_256tb = MAP_256TB_IDX(vfn_2mb);
|
|
idx_1gb = MAP_1GB_IDX(vfn_2mb);
|
|
|
|
map_1gb = map->map_256tb.map[idx_256tb];
|
|
if (spdk_unlikely(!map_1gb)) {
|
|
return map->default_translation;
|
|
}
|
|
|
|
cur_size = VALUE_2MB - _2MB_OFFSET(vaddr);
|
|
map_2mb = &map_1gb->map[idx_1gb];
|
|
if (size == NULL || map->ops.are_contiguous == NULL ||
|
|
map_2mb->translation_2mb == map->default_translation) {
|
|
if (size != NULL) {
|
|
*size = spdk_min(*size, cur_size);
|
|
}
|
|
return map_2mb->translation_2mb;
|
|
}
|
|
|
|
orig_translation = map_2mb->translation_2mb;
|
|
prev_translation = orig_translation;
|
|
while (cur_size < *size) {
|
|
vfn_2mb++;
|
|
idx_256tb = MAP_256TB_IDX(vfn_2mb);
|
|
idx_1gb = MAP_1GB_IDX(vfn_2mb);
|
|
|
|
map_1gb = map->map_256tb.map[idx_256tb];
|
|
if (spdk_unlikely(!map_1gb)) {
|
|
break;
|
|
}
|
|
|
|
map_2mb = &map_1gb->map[idx_1gb];
|
|
if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) {
|
|
break;
|
|
}
|
|
|
|
cur_size += VALUE_2MB;
|
|
prev_translation = map_2mb->translation_2mb;
|
|
}
|
|
|
|
*size = spdk_min(*size, cur_size);
|
|
return orig_translation;
|
|
}
|
|
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0)
|
|
static void
|
|
memory_hotplug_cb(enum rte_mem_event event_type,
|
|
const void *addr, size_t len, void *arg)
|
|
{
|
|
if (event_type == RTE_MEM_EVENT_ALLOC) {
|
|
spdk_mem_register((void *)addr, len);
|
|
|
|
/* Now mark each segment so that DPDK won't later free it.
|
|
* This ensures we don't have to deal with the memory
|
|
* getting freed in different units than it was allocated.
|
|
*/
|
|
while (len > 0) {
|
|
struct rte_memseg *seg;
|
|
|
|
seg = rte_mem_virt2memseg(addr, NULL);
|
|
assert(seg != NULL);
|
|
seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
|
|
addr = (void *)((uintptr_t)addr + seg->hugepage_sz);
|
|
len -= seg->hugepage_sz;
|
|
}
|
|
} else if (event_type == RTE_MEM_EVENT_FREE) {
|
|
spdk_mem_unregister((void *)addr, len);
|
|
}
|
|
}
|
|
|
|
static int
|
|
memory_iter_cb(const struct rte_memseg_list *msl,
|
|
const struct rte_memseg *ms, size_t len, void *arg)
|
|
{
|
|
return spdk_mem_register(ms->addr, len);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
spdk_mem_map_init(void)
|
|
{
|
|
g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL);
|
|
if (g_mem_reg_map == NULL) {
|
|
DEBUG_PRINT("memory registration map allocation failed\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Walk all DPDK memory segments and register them
|
|
* with the master memory map
|
|
*/
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0)
|
|
rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL);
|
|
rte_memseg_contig_walk(memory_iter_cb, NULL);
|
|
#else
|
|
struct rte_mem_config *mcfg;
|
|
size_t seg_idx;
|
|
|
|
mcfg = rte_eal_get_configuration()->mem_config;
|
|
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
|
|
struct rte_memseg *seg = &mcfg->memseg[seg_idx];
|
|
|
|
if (seg->addr == NULL) {
|
|
break;
|
|
}
|
|
|
|
spdk_mem_register(seg->addr, seg->len);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
struct spdk_vtophys_pci_device {
|
|
struct rte_pci_device *pci_device;
|
|
TAILQ_ENTRY(spdk_vtophys_pci_device) tailq;
|
|
};
|
|
|
|
static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices =
|
|
TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices);
|
|
|
|
static struct spdk_mem_map *g_vtophys_map;
|
|
|
|
#if SPDK_VFIO_ENABLED
|
|
static int
|
|
vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size)
|
|
{
|
|
struct spdk_vfio_dma_map *dma_map;
|
|
int ret;
|
|
|
|
dma_map = calloc(1, sizeof(*dma_map));
|
|
if (dma_map == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dma_map->map.argsz = sizeof(dma_map->map);
|
|
dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;
|
|
dma_map->map.vaddr = vaddr;
|
|
dma_map->map.iova = iova;
|
|
dma_map->map.size = size;
|
|
|
|
dma_map->unmap.argsz = sizeof(dma_map->unmap);
|
|
dma_map->unmap.flags = 0;
|
|
dma_map->unmap.iova = iova;
|
|
dma_map->unmap.size = size;
|
|
|
|
pthread_mutex_lock(&g_vfio.mutex);
|
|
if (g_vfio.device_ref == 0) {
|
|
/* VFIO requires at least one device (IOMMU group) to be added to
|
|
* a VFIO container before it is possible to perform any IOMMU
|
|
* operations on that container. This memory will be mapped once
|
|
* the first device (IOMMU group) is hotplugged.
|
|
*
|
|
* Since the vfio container is managed internally by DPDK, it is
|
|
* also possible that some device is already in that container, but
|
|
* it's not managed by SPDK - e.g. an NIC attached internally
|
|
* inside DPDK. We could map the memory straight away in such
|
|
* scenario, but there's no need to do it. DPDK devices clearly
|
|
* don't need our mappings and hence we defer the mapping
|
|
* unconditionally until the first SPDK-managed device is
|
|
* hotplugged.
|
|
*/
|
|
goto out_insert;
|
|
}
|
|
|
|
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
|
|
if (ret) {
|
|
DEBUG_PRINT("Cannot set up DMA mapping, error %d\n", errno);
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
free(dma_map);
|
|
return ret;
|
|
}
|
|
|
|
out_insert:
|
|
TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq);
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size)
|
|
{
|
|
struct spdk_vfio_dma_map *dma_map;
|
|
int ret;
|
|
|
|
pthread_mutex_lock(&g_vfio.mutex);
|
|
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
|
|
if (dma_map->map.iova == iova) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (dma_map == NULL) {
|
|
DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova);
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
return -ENXIO;
|
|
}
|
|
|
|
/** don't support partial or multiple-page unmap for now */
|
|
assert(dma_map->map.size == size);
|
|
|
|
if (g_vfio.device_ref == 0) {
|
|
/* Memory is not mapped anymore, just remove it's references */
|
|
goto out_remove;
|
|
}
|
|
|
|
|
|
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap);
|
|
if (ret) {
|
|
DEBUG_PRINT("Cannot clear DMA mapping, error %d\n", errno);
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
return ret;
|
|
}
|
|
|
|
out_remove:
|
|
TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq);
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
free(dma_map);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static uint64_t
|
|
vtophys_get_paddr_memseg(uint64_t vaddr)
|
|
{
|
|
uintptr_t paddr;
|
|
struct rte_memseg *seg;
|
|
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0)
|
|
seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL);
|
|
if (seg != NULL) {
|
|
paddr = seg->phys_addr;
|
|
if (paddr == RTE_BAD_IOVA) {
|
|
return SPDK_VTOPHYS_ERROR;
|
|
}
|
|
paddr += (vaddr - (uintptr_t)seg->addr);
|
|
return paddr;
|
|
}
|
|
#else
|
|
struct rte_mem_config *mcfg;
|
|
uint32_t seg_idx;
|
|
|
|
mcfg = rte_eal_get_configuration()->mem_config;
|
|
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
|
|
seg = &mcfg->memseg[seg_idx];
|
|
if (seg->addr == NULL) {
|
|
break;
|
|
}
|
|
|
|
if (vaddr >= (uintptr_t)seg->addr &&
|
|
vaddr < ((uintptr_t)seg->addr + seg->len)) {
|
|
paddr = seg->phys_addr;
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
|
|
if (paddr == RTE_BAD_IOVA) {
|
|
#else
|
|
if (paddr == RTE_BAD_PHYS_ADDR) {
|
|
#endif
|
|
return SPDK_VTOPHYS_ERROR;
|
|
}
|
|
paddr += (vaddr - (uintptr_t)seg->addr);
|
|
return paddr;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return SPDK_VTOPHYS_ERROR;
|
|
}
|
|
|
|
/* Try to get the paddr from /proc/self/pagemap */
|
|
static uint64_t
|
|
vtophys_get_paddr_pagemap(uint64_t vaddr)
|
|
{
|
|
uintptr_t paddr;
|
|
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
|
|
#define BAD_ADDR RTE_BAD_IOVA
|
|
#define VTOPHYS rte_mem_virt2iova
|
|
#else
|
|
#define BAD_ADDR RTE_BAD_PHYS_ADDR
|
|
#define VTOPHYS rte_mem_virt2phy
|
|
#endif
|
|
|
|
/*
|
|
* Note: the virt2phy/virt2iova functions have changed over time, such
|
|
* that older versions may return 0 while recent versions will never
|
|
* return 0 but RTE_BAD_PHYS_ADDR/IOVA instead. To support older and
|
|
* newer versions, check for both return values.
|
|
*/
|
|
paddr = VTOPHYS((void *)vaddr);
|
|
if (paddr == 0 || paddr == BAD_ADDR) {
|
|
/*
|
|
* The vaddr may be valid but doesn't have a backing page
|
|
* assigned yet. Touch the page to ensure a backing page
|
|
* gets assigned, then try to translate again.
|
|
*/
|
|
rte_atomic64_read((rte_atomic64_t *)vaddr);
|
|
paddr = VTOPHYS((void *)vaddr);
|
|
}
|
|
if (paddr == 0 || paddr == BAD_ADDR) {
|
|
/* Unable to get to the physical address. */
|
|
return SPDK_VTOPHYS_ERROR;
|
|
}
|
|
|
|
#undef BAD_ADDR
|
|
#undef VTOPHYS
|
|
|
|
return paddr;
|
|
}
|
|
|
|
/* Try to get the paddr from pci devices */
|
|
static uint64_t
|
|
vtophys_get_paddr_pci(uint64_t vaddr)
|
|
{
|
|
struct spdk_vtophys_pci_device *vtophys_dev;
|
|
uintptr_t paddr;
|
|
struct rte_pci_device *dev;
|
|
struct rte_mem_resource *res;
|
|
unsigned r;
|
|
|
|
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
|
|
TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
|
|
dev = vtophys_dev->pci_device;
|
|
|
|
for (r = 0; r < PCI_MAX_RESOURCE; r++) {
|
|
res = &dev->mem_resource[r];
|
|
if (res->phys_addr && vaddr >= (uint64_t)res->addr &&
|
|
vaddr < (uint64_t)res->addr + res->len) {
|
|
paddr = res->phys_addr + (vaddr - (uint64_t)res->addr);
|
|
DEBUG_PRINT("%s: %p -> %p\n", __func__, (void *)vaddr,
|
|
(void *)paddr);
|
|
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
|
|
return paddr;
|
|
}
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
|
|
|
|
return SPDK_VTOPHYS_ERROR;
|
|
}
|
|
|
|
static int
|
|
spdk_vtophys_notify(void *cb_ctx, struct spdk_mem_map *map,
|
|
enum spdk_mem_map_notify_action action,
|
|
void *vaddr, size_t len)
|
|
{
|
|
int rc = 0, pci_phys = 0;
|
|
uint64_t paddr;
|
|
|
|
if ((uintptr_t)vaddr & ~MASK_256TB) {
|
|
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
|
|
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
|
|
__func__, vaddr, len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (len > 0) {
|
|
/* Get the physical address from the DPDK memsegs */
|
|
paddr = vtophys_get_paddr_memseg((uint64_t)vaddr);
|
|
|
|
switch (action) {
|
|
case SPDK_MEM_MAP_NOTIFY_REGISTER:
|
|
if (paddr == SPDK_VTOPHYS_ERROR) {
|
|
/* This is not an address that DPDK is managing. */
|
|
#if SPDK_VFIO_ENABLED
|
|
if (g_vfio.enabled && !g_vfio.noiommu_enabled) {
|
|
/* We'll use the virtual address as the iova. DPDK
|
|
* currently uses physical addresses as the iovas (or counts
|
|
* up from 0 if it can't get physical addresses), so
|
|
* the range of user space virtual addresses and physical
|
|
* addresses will never overlap.
|
|
*/
|
|
paddr = (uint64_t)vaddr;
|
|
rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB);
|
|
if (rc) {
|
|
return -EFAULT;
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
/* Get the physical address from /proc/self/pagemap. */
|
|
paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr);
|
|
if (paddr == SPDK_VTOPHYS_ERROR) {
|
|
/* Get the physical address from PCI devices */
|
|
paddr = vtophys_get_paddr_pci((uint64_t)vaddr);
|
|
if (paddr == SPDK_VTOPHYS_ERROR) {
|
|
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
|
|
return -EFAULT;
|
|
}
|
|
pci_phys = 1;
|
|
}
|
|
}
|
|
}
|
|
/* Since PCI paddr can break the 2MiB physical alignment skip this check for that. */
|
|
if (!pci_phys && (paddr & MASK_2MB)) {
|
|
DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
|
|
break;
|
|
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
|
|
#if SPDK_VFIO_ENABLED
|
|
if (paddr == SPDK_VTOPHYS_ERROR) {
|
|
/*
|
|
* This is not an address that DPDK is managing. If vfio is enabled,
|
|
* we need to unmap the range from the IOMMU
|
|
*/
|
|
if (g_vfio.enabled && !g_vfio.noiommu_enabled) {
|
|
uint64_t buffer_len = VALUE_2MB;
|
|
paddr = spdk_mem_map_translate(map, (uint64_t)vaddr, &buffer_len);
|
|
if (buffer_len != VALUE_2MB) {
|
|
return -EINVAL;
|
|
}
|
|
rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB);
|
|
if (rc) {
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB);
|
|
break;
|
|
default:
|
|
SPDK_UNREACHABLE();
|
|
}
|
|
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
vaddr += VALUE_2MB;
|
|
len -= VALUE_2MB;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#if SPDK_VFIO_ENABLED
|
|
|
|
static bool
|
|
spdk_vfio_enabled(void)
|
|
{
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
|
|
return rte_vfio_is_enabled("vfio_pci");
|
|
#else
|
|
return pci_vfio_is_enabled();
|
|
#endif
|
|
}
|
|
|
|
/* Check if IOMMU is enabled on the system */
|
|
static bool
|
|
has_iommu_groups(void)
|
|
{
|
|
struct dirent *d;
|
|
int count = 0;
|
|
DIR *dir = opendir("/sys/kernel/iommu_groups");
|
|
|
|
if (dir == NULL) {
|
|
return false;
|
|
}
|
|
|
|
while (count < 3 && (d = readdir(dir)) != NULL) {
|
|
count++;
|
|
}
|
|
|
|
closedir(dir);
|
|
/* there will always be ./ and ../ entries */
|
|
return count > 2;
|
|
}
|
|
|
|
static bool
|
|
spdk_vfio_noiommu_enabled(void)
|
|
{
|
|
return rte_vfio_noiommu_is_enabled();
|
|
}
|
|
|
|
static void
|
|
spdk_vtophys_iommu_init(void)
|
|
{
|
|
char proc_fd_path[PATH_MAX + 1];
|
|
char link_path[PATH_MAX + 1];
|
|
const char vfio_path[] = "/dev/vfio/vfio";
|
|
DIR *dir;
|
|
struct dirent *d;
|
|
|
|
if (!spdk_vfio_enabled()) {
|
|
return;
|
|
}
|
|
|
|
if (spdk_vfio_noiommu_enabled()) {
|
|
g_vfio.noiommu_enabled = true;
|
|
} else if (!has_iommu_groups()) {
|
|
return;
|
|
}
|
|
|
|
dir = opendir("/proc/self/fd");
|
|
if (!dir) {
|
|
DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno);
|
|
return;
|
|
}
|
|
|
|
while ((d = readdir(dir)) != NULL) {
|
|
if (d->d_type != DT_LNK) {
|
|
continue;
|
|
}
|
|
|
|
snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name);
|
|
if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) {
|
|
continue;
|
|
}
|
|
|
|
if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) {
|
|
sscanf(d->d_name, "%d", &g_vfio.fd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
closedir(dir);
|
|
|
|
if (g_vfio.fd < 0) {
|
|
DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n");
|
|
return;
|
|
}
|
|
|
|
g_vfio.enabled = true;
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
void
|
|
spdk_vtophys_pci_device_added(struct rte_pci_device *pci_device)
|
|
{
|
|
struct spdk_vtophys_pci_device *vtophys_dev;
|
|
|
|
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
|
|
|
|
vtophys_dev = calloc(1, sizeof(*vtophys_dev));
|
|
if (vtophys_dev) {
|
|
vtophys_dev->pci_device = pci_device;
|
|
TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq);
|
|
} else {
|
|
DEBUG_PRINT("Memory allocation error\n");
|
|
}
|
|
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
|
|
|
|
#if SPDK_VFIO_ENABLED
|
|
struct spdk_vfio_dma_map *dma_map;
|
|
int ret;
|
|
|
|
if (!g_vfio.enabled) {
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_lock(&g_vfio.mutex);
|
|
g_vfio.device_ref++;
|
|
if (g_vfio.device_ref > 1) {
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
return;
|
|
}
|
|
|
|
/* This is the first SPDK device using DPDK vfio. This means that the first
|
|
* IOMMU group might have been just been added to the DPDK vfio container.
|
|
* From this point it is certain that the memory can be mapped now.
|
|
*/
|
|
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
|
|
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
|
|
if (ret) {
|
|
DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno);
|
|
break;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
spdk_vtophys_pci_device_removed(struct rte_pci_device *pci_device)
|
|
{
|
|
struct spdk_vtophys_pci_device *vtophys_dev;
|
|
|
|
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
|
|
TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
|
|
if (vtophys_dev->pci_device == pci_device) {
|
|
TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq);
|
|
free(vtophys_dev);
|
|
break;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
|
|
|
|
#if SPDK_VFIO_ENABLED
|
|
struct spdk_vfio_dma_map *dma_map;
|
|
int ret;
|
|
|
|
if (!g_vfio.enabled) {
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_lock(&g_vfio.mutex);
|
|
assert(g_vfio.device_ref > 0);
|
|
g_vfio.device_ref--;
|
|
if (g_vfio.device_ref > 0) {
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
return;
|
|
}
|
|
|
|
/* This is the last SPDK device using DPDK vfio. If DPDK doesn't have
|
|
* any additional devices using it's vfio container, all the mappings
|
|
* will be automatically removed by the Linux vfio driver. We unmap
|
|
* the memory manually to be able to easily re-map it later regardless
|
|
* of other, external factors.
|
|
*/
|
|
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
|
|
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap);
|
|
if (ret) {
|
|
DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno);
|
|
break;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&g_vfio.mutex);
|
|
#endif
|
|
}
|
|
|
|
int
|
|
spdk_vtophys_init(void)
|
|
{
|
|
const struct spdk_mem_map_ops vtophys_map_ops = {
|
|
.notify_cb = spdk_vtophys_notify,
|
|
.are_contiguous = NULL
|
|
};
|
|
|
|
#if SPDK_VFIO_ENABLED
|
|
spdk_vtophys_iommu_init();
|
|
#endif
|
|
|
|
g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL);
|
|
if (g_vtophys_map == NULL) {
|
|
DEBUG_PRINT("vtophys map allocation failed\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint64_t
|
|
spdk_vtophys(void *buf, uint64_t *size)
|
|
{
|
|
uint64_t vaddr, paddr_2mb;
|
|
|
|
vaddr = (uint64_t)buf;
|
|
paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, size);
|
|
|
|
/*
|
|
* SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR,
|
|
* we will still bitwise-or it with the buf offset below, but the result will still be
|
|
* SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being
|
|
* unaligned) we must now check the return value before addition.
|
|
*/
|
|
SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s");
|
|
if (paddr_2mb == SPDK_VTOPHYS_ERROR) {
|
|
return SPDK_VTOPHYS_ERROR;
|
|
} else {
|
|
return paddr_2mb + (vaddr & MASK_2MB);
|
|
}
|
|
}
|
|
|
|
static int
|
|
spdk_bus_scan(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
spdk_bus_probe(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct rte_device *
|
|
spdk_bus_find_device(const struct rte_device *start,
|
|
rte_dev_cmp_t cmp, const void *data)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
|
|
static enum rte_iova_mode
|
|
spdk_bus_get_iommu_class(void) {
|
|
/* Since we register our PCI drivers after EAL init, we have no chance
|
|
* of switching into RTE_IOVA_VA (virtual addresses as iova) iommu
|
|
* class. DPDK uses RTE_IOVA_PA by default because for some platforms
|
|
* it's the only supported mode, but then SPDK does not support those
|
|
* platforms and doesn't mind defaulting to RTE_IOVA_VA. The rte_pci bus
|
|
* will force RTE_IOVA_PA if RTE_IOVA_VA simply can not be used
|
|
* (i.e. at least one device on the system is bound to uio_pci_generic),
|
|
* so we simply return RTE_IOVA_VA here.
|
|
*/
|
|
return RTE_IOVA_VA;
|
|
}
|
|
#endif
|
|
|
|
struct rte_bus spdk_bus = {
|
|
.scan = spdk_bus_scan,
|
|
.probe = spdk_bus_probe,
|
|
.find_device = spdk_bus_find_device,
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
|
|
.get_iommu_class = spdk_bus_get_iommu_class,
|
|
#endif
|
|
};
|
|
|
|
RTE_REGISTER_BUS(spdk, spdk_bus);
|