John Meneghini 8a44220b1a env: Rename spdk_malloc/zmalloc/realloc/free to spdk_dma_(func)
- rename spdk_malloc_socket to spdk_dma_malloc_socket
  - rename spdk_malloc to spdk_dma_malloc
  - rename spdk_zmalloc to spdk_dma_zmalloc
  - rename spdk_realloc to spdk_dma_realloc
  - rename spdk_free to spdk_dma_free

Change-Id: I52a11b7a4243281f9c56f503e826fd7c4a1fd883
Signed-off-by: John Meneghini <johnm@netapp.com>
Reviewed-on: https://review.gerrithub.io/362604
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Tested-by: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2017-05-31 15:30:27 -04:00

1165 lines
29 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include <rte_config.h>
#include <rte_mempool.h>
#include <rte_lcore.h>
#include "spdk/nvme.h"
#include "spdk/env.h"
#include "spdk/string.h"
#include "spdk/nvme_intel.h"
struct ctrlr_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_intel_rw_latency_page latency_page;
struct ctrlr_entry *next;
char name[1024];
};
struct ns_entry {
struct {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
} nvme;
struct ns_entry *next;
uint32_t io_size_blocks;
uint64_t size_in_ios;
char name[1024];
};
struct ns_worker_ctx {
struct ns_entry *entry;
uint64_t io_completed;
uint64_t current_queue_depth;
uint64_t offset_in_ios;
bool is_draining;
struct spdk_nvme_qpair *qpair;
struct ns_worker_ctx *next;
};
struct arb_task {
struct ns_worker_ctx *ns_ctx;
void *buf;
};
struct worker_thread {
struct ns_worker_ctx *ns_ctx;
struct worker_thread *next;
unsigned lcore;
enum spdk_nvme_qprio qprio;
};
struct arb_context {
int shm_id;
int outstanding_commands;
int num_namespaces;
int num_workers;
int rw_percentage;
int is_random;
int queue_depth;
int time_in_sec;
int io_count;
uint8_t latency_tracking_enable;
uint8_t arbitration_mechanism;
uint8_t arbitration_config;
uint32_t io_size_bytes;
uint32_t max_completions;
uint64_t tsc_rate;
const char *core_mask;
const char *workload_type;
};
struct feature {
uint32_t result;
bool valid;
};
static struct rte_mempool *task_pool = NULL;
static struct ctrlr_entry *g_controllers = NULL;
static struct ns_entry *g_namespaces = NULL;
static struct worker_thread *g_workers = NULL;
static struct feature features[256];
static struct arb_context g_arbitration = {
.shm_id = -1,
.outstanding_commands = 0,
.num_workers = 0,
.num_namespaces = 0,
.rw_percentage = 50,
.queue_depth = 64,
.time_in_sec = 60,
.io_count = 100000,
.latency_tracking_enable = 0,
.arbitration_mechanism = SPDK_NVME_CC_AMS_RR,
.arbitration_config = 0,
.io_size_bytes = 131072,
.max_completions = 0,
/* Default 4 cores for urgent/high/medium/low */
.core_mask = "0xf",
.workload_type = "randrw",
};
/*
* For weighted round robin arbitration mechanism, the smaller value between
* weight and burst will be picked to execute the commands in one queue.
*/
#define USER_SPECIFIED_HIGH_PRIORITY_WEIGHT 32
#define USER_SPECIFIED_MEDIUM_PRIORITY_WEIGHT 16
#define USER_SPECIFIED_LOW_PRIORITY_WEIGHT 8
#define USER_SPECIFIED_ARBITRATION_BURST 7 /* No limit */
/*
* Description of dword for priority weight and arbitration burst
* ------------------------------------------------------------------------------
* 31 : 24 | 23 : 16 | 15 : 08 | 07 : 03 | 02 : 00
* ------------------------------------------------------------------------------
* High Prio Weight | Medium Prio Weight | Low Prio Weight | Reserved | Arb Burst
* ------------------------------------------------------------------------------
*
* The priority weights are zero based value.
*/
#define SPDK_NVME_HIGH_PRIO_WEIGHT_SHIFT 24
#define SPDK_NVME_MED_PRIO_WEIGHT_SHIFT 16
#define SPDK_NVME_LOW_PRIO_WEIGHT_SHIFT 8
#define SPDK_NVME_PRIO_WEIGHT_MASK 0xFF
#define SPDK_NVME_ARB_BURST_MASK 0x7
#define SPDK_NVME_QPRIO_MAX (SPDK_NVME_QPRIO_LOW + 1)
static void task_complete(struct arb_task *task);
static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion);
static void get_arb_feature(struct spdk_nvme_ctrlr *ctrlr);
static int set_arb_feature(struct spdk_nvme_ctrlr *ctrlr);
static const char *print_qprio(enum spdk_nvme_qprio);
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
return;
}
if (spdk_nvme_ns_get_size(ns) < g_arbitration.io_size_bytes ||
spdk_nvme_ns_get_sector_size(ns) > g_arbitration.io_size_bytes) {
printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid "
"ns size %" PRIu64 " / block size %u for I/O size %u\n",
cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns),
spdk_nvme_ns_get_size(ns), spdk_nvme_ns_get_sector_size(ns),
g_arbitration.io_size_bytes);
return;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->nvme.ctrlr = ctrlr;
entry->nvme.ns = ns;
entry->size_in_ios = spdk_nvme_ns_get_size(ns) / g_arbitration.io_size_bytes;
entry->io_size_blocks = g_arbitration.io_size_bytes / spdk_nvme_ns_get_sector_size(ns);
snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
g_arbitration.num_namespaces++;
entry->next = g_namespaces;
g_namespaces = entry;
}
static void
enable_latency_tracking_complete(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
if (spdk_nvme_cpl_is_error(cpl)) {
printf("enable_latency_tracking_complete failed\n");
}
g_arbitration.outstanding_commands--;
}
static void
set_latency_tracking_feature(struct spdk_nvme_ctrlr *ctrlr, bool enable)
{
int res;
union spdk_nvme_intel_feat_latency_tracking latency_tracking;
if (enable) {
latency_tracking.bits.enable = 0x01;
} else {
latency_tracking.bits.enable = 0x00;
}
res = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING,
latency_tracking.raw, 0, NULL, 0, enable_latency_tracking_complete, NULL);
if (res) {
printf("fail to allocate nvme request.\n");
return;
}
g_arbitration.outstanding_commands++;
while (g_arbitration.outstanding_commands) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
}
}
static void
register_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
int nsid, num_ns;
struct spdk_nvme_ns *ns;
struct ctrlr_entry *entry = calloc(1, sizeof(struct ctrlr_entry));
const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (entry == NULL) {
perror("ctrlr_entry malloc");
exit(1);
}
snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn);
entry->ctrlr = ctrlr;
entry->next = g_controllers;
g_controllers = entry;
if ((g_arbitration.latency_tracking_enable != 0) &&
spdk_nvme_ctrlr_is_feature_supported(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING))
set_latency_tracking_feature(ctrlr, true);
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
for (nsid = 1; nsid <= num_ns; nsid++) {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
if (ns == NULL) {
continue;
}
register_ns(ctrlr, ns);
}
if (g_arbitration.arbitration_mechanism == SPDK_NVME_CAP_AMS_WRR) {
get_arb_feature(ctrlr);
if (g_arbitration.arbitration_config != 0) {
set_arb_feature(ctrlr);
get_arb_feature(ctrlr);
}
}
}
static void
task_ctor(struct rte_mempool *mp, void *arg, void *__task, unsigned id)
{
struct arb_task *task = __task;
task->buf = spdk_dma_zmalloc(g_arbitration.io_size_bytes, 0x200, NULL);
if (task->buf == NULL) {
fprintf(stderr, "task->buf spdk_dma_zmalloc failed\n");
exit(1);
}
}
static __thread unsigned int seed = 0;
static void
submit_single_io(struct ns_worker_ctx *ns_ctx)
{
struct arb_task *task = NULL;
uint64_t offset_in_ios;
int rc;
struct ns_entry *entry = ns_ctx->entry;
if (rte_mempool_get(task_pool, (void **)&task) != 0) {
fprintf(stderr, "task_pool rte_mempool_get failed\n");
exit(1);
}
task->ns_ctx = ns_ctx;
if (g_arbitration.is_random) {
offset_in_ios = rand_r(&seed) % entry->size_in_ios;
} else {
offset_in_ios = ns_ctx->offset_in_ios++;
if (ns_ctx->offset_in_ios == entry->size_in_ios) {
ns_ctx->offset_in_ios = 0;
}
}
if ((g_arbitration.rw_percentage == 100) ||
(g_arbitration.rw_percentage != 0 &&
((rand_r(&seed) % 100) < g_arbitration.rw_percentage))) {
rc = spdk_nvme_ns_cmd_read(entry->nvme.ns, ns_ctx->qpair, task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task, 0);
} else {
rc = spdk_nvme_ns_cmd_write(entry->nvme.ns, ns_ctx->qpair, task->buf,
offset_in_ios * entry->io_size_blocks,
entry->io_size_blocks, io_complete, task, 0);
}
if (rc != 0) {
fprintf(stderr, "starting I/O failed\n");
}
ns_ctx->current_queue_depth++;
}
static void
task_complete(struct arb_task *task)
{
struct ns_worker_ctx *ns_ctx;
ns_ctx = task->ns_ctx;
ns_ctx->current_queue_depth--;
ns_ctx->io_completed++;
rte_mempool_put(task_pool, task);
/*
* is_draining indicates when time has expired for the test run
* and we are just waiting for the previously submitted I/O
* to complete. In this case, do not submit a new I/O to replace
* the one just completed.
*/
if (!ns_ctx->is_draining) {
submit_single_io(ns_ctx);
}
}
static void
io_complete(void *ctx, const struct spdk_nvme_cpl *completion)
{
task_complete((struct arb_task *)ctx);
}
static void
check_io(struct ns_worker_ctx *ns_ctx)
{
spdk_nvme_qpair_process_completions(ns_ctx->qpair, g_arbitration.max_completions);
}
static void
submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth)
{
while (queue_depth-- > 0) {
submit_single_io(ns_ctx);
}
}
static void
drain_io(struct ns_worker_ctx *ns_ctx)
{
ns_ctx->is_draining = true;
while (ns_ctx->current_queue_depth > 0) {
check_io(ns_ctx);
}
}
static int
init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx, enum spdk_nvme_qprio qprio)
{
ns_ctx->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_ctx->entry->nvme.ctrlr, qprio);
if (!ns_ctx->qpair) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n");
return 1;
}
return 0;
}
static void
cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx)
{
spdk_nvme_ctrlr_free_io_qpair(ns_ctx->qpair);
}
static void
cleanup(void)
{
struct ns_entry *entry = g_namespaces;
struct ns_entry *next_entry = NULL;
struct worker_thread *worker = g_workers;
struct worker_thread *next_worker = NULL;
struct arb_task *task = NULL;
while (entry) {
next_entry = entry->next;
free(entry);
entry = next_entry;
};
while (worker) {
next_worker = worker->next;
free(worker->ns_ctx);
free(worker);
worker = next_worker;
};
if (rte_mempool_get(task_pool, (void **)&task) == 0) {
spdk_dma_free(task->buf);
}
}
static int
work_fn(void *arg)
{
uint64_t tsc_end;
struct worker_thread *worker = (struct worker_thread *)arg;
struct ns_worker_ctx *ns_ctx = NULL;
printf("Starting thread on core %u with %s\n", worker->lcore, print_qprio(worker->qprio));
/* Allocate a queue pair for each namespace. */
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
if (init_ns_worker_ctx(ns_ctx, worker->qprio) != 0) {
printf("ERROR: init_ns_worker_ctx() failed\n");
return 1;
}
ns_ctx = ns_ctx->next;
}
tsc_end = spdk_get_ticks() + g_arbitration.time_in_sec * g_arbitration.tsc_rate;
/* Submit initial I/O for each namespace. */
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
submit_io(ns_ctx, g_arbitration.queue_depth);
ns_ctx = ns_ctx->next;
}
while (1) {
/*
* Check for completed I/O for each controller. A new
* I/O will be submitted in the io_complete callback
* to replace each I/O that is completed.
*/
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
check_io(ns_ctx);
ns_ctx = ns_ctx->next;
}
if (spdk_get_ticks() > tsc_end) {
break;
}
}
ns_ctx = worker->ns_ctx;
while (ns_ctx != NULL) {
drain_io(ns_ctx);
cleanup_ns_worker_ctx(ns_ctx);
ns_ctx = ns_ctx->next;
}
return 0;
}
static void
usage(char *program_name)
{
printf("%s options", program_name);
printf("\n");
printf("\t[-q io depth]\n");
printf("\t[-s io size in bytes]\n");
printf("\t[-w io pattern type, must be one of\n");
printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n");
printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n");
printf("\t[-l enable latency tracking, default: disabled]\n");
printf("\t\t(0 - disabled; 1 - enabled)\n");
printf("\t[-t time in seconds]\n");
printf("\t[-c core mask for I/O submission/completion.]\n");
printf("\t\t(default: 0xf - 4 cores)]\n");
printf("\t[-m max completions per poll]\n");
printf("\t\t(default: 0 - unlimited)\n");
printf("\t[-a arbitration mechanism, must be one of below]\n");
printf("\t\t(0, 1, 2)]\n");
printf("\t\t(0: default round robin mechanism)]\n");
printf("\t\t(1: weighted round robin mechanism)]\n");
printf("\t\t(2: vendor specific mechanism)]\n");
printf("\t[-b enable arbitration user configuration, default: disabled]\n");
printf("\t\t(0 - disabled; 1 - enabled)\n");
printf("\t[-n subjected IOs for performance comparison]\n");
printf("\t[-i shared memory group ID]\n");
}
static const char *
print_qprio(enum spdk_nvme_qprio qprio)
{
switch (qprio) {
case SPDK_NVME_QPRIO_URGENT:
return "urgent priority queue";
case SPDK_NVME_QPRIO_HIGH:
return "high priority queue";
case SPDK_NVME_QPRIO_MEDIUM:
return "medium priority queue";
case SPDK_NVME_QPRIO_LOW:
return "low priority queue";
default:
return "invalid priority queue";
}
}
static void
print_configuration(char *program_name)
{
printf("%s run with configuration:\n", program_name);
printf("%s -q %d -s %d -w %s -M %d -l %d -t %d -c %s -m %d -a %d -b %d -i %d\n",
program_name,
g_arbitration.queue_depth,
g_arbitration.io_size_bytes,
g_arbitration.workload_type,
g_arbitration.rw_percentage,
g_arbitration.latency_tracking_enable,
g_arbitration.time_in_sec,
g_arbitration.core_mask,
g_arbitration.max_completions,
g_arbitration.arbitration_mechanism,
g_arbitration.arbitration_config,
g_arbitration.io_count);
}
static void
print_performance(void)
{
float io_per_second, sent_all_io_in_secs;
struct worker_thread *worker;
struct ns_worker_ctx *ns_ctx;
worker = g_workers;
while (worker) {
ns_ctx = worker->ns_ctx;
while (ns_ctx) {
io_per_second = (float)ns_ctx->io_completed / g_arbitration.time_in_sec;
sent_all_io_in_secs = g_arbitration.io_count / io_per_second;
printf("%-43.43s core %u: %8.2f IO/s %8.2f secs/%d ios\n",
ns_ctx->entry->name, worker->lcore,
io_per_second, sent_all_io_in_secs, g_arbitration.io_count);
ns_ctx = ns_ctx->next;
}
worker = worker->next;
}
printf("========================================================\n");
printf("\n");
}
static void
print_latency_page(struct ctrlr_entry *entry)
{
int i;
printf("\n");
printf("%s\n", entry->name);
printf("--------------------------------------------------------\n");
for (i = 0; i < 32; i++) {
if (entry->latency_page.buckets_32us[i])
printf("Bucket %dus - %dus: %d\n", i * 32, (i + 1) * 32,
entry->latency_page.buckets_32us[i]);
}
for (i = 0; i < 31; i++) {
if (entry->latency_page.buckets_1ms[i])
printf("Bucket %dms - %dms: %d\n", i + 1, i + 2,
entry->latency_page.buckets_1ms[i]);
}
for (i = 0; i < 31; i++) {
if (entry->latency_page.buckets_32ms[i])
printf("Bucket %dms - %dms: %d\n", (i + 1) * 32, (i + 2) * 32,
entry->latency_page.buckets_32ms[i]);
}
}
static void
print_latency_statistics(const char *op_name, enum spdk_nvme_intel_log_page log_page)
{
struct ctrlr_entry *ctrlr;
printf("%s Latency Statistics:\n", op_name);
printf("========================================================\n");
ctrlr = g_controllers;
while (ctrlr) {
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) {
if (spdk_nvme_ctrlr_cmd_get_log_page(
ctrlr->ctrlr, log_page,
SPDK_NVME_GLOBAL_NS_TAG,
&ctrlr->latency_page,
sizeof(struct spdk_nvme_intel_rw_latency_page),
0,
enable_latency_tracking_complete,
NULL)) {
printf("nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
g_arbitration.outstanding_commands++;
} else {
printf("Controller %s: %s latency statistics not supported\n",
ctrlr->name, op_name);
}
ctrlr = ctrlr->next;
}
while (g_arbitration.outstanding_commands) {
ctrlr = g_controllers;
while (ctrlr) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr->ctrlr);
ctrlr = ctrlr->next;
}
}
ctrlr = g_controllers;
while (ctrlr) {
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) {
print_latency_page(ctrlr);
}
ctrlr = ctrlr->next;
}
printf("\n");
}
static void
print_stats(void)
{
print_performance();
if (g_arbitration.latency_tracking_enable) {
if (g_arbitration.rw_percentage != 0) {
print_latency_statistics("Read", SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY);
}
if (g_arbitration.rw_percentage != 100) {
print_latency_statistics("Write", SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY);
}
}
}
static int
parse_args(int argc, char **argv)
{
const char *workload_type = NULL;
int op = 0;
bool mix_specified = false;
while ((op = getopt(argc, argv, "c:l:i:m:q:s:t:w:M:a:b:n:h")) != -1) {
switch (op) {
case 'c':
g_arbitration.core_mask = optarg;
break;
case 'i':
g_arbitration.shm_id = atoi(optarg);
break;
case 'l':
g_arbitration.latency_tracking_enable = atoi(optarg);
break;
case 'm':
g_arbitration.max_completions = atoi(optarg);
break;
case 'q':
g_arbitration.queue_depth = atoi(optarg);
break;
case 's':
g_arbitration.io_size_bytes = atoi(optarg);
break;
case 't':
g_arbitration.time_in_sec = atoi(optarg);
break;
case 'w':
g_arbitration.workload_type = optarg;
break;
case 'M':
g_arbitration.rw_percentage = atoi(optarg);
mix_specified = true;
break;
case 'a':
g_arbitration.arbitration_mechanism = atoi(optarg);
break;
case 'b':
g_arbitration.arbitration_config = atoi(optarg);
break;
case 'n':
g_arbitration.io_count = atoi(optarg);
break;
case 'h':
default:
usage(argv[0]);
return 1;
}
}
workload_type = g_arbitration.workload_type;
if (strcmp(workload_type, "read") &&
strcmp(workload_type, "write") &&
strcmp(workload_type, "randread") &&
strcmp(workload_type, "randwrite") &&
strcmp(workload_type, "rw") &&
strcmp(workload_type, "randrw")) {
fprintf(stderr,
"io pattern type must be one of\n"
"(read, write, randread, randwrite, rw, randrw)\n");
return 1;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread")) {
g_arbitration.rw_percentage = 100;
}
if (!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
g_arbitration.rw_percentage = 0;
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "randread") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "randwrite")) {
if (mix_specified) {
fprintf(stderr, "Ignoring -M option... Please use -M option"
" only when using rw or randrw.\n");
}
}
if (!strcmp(workload_type, "rw") ||
!strcmp(workload_type, "randrw")) {
if (g_arbitration.rw_percentage < 0 || g_arbitration.rw_percentage > 100) {
fprintf(stderr,
"-M must be specified to value from 0 to 100 "
"for rw or randrw.\n");
return 1;
}
}
if (!strcmp(workload_type, "read") ||
!strcmp(workload_type, "write") ||
!strcmp(workload_type, "rw")) {
g_arbitration.is_random = 0;
} else {
g_arbitration.is_random = 1;
}
if (g_arbitration.latency_tracking_enable != 0 &&
g_arbitration.latency_tracking_enable != 1) {
fprintf(stderr,
"-l must be specified to value 0 or 1.\n");
return 1;
}
switch (g_arbitration.arbitration_mechanism) {
case SPDK_NVME_CC_AMS_RR:
case SPDK_NVME_CC_AMS_WRR:
case SPDK_NVME_CC_AMS_VS:
break;
default:
fprintf(stderr,
"-a must be specified to value 0, 1, or 7.\n");
return 1;
}
if (g_arbitration.arbitration_config != 0 &&
g_arbitration.arbitration_config != 1) {
fprintf(stderr,
"-b must be specified to value 0 or 1.\n");
return 1;
} else if (g_arbitration.arbitration_config == 1 &&
g_arbitration.arbitration_mechanism != SPDK_NVME_CC_AMS_WRR) {
fprintf(stderr,
"-a must be specified to 1 (WRR) together.\n");
return 1;
}
return 0;
}
static int
register_workers(void)
{
uint32_t i;
struct worker_thread *worker;
enum spdk_nvme_qprio qprio = SPDK_NVME_QPRIO_URGENT;
g_workers = NULL;
g_arbitration.num_workers = 0;
SPDK_ENV_FOREACH_CORE(i) {
worker = calloc(1, sizeof(*worker));
if (worker == NULL) {
fprintf(stderr, "Unable to allocate worker\n");
return -1;
}
worker->lcore = i;
worker->next = g_workers;
g_workers = worker;
g_arbitration.num_workers++;
if (g_arbitration.arbitration_mechanism == SPDK_NVME_CAP_AMS_WRR) {
qprio++;
}
worker->qprio = qprio % SPDK_NVME_QPRIO_MAX;
}
return 0;
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
/* Update with user specified arbitration configuration */
opts->arb_mechanism = g_arbitration.arbitration_mechanism;
printf("Attaching to %s\n", trid->traddr);
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
printf("Attached to %s\n", trid->traddr);
/* Update with actual arbitration configuration in use */
g_arbitration.arbitration_mechanism = opts->arb_mechanism;
register_ctrlr(ctrlr);
}
static int
register_controllers(void)
{
printf("Initializing NVMe Controllers\n");
if (spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
return 1;
}
if (g_arbitration.num_namespaces == 0) {
fprintf(stderr, "No valid namespaces to continue IO testing\n");
return 1;
}
return 0;
}
static void
unregister_controllers(void)
{
struct ctrlr_entry *entry = g_controllers;
while (entry) {
struct ctrlr_entry *next = entry->next;
if (g_arbitration.latency_tracking_enable &&
spdk_nvme_ctrlr_is_feature_supported(entry->ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING))
set_latency_tracking_feature(entry->ctrlr, false);
spdk_nvme_detach(entry->ctrlr);
free(entry);
entry = next;
}
}
static int
associate_workers_with_ns(void)
{
struct ns_entry *entry = g_namespaces;
struct worker_thread *worker = g_workers;
struct ns_worker_ctx *ns_ctx;
int i, count;
count = g_arbitration.num_namespaces > g_arbitration.num_workers ?
g_arbitration.num_namespaces : g_arbitration.num_workers;
for (i = 0; i < count; i++) {
if (entry == NULL) {
break;
}
ns_ctx = malloc(sizeof(struct ns_worker_ctx));
if (!ns_ctx) {
return 1;
}
memset(ns_ctx, 0, sizeof(*ns_ctx));
printf("Associating %s with lcore %d\n", entry->name, worker->lcore);
ns_ctx->entry = entry;
ns_ctx->next = worker->ns_ctx;
worker->ns_ctx = ns_ctx;
worker = worker->next;
if (worker == NULL) {
worker = g_workers;
}
entry = entry->next;
if (entry == NULL) {
entry = g_namespaces;
}
}
return 0;
}
static void
get_feature_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
struct feature *feature = cb_arg;
int fid = feature - features;
if (spdk_nvme_cpl_is_error(cpl)) {
printf("get_feature(0x%02X) failed\n", fid);
} else {
feature->result = cpl->cdw0;
feature->valid = true;
}
g_arbitration.outstanding_commands--;
}
static int
get_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t fid)
{
struct spdk_nvme_cmd cmd = {};
cmd.opc = SPDK_NVME_OPC_GET_FEATURES;
cmd.cdw10 = fid;
return spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, &cmd, NULL, 0, get_feature_completion, &features[fid]);
}
static void
get_arb_feature(struct spdk_nvme_ctrlr *ctrlr)
{
get_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION);
g_arbitration.outstanding_commands++;
while (g_arbitration.outstanding_commands) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
}
if (features[SPDK_NVME_FEAT_ARBITRATION].valid) {
uint32_t arb = features[SPDK_NVME_FEAT_ARBITRATION].result;
unsigned ab, lpw, mpw, hpw;
ab = arb & SPDK_NVME_ARB_BURST_MASK;
lpw = ((arb >> SPDK_NVME_LOW_PRIO_WEIGHT_SHIFT) & SPDK_NVME_PRIO_WEIGHT_MASK) + 1;
mpw = ((arb >> SPDK_NVME_MED_PRIO_WEIGHT_SHIFT) & SPDK_NVME_PRIO_WEIGHT_MASK) + 1;
hpw = ((arb >> SPDK_NVME_HIGH_PRIO_WEIGHT_SHIFT) & SPDK_NVME_PRIO_WEIGHT_MASK) + 1;
printf("Current Arbitration Configuration\n");
printf("===========\n");
printf("Arbitration Burst: ");
if (ab == SPDK_NVME_ARB_BURST_MASK) {
printf("no limit\n");
} else {
printf("%u\n", 1u << ab);
}
printf("Low Priority Weight: %u\n", lpw);
printf("Medium Priority Weight: %u\n", mpw);
printf("High Priority Weight: %u\n", hpw);
printf("\n");
}
}
static void
set_feature_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
struct feature *feature = cb_arg;
int fid = feature - features;
if (spdk_nvme_cpl_is_error(cpl)) {
printf("set_feature(0x%02X) failed\n", fid);
feature->valid = false;
} else {
printf("Set Arbitration Feature Successfully\n");
}
g_arbitration.outstanding_commands--;
}
static int
set_arb_feature(struct spdk_nvme_ctrlr *ctrlr)
{
int ret;
struct spdk_nvme_cmd cmd = {};
uint32_t arb = 0;
unsigned ab, lpw, mpw, hpw;
cmd.opc = SPDK_NVME_OPC_SET_FEATURES;
cmd.cdw10 = SPDK_NVME_FEAT_ARBITRATION;
g_arbitration.outstanding_commands = 0;
if (features[SPDK_NVME_FEAT_ARBITRATION].valid) {
ab = USER_SPECIFIED_ARBITRATION_BURST & SPDK_NVME_ARB_BURST_MASK;
hpw = USER_SPECIFIED_HIGH_PRIORITY_WEIGHT << SPDK_NVME_HIGH_PRIO_WEIGHT_SHIFT;
mpw = USER_SPECIFIED_MEDIUM_PRIORITY_WEIGHT << SPDK_NVME_MED_PRIO_WEIGHT_SHIFT;
lpw = USER_SPECIFIED_LOW_PRIORITY_WEIGHT << SPDK_NVME_LOW_PRIO_WEIGHT_SHIFT;
arb = hpw | mpw | lpw | ab;
cmd.cdw11 = arb;
}
ret = spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, &cmd, NULL, 0,
set_feature_completion, &features[SPDK_NVME_FEAT_ARBITRATION]);
if (ret) {
printf("Set Arbitration Feature: Failed 0x%x\n", ret);
return 1;
}
g_arbitration.outstanding_commands++;
while (g_arbitration.outstanding_commands) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
}
if (!features[SPDK_NVME_FEAT_ARBITRATION].valid) {
printf("Set Arbitration Feature failed and use default configuration\n");
}
return 0;
}
int
main(int argc, char **argv)
{
int rc;
struct worker_thread *worker, *master_worker;
unsigned master_core;
char task_pool_name[30];
uint32_t task_count;
struct spdk_env_opts opts;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
spdk_env_opts_init(&opts);
opts.name = "arb";
opts.core_mask = g_arbitration.core_mask;
opts.shm_id = g_arbitration.shm_id;
spdk_env_init(&opts);
g_arbitration.tsc_rate = spdk_get_ticks_hz();
if (register_workers() != 0) {
return 1;
}
if (register_controllers() != 0) {
return 1;
}
if (associate_workers_with_ns() != 0) {
return 1;
}
snprintf(task_pool_name, sizeof(task_pool_name), "task_pool_%d", getpid());
/*
* The task_count will be dynamically calculated based on the
* number of attached active namespaces, queue depth and number
* of cores (workers) involved in the IO perations.
*/
task_count = g_arbitration.num_namespaces > g_arbitration.num_workers ?
g_arbitration.num_namespaces : g_arbitration.num_workers;
task_count *= g_arbitration.queue_depth;
task_pool = rte_mempool_create(task_pool_name, task_count,
sizeof(struct arb_task),
0, 0, NULL, NULL, task_ctor, NULL,
SOCKET_ID_ANY, 0);
if (task_pool == NULL) {
fprintf(stderr, "could not initialize task pool\n");
return 1;
}
print_configuration(argv[0]);
printf("Initialization complete. Launching workers.\n");
/* Launch all of the slave workers */
master_core = rte_get_master_lcore();
master_worker = NULL;
worker = g_workers;
while (worker != NULL) {
if (worker->lcore != master_core) {
rte_eal_remote_launch(work_fn, worker, worker->lcore);
} else {
assert(master_worker == NULL);
master_worker = worker;
}
worker = worker->next;
}
assert(master_worker != NULL);
rc = work_fn(master_worker);
rte_eal_mp_wait_lcore();
print_stats();
unregister_controllers();
cleanup();
if (rc != 0) {
fprintf(stderr, "%s: errors occured\n", argv[0]);
}
return rc;
}