Paul Luse 6052d9a432 nvme.sh: add delay after app startup when they are primary
A short delay is required between starting up a primary and
secondary process with DPDK depending on what the secondary
depends on wrt the primary. As the SPDK sample apps are not
designed to be dependent on each other, when we use them
as primary/secondary in test scripts with no deterministic
synchronization, it is possible for one ore more to hang
resulting in DPDK fatal init failures. Often times this would
show up as a failure to get hugepages in vtophys

A related fix, same failing signature in the same test script,
is also included here where the stub app, which is designed
to act as primary in certain sections of the test script, was
being killed by the test script but the next primary app was
coming up before the process was dead and coming up as a
secondary. A wait was added to assure that the stub process is
gone before the next app tries to start.

Change-Id: If2f6fc25e76b769ad8edafa8e965be246e98dab9
Signed-off-by: Paul Luse <paul.e.luse@intel.com>
Reviewed-on: https://review.gerrithub.io/367725
Tested-by: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
2017-07-05 15:40:10 -04:00
2017-06-26 08:53:40 -04:00
2017-05-18 09:48:23 -07:00
2017-05-17 09:49:27 -07:00
2017-06-14 20:38:03 -04:00
2016-01-28 08:54:18 -07:00
2017-05-17 09:49:27 -07:00
2017-05-25 13:52:25 -04:00

Storage Performance Development Kit

Build Status

SPDK Mailing List

SPDK on 01.org

The Storage Performance Development Kit (SPDK) provides a set of tools and libraries for writing high performance, scalable, user-mode storage applications. It achieves high performance by moving all of the necessary drivers into userspace and operating in a polled mode instead of relying on interrupts, which avoids kernel context switches and eliminates interrupt handling overhead.

The development kit currently includes:

Documentation

Doxygen API documentation is available, as well as a Porting Guide for porting SPDK to different frameworks and operating systems.

Many examples are available in the examples directory.

Changelog

Prerequisites

To build SPDK, some dependencies must be installed.

Fedora/CentOS:

sudo dnf install -y gcc gcc-c++ CUnit-devel libaio-devel openssl-devel
# Additional dependencies for NVMe over Fabrics:
sudo dnf install -y libibverbs-devel librdmacm-devel

Ubuntu/Debian:

sudo apt-get install -y gcc g++ make libcunit1-dev libaio-dev libssl-dev
# Additional dependencies for NVMe over Fabrics:
sudo apt-get install -y libibverbs-dev librdmacm-dev

FreeBSD:

sudo pkg install gmake cunit openssl

Additionally, DPDK is required. The SPDK repository includes a suitable version of DPDK as a submodule:

git submodule update --init

Building

Once the prerequisites are installed, building follows the common configure and make pattern (note: this will build the DPDK submodule as well).

Linux:

./configure
make

FreeBSD:

./configure
gmake

Vagrant

A Vagrant setup is also provided to create a Linux VM with a virtual NVMe controller to get up and running quickly. Currently this has only been tested on MacOS and Ubuntu 16.04.2 LTS with the VirtualBox provider. The VirtualBox Extension Pack must also be installed in order to get the required NVMe support.

Details on the Vagrant setup can be found in scripts/vagrant/README.md.

Advanced Build Options

Optional components and other build-time configuration are controlled by settings in two Makefile fragments in the root of the repository. CONFIG contains the base settings. Running the configure script generates a new file, CONFIG.local, that contains overrides to the base CONFIG file. For advanced configuration, there are a number of additional options to configure that may be used, or CONFIG.local can simply be created and edited by hand. A description of all possible options is located in CONFIG.

Boolean (on/off) options are configured with a 'y' (yes) or 'n' (no). For example, this line of CONFIG controls whether the optional RDMA (libibverbs) support is enabled:

CONFIG_RDMA?=n

To enable RDMA, this line may be added to CONFIG.local with a 'y' instead of 'n'. For the majority of options this can be done using the configure script. For example:

./configure --with-dpdk=./dpdk/x86_64-native-linuxapp-gcc --with-rdma

Additionally, CONFIG options may also be overrriden on the make command line:

make CONFIG_RDMA=y

Users may wish to use a version of DPDK different from the submodule included in the SPDK repository. To specify an alternate DPDK installation, run configure with the --with-dpdk option. For example:

Linux:

./configure --with-dpdk=/path/to/dpdk/x86_64-native-linuxapp-gcc
make

FreeBSD:

./configure --with-dpdk=/path/to/dpdk/x86_64-native-bsdapp-clang
gmake

The options specified on the make command line take precedence over the default values in CONFIG and CONFIG.local. This can be useful if you, for example, generate a CONFIG.local using the configure script and then have one or two options (i.e. debug builds) that you wish to turn on and off frequently.

Hugepages and Device Binding

Before running an SPDK application, some hugepages must be allocated and any NVMe and I/OAT devices must be unbound from the native kernel drivers. SPDK includes a script to automate this process on both Linux and FreeBSD. This script should be run as root.

sudo scripts/setup.sh

Examples

Example code is located in the examples directory. The examples are compiled automatically as part of the build process. Simply call any of the examples with no arguments to see the help output. You'll likely need to run the examples as a privileged user (root) unless you've done additional configuration to grant your user permission to allocate huge pages and map devices through vfio.

Description
numam-spdk
Readme BSD-3-Clause 318 MiB
Languages
C 82.7%
Shell 7.4%
Python 4.8%
Makefile 4.7%
C++ 0.3%