617a004fb9
There is no need to keep this functionality in separate files. Change-Id: Ie998324cbcfcdc384f912fe36124b082774c0dc8 Signed-off-by: Wojciech Malikowski <wojciech.malikowski@intel.com> Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/456475 Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
964 lines
26 KiB
C
964 lines
26 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "vmd.h"
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
static unsigned char *device_type[] = {
|
|
"PCI Express Endpoint",
|
|
"Legacy PCI Express Endpoint",
|
|
"Reserved 1",
|
|
"Reserved 2",
|
|
"Root Port of PCI Express Root Complex",
|
|
"Upstream Port of PCI Express Switch",
|
|
"Downstream Port of PCI Express Switch",
|
|
"PCI Express to PCI/PCI-X Bridge",
|
|
"PCI/PCI-X to PCI Express Bridge",
|
|
"Root Complex Integrated Endpoint",
|
|
"Root Complex Event Collector",
|
|
"Reserved Capability"
|
|
};
|
|
|
|
/*
|
|
* Container for all VMD adapter probed in the system.
|
|
*/
|
|
struct vmd_container {
|
|
uint32_t count;
|
|
/* can target specific vmd or all vmd when null */
|
|
struct spdk_pci_addr *vmd_target_addr;
|
|
vmd_adapter vmd[MAX_VMD_SUPPORTED];
|
|
} vmd_container;
|
|
|
|
static struct vmd_container g_vmd_container;
|
|
static int g_end_device_count;
|
|
|
|
static bool
|
|
vmd_is_valid_cfg_addr(vmd_pci_bus *bus, uint64_t addr)
|
|
{
|
|
if (bus == NULL || !addr || bus->vmd == NULL) {
|
|
return false;
|
|
}
|
|
|
|
return addr >= (uint64_t)bus->vmd->cfg_vaddr &&
|
|
addr < bus->vmd->cfgbar_size + (uint64_t)bus->vmd->cfg_vaddr;
|
|
}
|
|
|
|
static void
|
|
vmd_align_base_addrs(vmd_adapter *vmd, vmd_pci_device *dev, uint32_t alignment)
|
|
{
|
|
/*
|
|
* Device is not in hot plug path, align the base address remaining from membar 1.
|
|
*/
|
|
if (vmd) {
|
|
if (vmd->physical_addr & (alignment - 1)) {
|
|
uint32_t pad = alignment - (vmd->physical_addr & (alignment - 1));
|
|
vmd->physical_addr += pad;
|
|
vmd->current_addr_size -= pad;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocates an address from vmd membar for the input memory size
|
|
* vmdAdapter - vmd adapter object
|
|
* dev - vmd_pci_device to allocate a base address for.
|
|
* size - size of the memory window requested.
|
|
* Size must be an integral multiple of 2. Addresses are returned on the size boundary.
|
|
* Returns physical address within the VMD membar window, or 0x0 if cannot allocate window.
|
|
* Consider increasing the size of vmd membar if 0x0 is returned.
|
|
*/
|
|
static uint64_t
|
|
vmd_allocate_base_addr(vmd_adapter *vmd, vmd_pci_device *dev, uint32_t size)
|
|
{
|
|
uint64_t base_address = 0;
|
|
|
|
if (size && ((size & (~size + 1)) != size)) {
|
|
return base_address;
|
|
}
|
|
|
|
/*
|
|
* If device is downstream of a hot plug port, allocate address from the
|
|
* range dedicated for the hot plug slot. Search the list of addresses allocated to determine
|
|
* if a free range exists that satisfy the input request. If a free range cannot be found,
|
|
* get a buffer from the unused chunk. First fit algorithm, is used.
|
|
*/
|
|
if (dev) {
|
|
vmd_pci_bus *hp_bus = vmd_is_dev_in_hotplug_path(dev);
|
|
if (hp_bus && hp_bus->self) {
|
|
return vmd_hp_allocate_base_addr(hp_bus->self->hp, size);
|
|
}
|
|
}
|
|
|
|
/* Ensure physical membar allocated is size aligned */
|
|
if (vmd->physical_addr & (size - 1)) {
|
|
uint32_t pad = size - (vmd->physical_addr & (size - 1));
|
|
vmd->physical_addr += pad;
|
|
vmd->current_addr_size -= pad;
|
|
}
|
|
|
|
/* Allocate from membar if enough memory is left */
|
|
if (vmd->current_addr_size >= size) {
|
|
base_address = vmd->physical_addr;
|
|
vmd->physical_addr += size;
|
|
vmd->current_addr_size -= size;
|
|
}
|
|
|
|
printf("%s: allocated(size) %lx (%x)\n", __func__, base_address, size);
|
|
|
|
return base_address;
|
|
}
|
|
|
|
static bool
|
|
vmd_is_end_device(vmd_pci_device *dev)
|
|
{
|
|
return (dev && dev->header) &&
|
|
((dev->header->common.header_type & ~PCI_MULTI_FUNCTION) == PCI_HEADER_TYPE_NORMAL);
|
|
}
|
|
|
|
static void
|
|
vmd_update_base_limit_register(vmd_pci_device *dev, uint16_t base, uint16_t limit)
|
|
{
|
|
if (base && limit && dev != NULL) {
|
|
vmd_pci_bus *bus = dev->parent;
|
|
while (bus && bus->self != NULL) {
|
|
vmd_pci_device *bridge = bus->self;
|
|
|
|
/* This is only for 32-bit memory space, need to revisit to support 64-bit */
|
|
if (bridge->header->one.mem_base > base) {
|
|
bridge->header->one.mem_base = base;
|
|
base = bridge->header->one.mem_base;
|
|
}
|
|
|
|
if (bridge->header->one.mem_limit < limit) {
|
|
bridge->header->one.mem_limit = limit;
|
|
limit = bridge->header->one.mem_limit;
|
|
}
|
|
bus = bus->parent;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool
|
|
vmd_assign_base_addrs(vmd_pci_device *dev)
|
|
{
|
|
uint16_t mem_base = 0, mem_limit = 0;
|
|
unsigned char mem_attr = 0;
|
|
int last = dev->header_type ? 2 : 6;
|
|
vmd_adapter *vmd = NULL;
|
|
bool ret_val = false;
|
|
uint32_t bar_value;
|
|
|
|
if (dev && dev->bus) {
|
|
vmd = dev->bus->vmd;
|
|
}
|
|
|
|
if (!vmd) {
|
|
return 0;
|
|
}
|
|
|
|
vmd_align_base_addrs(vmd, vmd->is_hotplug_scan ? dev : NULL, ONE_MB);
|
|
|
|
for (int i = 0; i < last; i++) {
|
|
bar_value = dev->header->zero.BAR[i];
|
|
dev->header->zero.BAR[i] = ~(0U);
|
|
dev->bar[i].size = dev->header->zero.BAR[i];
|
|
dev->header->zero.BAR[i] = bar_value;
|
|
|
|
if (dev->bar[i].size == ~(0U) || dev->bar[i].size == 0 ||
|
|
dev->header->zero.BAR[i] & 1) {
|
|
dev->bar[i].size = 0;
|
|
continue;
|
|
}
|
|
mem_attr = dev->bar[i].size & PCI_BASE_ADDR_MASK;
|
|
dev->bar[i].size = TWOS_COMPLEMENT(dev->bar[i].size & PCI_BASE_ADDR_MASK);
|
|
dev->bar[i].start = vmd_allocate_base_addr(vmd, dev, dev->bar[i].size);
|
|
dev->header->zero.BAR[i] = (uint32_t)dev->bar[i].start;
|
|
|
|
if (!dev->bar[i].start) {
|
|
if (mem_attr == (PCI_BAR_MEMORY_PREFETCH | PCI_BAR_MEMORY_TYPE_64)) { i++; }
|
|
continue;
|
|
}
|
|
|
|
dev->bar[i].vaddr = ((uint64_t)vmd->mem_vaddr + (dev->bar[i].start - vmd->membar));
|
|
mem_limit = BRIDGE_BASEREG(dev->header->zero.BAR[i]) +
|
|
BRIDGE_BASEREG(dev->bar[i].size - 1);
|
|
if (!mem_base) {
|
|
mem_base = BRIDGE_BASEREG(dev->header->zero.BAR[i]);
|
|
}
|
|
|
|
ret_val = true;
|
|
|
|
if (mem_attr == (PCI_BAR_MEMORY_PREFETCH | PCI_BAR_MEMORY_TYPE_64)) {
|
|
i++;
|
|
if (i < last) {
|
|
dev->header->zero.BAR[i] = (uint32_t)(dev->bar[i].start >> PCI_DWORD_SHIFT);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Enable device MEM and bus mastering */
|
|
dev->header->zero.command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
|
|
uint16_t cmd = dev->header->zero.command;
|
|
cmd++;
|
|
|
|
if (dev->msix_cap && ret_val) {
|
|
uint32_t table_offset = ((volatile pci_msix_cap *)dev->msix_cap)->msix_table_offset;
|
|
if (dev->bar[table_offset & 0x3].vaddr) {
|
|
dev->msix_table = (volatile pci_msix_table_entry *)
|
|
(dev->bar[table_offset & 0x3].vaddr + (table_offset & 0xfff8));
|
|
}
|
|
}
|
|
|
|
if (ret_val && vmd_is_end_device(dev)) {
|
|
vmd_update_base_limit_register(dev, mem_base, mem_limit);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
static void
|
|
vmd_get_device_capabilities(vmd_pci_device *dev)
|
|
|
|
{
|
|
volatile uint8_t *config_space;
|
|
uint8_t capabilities_offset;
|
|
pci_capabilities_header *capabilities_hdr;
|
|
|
|
if (!dev) {
|
|
return;
|
|
}
|
|
|
|
config_space = (volatile uint8_t *)dev->header;
|
|
if ((dev->header->common.status & PCI_CAPABILITIES_LIST) == 0) {
|
|
return;
|
|
}
|
|
|
|
capabilities_offset = dev->header->zero.cap_pointer;
|
|
if (dev->header->common.header_type & PCI_HEADER_TYPE_BRIDGE) {
|
|
capabilities_offset = dev->header->one.cap_pointer;
|
|
}
|
|
|
|
while (capabilities_offset > 0) {
|
|
capabilities_hdr = (pci_capabilities_header *)&config_space[capabilities_offset];
|
|
switch (capabilities_hdr->capability_id) {
|
|
case CAPABILITY_ID_PCI_EXPRESS:
|
|
dev->pcie_cap = (volatile pci_express_cap *)(capabilities_hdr);
|
|
break;
|
|
|
|
case CAPABILITY_ID_MSI:
|
|
dev->msi_cap = (volatile pci_msi_cap *)capabilities_hdr;
|
|
break;
|
|
|
|
case CAPABILITY_ID_MSIX:
|
|
dev->msix_cap = (volatile pci_msix_capability *)capabilities_hdr;
|
|
dev->msix_table_size = dev->msix_cap->message_control.bit.table_size + 1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
capabilities_offset = capabilities_hdr->next;
|
|
}
|
|
}
|
|
|
|
static volatile pci_enhanced_capability_header *
|
|
vmd_get_enhanced_capabilities(vmd_pci_device *dev, uint16_t capability_id)
|
|
{
|
|
uint8_t *data;
|
|
uint16_t cap_offset = EXTENDED_CAPABILITY_OFFSET;
|
|
volatile pci_enhanced_capability_header *cap_hdr = NULL;
|
|
|
|
data = (uint8_t *)dev->header;
|
|
while (cap_offset >= EXTENDED_CAPABILITY_OFFSET) {
|
|
cap_hdr = (volatile pci_enhanced_capability_header *) &data[cap_offset];
|
|
if (cap_hdr->capability_id == capability_id) {
|
|
return cap_hdr;
|
|
}
|
|
cap_offset = cap_hdr->next;
|
|
if (cap_offset == 0 || cap_offset < EXTENDED_CAPABILITY_OFFSET) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
vmd_read_config_space(vmd_pci_device *dev)
|
|
{
|
|
/*
|
|
* Writes to the pci config space is posted weite. To ensure transaction reaches its destination
|
|
* before another write is posed, an immediate read of the written value should be performed.
|
|
*/
|
|
dev->header->common.command |= (BUS_MASTER_ENABLE | MEMORY_SPACE_ENABLE);
|
|
{ uint16_t cmd = dev->header->common.command; (void)cmd; }
|
|
|
|
vmd_get_device_capabilities(dev);
|
|
dev->sn_cap = (serial_number_capability *)vmd_get_enhanced_capabilities(dev,
|
|
DEVICE_SERIAL_NUMBER_CAP_ID);
|
|
}
|
|
|
|
static vmd_pci_device *
|
|
vmd_alloc_dev(vmd_pci_bus *bus, uint32_t devfn)
|
|
{
|
|
vmd_pci_device *dev = NULL;
|
|
pci_header volatile *header;
|
|
uint8_t header_type;
|
|
uint32_t rev_class;
|
|
|
|
if (bus == NULL || bus->vmd == NULL) {
|
|
return dev;
|
|
}
|
|
|
|
header = (pci_header * volatile)(bus->vmd->cfg_vaddr +
|
|
CONFIG_OFFSET_ADDR(bus->bus_number, devfn, 0, 0));
|
|
if (!vmd_is_valid_cfg_addr(bus, (uint64_t)header)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (header->common.vendor_id == PCI_INVALID_VENDORID || header->common.vendor_id == 0x0) {
|
|
return NULL;
|
|
}
|
|
|
|
printf(" *** PCI DEVICE FOUND : %04x:%04x ***\n",
|
|
header->common.vendor_id, header->common.device_id);
|
|
if ((dev = calloc(1, sizeof(vmd_pci_device))) == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
dev->header = header;
|
|
dev->vid = dev->header->common.vendor_id;
|
|
dev->did = dev->header->common.device_id;
|
|
dev->bus = bus;
|
|
dev->parent = bus;
|
|
dev->devfn = devfn;
|
|
header_type = dev->header->common.header_type;
|
|
rev_class = dev->header->common.rev_class;
|
|
dev->class = rev_class >> 8;
|
|
dev->header_type = header_type & 0x7;
|
|
|
|
if (header_type == PCI_HEADER_TYPE_BRIDGE) {
|
|
dev->header->one.mem_base = 0xfff0;
|
|
dev->header->one.mem_limit = 0x0;
|
|
dev->header->one.prefetch_base_upper = 0x0;
|
|
dev->header->one.prefetch_limit_upper = 0x0;
|
|
dev->header->one.io_base_upper = 0x0;
|
|
dev->header->one.io_limit_upper = 0x0;
|
|
dev->header->one.primary = 0;
|
|
dev->header->one.secondary = 0;
|
|
dev->header->one.subordinate = 0;
|
|
}
|
|
|
|
vmd_read_config_space(dev);
|
|
|
|
return dev;
|
|
}
|
|
|
|
static void
|
|
vmd_add_bus_to_list(vmd_adapter *vmd, vmd_pci_bus *bus)
|
|
{
|
|
vmd_pci_bus *blist;
|
|
|
|
if (!bus || !vmd) {
|
|
return;
|
|
}
|
|
|
|
blist = vmd->bus_list;
|
|
bus->next = NULL;
|
|
if (blist == NULL) {
|
|
vmd->bus_list = bus;
|
|
return;
|
|
}
|
|
|
|
while (blist->next != NULL) {
|
|
blist = blist->next;
|
|
}
|
|
|
|
blist->next = bus;
|
|
}
|
|
|
|
static void
|
|
vmd_pcibus_remove_device(vmd_pci_bus *bus, vmd_pci_device *device)
|
|
{
|
|
vmd_pci_device *list = bus->dev_list;
|
|
|
|
if (list == device) {
|
|
bus->dev_list = NULL;
|
|
}
|
|
|
|
while (list->next != NULL) {
|
|
if (list->next == device) {
|
|
list->next = list->next->next;
|
|
}
|
|
list = list->next;
|
|
}
|
|
}
|
|
|
|
|
|
static bool
|
|
vmd_bus_add_device(vmd_pci_bus *bus, vmd_pci_device *device)
|
|
{
|
|
if (!bus || !device) {
|
|
return 0;
|
|
}
|
|
|
|
vmd_pci_device *next_dev = bus->dev_list;
|
|
device->next = NULL;
|
|
if (next_dev == NULL) {
|
|
bus->dev_list = device;
|
|
return 1;
|
|
}
|
|
|
|
while (next_dev->next != NULL) {
|
|
next_dev = next_dev->next;
|
|
}
|
|
|
|
next_dev->next = device;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static vmd_pci_bus *
|
|
vmd_create_new_bus(vmd_pci_bus *parent, vmd_pci_device *bridge, uint8_t bus_number)
|
|
{
|
|
vmd_pci_bus *new_bus;
|
|
if (!parent) {
|
|
return NULL;
|
|
}
|
|
|
|
new_bus = (vmd_pci_bus *)calloc(1, sizeof(vmd_pci_bus));
|
|
if (!new_bus) {
|
|
return NULL;
|
|
}
|
|
new_bus->parent = parent;
|
|
new_bus->domain = parent->domain;
|
|
new_bus->bus_number = bus_number;
|
|
new_bus->secondary_bus = new_bus->subordinate_bus = bus_number;
|
|
new_bus->self = bridge;
|
|
new_bus->vmd = parent->vmd;
|
|
bridge->subordinate = new_bus;
|
|
|
|
bridge->pci.addr.bus = new_bus->bus_number;
|
|
bridge->pci.addr.dev = bridge->devfn;
|
|
bridge->pci.addr.func = 0;
|
|
bridge->pci.addr.domain = parent->vmd->pci.addr.domain;
|
|
|
|
return new_bus;
|
|
}
|
|
|
|
/*
|
|
* Assigns a bus number from the list of available
|
|
* bus numbers. If the device is downstream of a hot plug port,
|
|
* assign the bus number from thiose assigned to the HP port. Otherwise,
|
|
* assign the next bus number from the vmd bus number list.
|
|
*/
|
|
static uint8_t
|
|
vmd_get_next_bus_number(vmd_pci_device *dev, vmd_adapter *vmd)
|
|
{
|
|
uint8_t bus = 0xff;
|
|
|
|
if (dev) {
|
|
vmd_pci_bus *hp_bus = vmd_is_dev_in_hotplug_path(dev);
|
|
if (hp_bus && hp_bus->self && hp_bus->self->hp) {
|
|
return vmd_hp_get_next_bus_number(hp_bus->self->hp);
|
|
}
|
|
}
|
|
|
|
/* Device is not under a hot plug path. Return next global bus number */
|
|
if ((vmd->next_bus_number + 1) < vmd->max_pci_bus) {
|
|
bus = vmd->next_bus_number;
|
|
vmd->next_bus_number++;
|
|
}
|
|
return bus;
|
|
}
|
|
|
|
static uint8_t
|
|
vmd_get_hotplug_bus_numbers(vmd_pci_device *dev)
|
|
{
|
|
uint8_t bus_number = 0xff;
|
|
|
|
if (dev && dev->bus && dev->bus->vmd &&
|
|
((dev->bus->vmd->next_bus_number + RESERVED_HOTPLUG_BUSES) < dev->bus->vmd->max_pci_bus)) {
|
|
bus_number = RESERVED_HOTPLUG_BUSES;
|
|
dev->bus->vmd->next_bus_number += RESERVED_HOTPLUG_BUSES;
|
|
}
|
|
|
|
return bus_number;
|
|
}
|
|
|
|
static void
|
|
vmd_enable_msix(vmd_pci_device *dev)
|
|
{
|
|
volatile uint16_t control;
|
|
|
|
if (!(dev && dev->msix_cap)) {
|
|
return;
|
|
}
|
|
|
|
control = dev->msix_cap->message_control.as_uint16_t | (1 << 14);
|
|
dev->msix_cap->message_control.as_uint16_t = control;
|
|
control = dev->msix_cap->message_control.as_uint16_t;
|
|
dev->msix_cap->message_control.as_uint16_t = (control | (1 << 15));
|
|
control = dev->msix_cap->message_control.as_uint16_t;
|
|
control = control & ~(1 << 14);
|
|
dev->msix_cap->message_control.as_uint16_t = control;
|
|
control = dev->msix_cap->message_control.as_uint16_t;
|
|
}
|
|
|
|
static void
|
|
vmd_disable_msix(vmd_pci_device *dev)
|
|
{
|
|
volatile uint16_t control;
|
|
|
|
if (!(dev && dev->msix_cap)) {
|
|
return;
|
|
}
|
|
|
|
control = dev->msix_cap->message_control.as_uint16_t | (1 << 14);
|
|
dev->msix_cap->message_control.as_uint16_t = control;
|
|
control = dev->msix_cap->message_control.as_uint16_t & ~(1 << 15);
|
|
dev->msix_cap->message_control.as_uint16_t = control;
|
|
control = dev->msix_cap->message_control.as_uint16_t;
|
|
}
|
|
|
|
/*
|
|
* Set up MSI-X table entries for the port. Vmd MSIX vector 0 is used for
|
|
* port interrupt, so vector 0 is mapped to all MSIX entries for the port.
|
|
*/
|
|
static void
|
|
vmd_setup_msix(vmd_pci_device *dev, volatile struct _pci_misx_table_entry *vmdEntry)
|
|
{
|
|
int entry;
|
|
|
|
if (!dev || !vmdEntry || !dev->msix_cap) {
|
|
return;
|
|
}
|
|
|
|
vmd_disable_msix(dev);
|
|
if (dev->msix_table == NULL || dev->msix_table_size > MAX_MSIX_TABLE_SIZE) {
|
|
return;
|
|
}
|
|
|
|
for (entry = 0; entry < dev->msix_table_size; ++entry) {
|
|
dev->msix_table[entry].vector_control = 1;
|
|
}
|
|
vmd_enable_msix(dev);
|
|
}
|
|
|
|
static void
|
|
vmd_bus_update_bridge_info(vmd_pci_device *bridge)
|
|
{
|
|
/* Update the subordinate bus of all bridges above this bridge */
|
|
volatile vmd_pci_device *dev = bridge;
|
|
uint8_t subordinate_bus;
|
|
|
|
if (!dev) {
|
|
return;
|
|
}
|
|
subordinate_bus = bridge->header->one.subordinate;
|
|
while (dev->parent_bridge != NULL) {
|
|
dev = dev->parent_bridge;
|
|
if (dev->header->one.subordinate < subordinate_bus) {
|
|
dev->header->one.subordinate = subordinate_bus;
|
|
subordinate_bus = dev->header->one.subordinate;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool
|
|
vmd_is_supported_device(vmd_pci_device *dev)
|
|
{
|
|
bool isSupported = false;
|
|
|
|
if (dev && dev->header
|
|
&& (dev->class == PCI_CLASS_STORAGE_EXPRESS)
|
|
#ifndef SUPPORT_ALL_SSDS
|
|
&& (dev->header->common.vendor_id == 0x8086)
|
|
#endif
|
|
) {
|
|
isSupported = true;
|
|
}
|
|
return isSupported;
|
|
}
|
|
|
|
static void
|
|
vmd_dev_init(vmd_pci_device *dev)
|
|
{
|
|
uint8_t bdf[32];
|
|
|
|
/* TODO: Initialize device */
|
|
if (vmd_is_supported_device(dev)) {
|
|
spdk_pci_addr_fmt(bdf, sizeof(bdf), &dev->pci.addr);
|
|
SPDK_DEBUGLOG(SPDK_LOG_VMD, "Initalizing NVMe device at %s\n", bdf);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Scans a single bus for all devices attached and return a count of
|
|
* how many devices found. In the VMD topology, it is assume there are no multi-
|
|
* function devices. Hence a bus(bridge) will not have multi function with both type
|
|
* 0 and 1 header.
|
|
*
|
|
* The other option for implementing this function is the bus is an int and
|
|
* create a new device PciBridge. PciBridge would inherit from PciDevice with extra fields,
|
|
* sub/pri/sec bus. The input becomes PciPort, bus number and parent_bridge.
|
|
*
|
|
* The bus number is scanned and if a device is found, based on the header_type, create
|
|
* either PciBridge(1) or PciDevice(0).
|
|
*
|
|
* If a PciBridge, assign bus numbers and rescan new bus. The currenty PciBridge being
|
|
* scanned becomes the passed in parent_bridge with the new bus number.
|
|
*
|
|
* The linked list becomes list of pciBridges with PciDevices attached.
|
|
*
|
|
* Return count of how many devices found(type1 + type 0 header devices)
|
|
*/
|
|
static uint8_t
|
|
vmd_scan_single_bus(vmd_pci_bus *bus, vmd_pci_device *parent_bridge)
|
|
{
|
|
/* assuming only single function devices are on the bus */
|
|
vmd_pci_device *new_dev;
|
|
vmd_pci_bus *new_bus;
|
|
int device_number, dev_cnt = 0;
|
|
express_slot_capabiliies_register slot_cap;
|
|
uint8_t new_bus_num;
|
|
|
|
if (bus == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
for (device_number = 0; device_number < 32; device_number++) {
|
|
new_dev = vmd_alloc_dev(bus, device_number);
|
|
if (new_dev == NULL) {
|
|
continue;
|
|
}
|
|
|
|
dev_cnt++;
|
|
if (new_dev->header->common.header_type & PCI_HEADER_TYPE_BRIDGE) {
|
|
slot_cap.as_uint32_t = 0;
|
|
if (new_dev->pcie_cap != NULL) {
|
|
slot_cap.as_uint32_t = new_dev->pcie_cap->slot_cap.as_uint32_t;
|
|
}
|
|
|
|
new_bus_num = vmd_get_next_bus_number(bus->vmd->is_hotplug_scan ? new_dev : NULL, bus->vmd);
|
|
if (new_bus_num == 0xff) {
|
|
free(new_dev);
|
|
return dev_cnt;
|
|
}
|
|
new_bus = vmd_create_new_bus(bus, new_dev, new_bus_num);
|
|
if (!new_bus) {
|
|
free(new_dev);
|
|
return dev_cnt;
|
|
}
|
|
new_bus->primary_bus = bus->secondary_bus;
|
|
new_bus->self = new_dev;
|
|
new_dev->bus_object = new_bus;
|
|
|
|
if (slot_cap.bit_field.hotplug_capable) {
|
|
new_bus->hotplug_buses = vmd_get_hotplug_bus_numbers(new_dev);
|
|
new_bus->subordinate_bus += new_bus->hotplug_buses;
|
|
}
|
|
new_dev->parent_bridge = parent_bridge;
|
|
new_dev->header->one.primary = new_bus->primary_bus;
|
|
new_dev->header->one.secondary = new_bus->secondary_bus;
|
|
new_dev->header->one.subordinate = new_bus->subordinate_bus;
|
|
|
|
vmd_bus_update_bridge_info(new_dev);
|
|
vmd_add_bus_to_list(bus->vmd, new_bus);
|
|
|
|
/* Attach hot plug instance if HP is supported */
|
|
if (slot_cap.bit_field.hotplug_capable) {
|
|
new_dev->hp = vmd_new_hotplug(new_bus, new_bus->hotplug_buses);
|
|
}
|
|
|
|
vmd_dev_init(new_dev);
|
|
|
|
dev_cnt += vmd_scan_single_bus(new_bus, new_dev);
|
|
if (new_dev->pcie_cap != NULL) {
|
|
if (new_dev->pcie_cap->express_cap_register.bit_field.device_type == SwitchUpstreamPort) {
|
|
return dev_cnt;
|
|
}
|
|
}
|
|
} else {
|
|
/* Attach the device to the current bus and assign base addresses */
|
|
vmd_bus_add_device(bus, new_dev);
|
|
g_end_device_count++;
|
|
if (vmd_assign_base_addrs(new_dev)) {
|
|
vmd_setup_msix(new_dev, &bus->vmd->msix_table[0]);
|
|
vmd_dev_init(new_dev);
|
|
if (vmd_is_supported_device(new_dev)) {
|
|
vmd_adapter *vmd = bus->vmd;
|
|
vmd->target[vmd->nvme_count] = new_dev;
|
|
vmd->nvme_count++;
|
|
}
|
|
} else {
|
|
printf("%s: Removing failed device: %p\n", __func__, new_dev);
|
|
vmd_pcibus_remove_device(bus, new_dev);
|
|
if (dev_cnt) {
|
|
dev_cnt--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return dev_cnt;
|
|
}
|
|
|
|
static void
|
|
vmd_print_pci_info(vmd_pci_device *dev)
|
|
{
|
|
if (dev == NULL) {
|
|
return;
|
|
}
|
|
if (dev->header == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (dev->pcie_cap != NULL) {
|
|
printf("PCI DEVICE: [%04X:%04X] type(%x) : %s\n",
|
|
dev->header->common.vendor_id, dev->header->common.device_id,
|
|
dev->pcie_cap->express_cap_register.bit_field.device_type,
|
|
device_type[dev->pcie_cap->express_cap_register.bit_field.device_type]);
|
|
} else {
|
|
printf("PCI DEVICE: [%04X:%04X]\n", dev->header->common.vendor_id, dev->header->common.device_id);
|
|
}
|
|
|
|
printf(" DOMAIN:BDF: %04x:%02x:%02x:%x\n", dev->pci.addr.domain,
|
|
dev->pci.addr.bus, dev->pci.addr.dev, dev->pci.addr.func);
|
|
|
|
if (!(dev->header_type & PCI_HEADER_TYPE_BRIDGE) && dev->bus) {
|
|
printf(" base addr: %x : %p\n", dev->header->zero.BAR[0], (void *)dev->bar[0].vaddr);
|
|
}
|
|
|
|
if ((dev->header_type & PCI_HEADER_TYPE_BRIDGE)) {
|
|
printf(" Primary = %d, Secondary = %d, Subordinate = %d\n",
|
|
dev->header->one.primary, dev->header->one.secondary, dev->header->one.subordinate);
|
|
if (dev->pcie_cap && dev->pcie_cap->express_cap_register.bit_field.slot_implemented) {
|
|
printf(" Slot implemented on this device.\n");
|
|
if (dev->pcie_cap->slot_cap.bit_field.hotplug_capable) {
|
|
printf("Device has HOT-PLUG capable slot.\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dev->sn_cap != NULL) {
|
|
uint8_t *snLow = (uint8_t *)&dev->sn_cap->sn_low;
|
|
uint8_t *snHi = (uint8_t *)&dev->sn_cap->sn_hi;
|
|
printf(" SN: %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x\n",
|
|
snHi[3], snHi[2], snHi[1], snHi[0], snLow[3], snLow[2], snLow[1], snLow[0]);
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
static void
|
|
vmd_pci_print(vmd_pci_bus *bus_list)
|
|
{
|
|
vmd_pci_bus *bus = bus_list;
|
|
|
|
printf("\n ...PCIE devices attached to VMD %04x:%02x:%02x:%x...\n",
|
|
bus_list->vmd->pci.addr.domain, bus_list->vmd->pci.addr.bus,
|
|
bus_list->vmd->pci.addr.dev, bus_list->vmd->pci.addr.func);
|
|
printf("----------------------------------------------\n");
|
|
|
|
while (bus != NULL) {
|
|
vmd_print_pci_info(bus->self);
|
|
vmd_pci_device *dev = bus->dev_list;
|
|
while (dev != NULL) {
|
|
vmd_print_pci_info(dev);
|
|
dev = dev->next;
|
|
}
|
|
bus = bus->next;
|
|
}
|
|
}
|
|
|
|
static uint8_t
|
|
vmd_scan_pcibus(vmd_pci_bus *bus)
|
|
{
|
|
vmd_pci_bus *new_bus = bus;
|
|
int dev_cnt;
|
|
|
|
if (bus == NULL || bus->vmd == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
g_end_device_count = 0;
|
|
vmd_add_bus_to_list(bus->vmd, new_bus);
|
|
bus->vmd->next_bus_number = bus->bus_number + 1;
|
|
dev_cnt = vmd_scan_single_bus(new_bus, NULL);
|
|
printf(" **** VMD scan found %d devices\n", dev_cnt);
|
|
printf(" VMD scan found %d END DEVICES\n", g_end_device_count);
|
|
vmd_pci_print(bus->vmd->bus_list);
|
|
return (uint8_t)dev_cnt;
|
|
}
|
|
|
|
|
|
static int
|
|
vmd_map_bars(vmd_adapter *vmd, struct spdk_pci_device *dev)
|
|
{
|
|
if (!(vmd && dev)) {
|
|
return -1;
|
|
}
|
|
|
|
int rc = spdk_pci_device_map_bar(dev, 0, (void **)&vmd->cfg_vaddr,
|
|
&vmd->cfgbar, &vmd->cfgbar_size);
|
|
if (rc == 0) {
|
|
rc = spdk_pci_device_map_bar(dev, 2, (void **)&vmd->mem_vaddr,
|
|
&vmd->membar, &vmd->membar_size);
|
|
}
|
|
|
|
if (rc == 0) {
|
|
rc = spdk_pci_device_map_bar(dev, 4, (void **)&vmd->msix_vaddr,
|
|
&vmd->msixbar, &vmd->msixbar_size);
|
|
}
|
|
|
|
if (rc == 0) {
|
|
vmd->physical_addr = vmd->membar;
|
|
vmd->current_addr_size = vmd->membar_size;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
vmd_enumerate_devices(vmd_adapter *vmd)
|
|
{
|
|
if (vmd == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
vmd->vmd_bus.vmd = vmd;
|
|
vmd->vmd_bus.secondary_bus = vmd->vmd_bus.subordinate_bus = 0;
|
|
vmd->vmd_bus.primary_bus = vmd->vmd_bus.bus_number = 0;
|
|
vmd->vmd_bus.domain = vmd->pci.addr.domain;
|
|
|
|
return vmd_scan_pcibus(&vmd->vmd_bus);
|
|
}
|
|
|
|
static int
|
|
vmd_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
|
|
{
|
|
uint32_t cmd_reg = 0;
|
|
char bdf[32] = {0};
|
|
struct vmd_container *vmd_c = ctx;
|
|
size_t i;
|
|
|
|
if (!(pci_dev && ctx)) {
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* If vmd target addr is NULL, then all spdk returned devices are consumed
|
|
*/
|
|
if (vmd_c->vmd_target_addr &&
|
|
spdk_pci_addr_compare(&pci_dev->addr, vmd_c->vmd_target_addr)) {
|
|
return -1;
|
|
}
|
|
|
|
spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4);
|
|
cmd_reg |= 0x6; /* PCI bus master/memory enable. */
|
|
spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4);
|
|
|
|
spdk_pci_addr_fmt(bdf, sizeof(bdf), &pci_dev->addr);
|
|
SPDK_DEBUGLOG(SPDK_LOG_VMD, "Found a VMD[ %d ] at %s\n", vmd_c->count, bdf);
|
|
|
|
/* map vmd bars */
|
|
i = vmd_c->count;
|
|
vmd_c->vmd[i].pci = *pci_dev;
|
|
vmd_c->vmd[i].vmd_index = i;
|
|
vmd_c->vmd[i].domain =
|
|
(pci_dev->addr.bus << 16) | (pci_dev->addr.dev << 8) | pci_dev->addr.func;
|
|
vmd_c->vmd[i].max_pci_bus = PCI_MAX_BUS_NUMBER;
|
|
if (vmd_map_bars(&vmd_c->vmd[i], pci_dev) == -1) {
|
|
return -1;
|
|
}
|
|
|
|
SPDK_DEBUGLOG(SPDK_LOG_VMD, "vmd config bar(%p) vaddr(%p) size(%x)\n",
|
|
(void *)vmd_c->vmd[i].cfgbar, (void *)vmd_c->vmd[i].cfg_vaddr,
|
|
(uint32_t)vmd_c->vmd[i].cfgbar_size);
|
|
SPDK_DEBUGLOG(SPDK_LOG_VMD, "vmd mem bar(%p) vaddr(%p) size(%x)\n",
|
|
(void *)vmd_c->vmd[i].membar, (void *)vmd_c->vmd[i].mem_vaddr,
|
|
(uint32_t)vmd_c->vmd[i].membar_size);
|
|
SPDK_DEBUGLOG(SPDK_LOG_VMD, "vmd msix bar(%p) vaddr(%p) size(%x)\n\n",
|
|
(void *)vmd_c->vmd[i].msixbar, (void *)vmd_c->vmd[i].msix_vaddr,
|
|
(uint32_t)vmd_c->vmd[i].msixbar_size);
|
|
|
|
vmd_c->count = i + 1;
|
|
|
|
vmd_enumerate_devices(&vmd_c->vmd[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_vmd_pci_device_list(struct spdk_pci_addr vmd_addr, struct spdk_pci_device *nvme_list)
|
|
{
|
|
int cnt = 0;
|
|
|
|
if (!nvme_list) {
|
|
return -1;
|
|
}
|
|
|
|
for (int i = 0; i < MAX_VMD_TARGET; ++i) {
|
|
if (spdk_pci_addr_compare(&vmd_addr, &g_vmd_container.vmd[i].pci.addr) == 0) {
|
|
vmd_pci_bus *bus = g_vmd_container.vmd[i].bus_list;
|
|
while (bus != NULL) {
|
|
vmd_pci_device *dev = bus->dev_list;
|
|
while (dev != NULL) {
|
|
nvme_list[cnt++] = dev->pci;
|
|
if (!dev->is_hooked) {
|
|
vmd_dev_init(dev);
|
|
dev->is_hooked = 1;
|
|
}
|
|
dev = dev->next;
|
|
}
|
|
bus = bus->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
return cnt;
|
|
}
|
|
|
|
int
|
|
spdk_vmd_probe(struct spdk_pci_addr *vmd_bdf)
|
|
{
|
|
g_vmd_container.vmd_target_addr = vmd_bdf;
|
|
spdk_pci_enumerate(spdk_pci_vmd_get_driver(), vmd_enum_cb, &g_vmd_container);
|
|
g_vmd_container.vmd_target_addr = NULL;
|
|
|
|
return g_vmd_container.count;
|
|
}
|
|
|
|
SPDK_LOG_REGISTER_COMPONENT("vmd", SPDK_LOG_VMD)
|