619acff501
We set cb_ctx to NULL when calling spdk_nvme_probe_async(). It looks that nvme_probe_ctx has not been used anywhere for a long time. nvme_probe_ctx is not public data structure. Remove nvme_probe_ctx to simplify the code and make the following patches easier. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: I7dd5f970a7fde1c9c189fae3c8f28f84d7aed991 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/10554 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
5022 lines
132 KiB
C
5022 lines
132 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
|
|
* Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include "bdev_nvme.h"
|
|
|
|
#include "spdk/accel_engine.h"
|
|
#include "spdk/config.h"
|
|
#include "spdk/endian.h"
|
|
#include "spdk/bdev.h"
|
|
#include "spdk/json.h"
|
|
#include "spdk/likely.h"
|
|
#include "spdk/nvme.h"
|
|
#include "spdk/nvme_ocssd.h"
|
|
#include "spdk/nvme_zns.h"
|
|
#include "spdk/opal.h"
|
|
#include "spdk/thread.h"
|
|
#include "spdk/string.h"
|
|
#include "spdk/util.h"
|
|
|
|
#include "spdk/bdev_module.h"
|
|
#include "spdk/log.h"
|
|
|
|
#define SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT true
|
|
#define SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS (10000)
|
|
|
|
static int bdev_nvme_config_json(struct spdk_json_write_ctx *w);
|
|
|
|
struct nvme_bdev_io {
|
|
/** array of iovecs to transfer. */
|
|
struct iovec *iovs;
|
|
|
|
/** Number of iovecs in iovs array. */
|
|
int iovcnt;
|
|
|
|
/** Current iovec position. */
|
|
int iovpos;
|
|
|
|
/** Offset in current iovec. */
|
|
uint32_t iov_offset;
|
|
|
|
/** I/O path the current I/O or admin passthrough is submitted on, or the I/O path
|
|
* being reset in a reset I/O.
|
|
*/
|
|
struct nvme_io_path *io_path;
|
|
|
|
/** array of iovecs to transfer. */
|
|
struct iovec *fused_iovs;
|
|
|
|
/** Number of iovecs in iovs array. */
|
|
int fused_iovcnt;
|
|
|
|
/** Current iovec position. */
|
|
int fused_iovpos;
|
|
|
|
/** Offset in current iovec. */
|
|
uint32_t fused_iov_offset;
|
|
|
|
/** Saved status for admin passthru completion event, PI error verification, or intermediate compare-and-write status */
|
|
struct spdk_nvme_cpl cpl;
|
|
|
|
/** Extended IO opts passed by the user to bdev layer and mapped to NVME format */
|
|
struct spdk_nvme_ns_cmd_ext_io_opts ext_opts;
|
|
|
|
/** Originating thread */
|
|
struct spdk_thread *orig_thread;
|
|
|
|
/** Keeps track if first of fused commands was submitted */
|
|
bool first_fused_submitted;
|
|
|
|
/** Temporary pointer to zone report buffer */
|
|
struct spdk_nvme_zns_zone_report *zone_report_buf;
|
|
|
|
/** Keep track of how many zones that have been copied to the spdk_bdev_zone_info struct */
|
|
uint64_t handled_zones;
|
|
|
|
/** Expiration value in ticks to retry the current I/O. */
|
|
uint64_t retry_ticks;
|
|
|
|
/* How many times the current I/O was retried. */
|
|
int32_t retry_count;
|
|
};
|
|
|
|
struct nvme_probe_skip_entry {
|
|
struct spdk_nvme_transport_id trid;
|
|
TAILQ_ENTRY(nvme_probe_skip_entry) tailq;
|
|
};
|
|
/* All the controllers deleted by users via RPC are skipped by hotplug monitor */
|
|
static TAILQ_HEAD(, nvme_probe_skip_entry) g_skipped_nvme_ctrlrs = TAILQ_HEAD_INITIALIZER(
|
|
g_skipped_nvme_ctrlrs);
|
|
|
|
static struct spdk_bdev_nvme_opts g_opts = {
|
|
.action_on_timeout = SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE,
|
|
.timeout_us = 0,
|
|
.timeout_admin_us = 0,
|
|
.keep_alive_timeout_ms = SPDK_BDEV_NVME_DEFAULT_KEEP_ALIVE_TIMEOUT_IN_MS,
|
|
.transport_retry_count = 4,
|
|
.arbitration_burst = 0,
|
|
.low_priority_weight = 0,
|
|
.medium_priority_weight = 0,
|
|
.high_priority_weight = 0,
|
|
.nvme_adminq_poll_period_us = 10000ULL,
|
|
.nvme_ioq_poll_period_us = 0,
|
|
.io_queue_requests = 0,
|
|
.delay_cmd_submit = SPDK_BDEV_NVME_DEFAULT_DELAY_CMD_SUBMIT,
|
|
.bdev_retry_count = 0,
|
|
};
|
|
|
|
#define NVME_HOTPLUG_POLL_PERIOD_MAX 10000000ULL
|
|
#define NVME_HOTPLUG_POLL_PERIOD_DEFAULT 100000ULL
|
|
|
|
static int g_hot_insert_nvme_controller_index = 0;
|
|
static uint64_t g_nvme_hotplug_poll_period_us = NVME_HOTPLUG_POLL_PERIOD_DEFAULT;
|
|
static bool g_nvme_hotplug_enabled = false;
|
|
static struct spdk_thread *g_bdev_nvme_init_thread;
|
|
static struct spdk_poller *g_hotplug_poller;
|
|
static struct spdk_poller *g_hotplug_probe_poller;
|
|
static struct spdk_nvme_probe_ctx *g_hotplug_probe_ctx;
|
|
|
|
static void nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
|
|
struct nvme_async_probe_ctx *ctx);
|
|
static void nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
|
|
struct nvme_async_probe_ctx *ctx);
|
|
static int bdev_nvme_library_init(void);
|
|
static void bdev_nvme_library_fini(void);
|
|
static void bdev_nvme_submit_request(struct spdk_io_channel *ch,
|
|
struct spdk_bdev_io *bdev_io);
|
|
static int bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
|
|
void *md, uint64_t lba_count, uint64_t lba,
|
|
uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
|
|
static int bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
|
|
void *md, uint64_t lba_count, uint64_t lba);
|
|
static int bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
|
|
void *md, uint64_t lba_count, uint64_t lba,
|
|
uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts);
|
|
static int bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
|
|
void *md, uint64_t lba_count,
|
|
uint64_t zslba, uint32_t flags);
|
|
static int bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
|
|
void *md, uint64_t lba_count, uint64_t lba,
|
|
uint32_t flags);
|
|
static int bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio,
|
|
struct iovec *cmp_iov, int cmp_iovcnt, struct iovec *write_iov,
|
|
int write_iovcnt, void *md, uint64_t lba_count, uint64_t lba,
|
|
uint32_t flags);
|
|
static int bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id,
|
|
uint32_t num_zones, struct spdk_bdev_zone_info *info);
|
|
static int bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
|
|
enum spdk_bdev_zone_action action);
|
|
static void bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch,
|
|
struct nvme_bdev_io *bio,
|
|
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes);
|
|
static int bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
|
|
void *buf, size_t nbytes);
|
|
static int bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
|
|
void *buf, size_t nbytes, void *md_buf, size_t md_len);
|
|
static void bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch,
|
|
struct nvme_bdev_io *bio, struct nvme_bdev_io *bio_to_abort);
|
|
static void bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio);
|
|
static int bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr);
|
|
static int bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove);
|
|
static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr);
|
|
static void nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr);
|
|
|
|
static int
|
|
nvme_ns_cmp(struct nvme_ns *ns1, struct nvme_ns *ns2)
|
|
{
|
|
return ns1->id - ns2->id;
|
|
}
|
|
|
|
RB_GENERATE_STATIC(nvme_ns_tree, nvme_ns, node, nvme_ns_cmp);
|
|
|
|
struct spdk_nvme_qpair *
|
|
bdev_nvme_get_io_qpair(struct spdk_io_channel *ctrlr_io_ch)
|
|
{
|
|
struct nvme_ctrlr_channel *ctrlr_ch;
|
|
|
|
assert(ctrlr_io_ch != NULL);
|
|
|
|
ctrlr_ch = spdk_io_channel_get_ctx(ctrlr_io_ch);
|
|
|
|
return ctrlr_ch->qpair;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_get_ctx_size(void)
|
|
{
|
|
return sizeof(struct nvme_bdev_io);
|
|
}
|
|
|
|
static struct spdk_bdev_module nvme_if = {
|
|
.name = "nvme",
|
|
.async_fini = true,
|
|
.module_init = bdev_nvme_library_init,
|
|
.module_fini = bdev_nvme_library_fini,
|
|
.config_json = bdev_nvme_config_json,
|
|
.get_ctx_size = bdev_nvme_get_ctx_size,
|
|
|
|
};
|
|
SPDK_BDEV_MODULE_REGISTER(nvme, &nvme_if)
|
|
|
|
struct nvme_bdev_ctrlrs g_nvme_bdev_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_bdev_ctrlrs);
|
|
pthread_mutex_t g_bdev_nvme_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
bool g_bdev_nvme_module_finish;
|
|
|
|
struct nvme_bdev_ctrlr *
|
|
nvme_bdev_ctrlr_get_by_name(const char *name)
|
|
{
|
|
struct nvme_bdev_ctrlr *nbdev_ctrlr;
|
|
|
|
TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
|
|
if (strcmp(name, nbdev_ctrlr->name) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return nbdev_ctrlr;
|
|
}
|
|
|
|
static struct nvme_ctrlr *
|
|
nvme_bdev_ctrlr_get_ctrlr(struct nvme_bdev_ctrlr *nbdev_ctrlr,
|
|
const struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
|
|
TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
|
|
if (spdk_nvme_transport_id_compare(trid, &nvme_ctrlr->active_path_id->trid) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return nvme_ctrlr;
|
|
}
|
|
|
|
static struct nvme_bdev *
|
|
nvme_bdev_ctrlr_get_bdev(struct nvme_bdev_ctrlr *nbdev_ctrlr, uint32_t nsid)
|
|
{
|
|
struct nvme_bdev *bdev;
|
|
|
|
pthread_mutex_lock(&g_bdev_nvme_mutex);
|
|
TAILQ_FOREACH(bdev, &nbdev_ctrlr->bdevs, tailq) {
|
|
if (bdev->nsid == nsid) {
|
|
break;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
|
|
return bdev;
|
|
}
|
|
|
|
struct nvme_ns *
|
|
nvme_ctrlr_get_ns(struct nvme_ctrlr *nvme_ctrlr, uint32_t nsid)
|
|
{
|
|
struct nvme_ns ns;
|
|
|
|
assert(nsid > 0);
|
|
|
|
ns.id = nsid;
|
|
return RB_FIND(nvme_ns_tree, &nvme_ctrlr->namespaces, &ns);
|
|
}
|
|
|
|
struct nvme_ns *
|
|
nvme_ctrlr_get_first_active_ns(struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
return RB_MIN(nvme_ns_tree, &nvme_ctrlr->namespaces);
|
|
}
|
|
|
|
struct nvme_ns *
|
|
nvme_ctrlr_get_next_active_ns(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *ns)
|
|
{
|
|
if (ns == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return RB_NEXT(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
|
|
}
|
|
|
|
static struct nvme_ctrlr *
|
|
nvme_ctrlr_get(const struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct nvme_bdev_ctrlr *nbdev_ctrlr;
|
|
struct nvme_ctrlr *nvme_ctrlr = NULL;
|
|
|
|
pthread_mutex_lock(&g_bdev_nvme_mutex);
|
|
TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
|
|
nvme_ctrlr = nvme_bdev_ctrlr_get_ctrlr(nbdev_ctrlr, trid);
|
|
if (nvme_ctrlr != NULL) {
|
|
break;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
|
|
return nvme_ctrlr;
|
|
}
|
|
|
|
struct nvme_ctrlr *
|
|
nvme_ctrlr_get_by_name(const char *name)
|
|
{
|
|
struct nvme_bdev_ctrlr *nbdev_ctrlr;
|
|
struct nvme_ctrlr *nvme_ctrlr = NULL;
|
|
|
|
if (name == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
pthread_mutex_lock(&g_bdev_nvme_mutex);
|
|
nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
|
|
if (nbdev_ctrlr != NULL) {
|
|
nvme_ctrlr = TAILQ_FIRST(&nbdev_ctrlr->ctrlrs);
|
|
}
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
|
|
return nvme_ctrlr;
|
|
}
|
|
|
|
void
|
|
nvme_bdev_ctrlr_for_each(nvme_bdev_ctrlr_for_each_fn fn, void *ctx)
|
|
{
|
|
struct nvme_bdev_ctrlr *nbdev_ctrlr;
|
|
|
|
pthread_mutex_lock(&g_bdev_nvme_mutex);
|
|
TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
|
|
fn(nbdev_ctrlr, ctx);
|
|
}
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
}
|
|
|
|
void
|
|
nvme_bdev_dump_trid_json(const struct spdk_nvme_transport_id *trid, struct spdk_json_write_ctx *w)
|
|
{
|
|
const char *trtype_str;
|
|
const char *adrfam_str;
|
|
|
|
trtype_str = spdk_nvme_transport_id_trtype_str(trid->trtype);
|
|
if (trtype_str) {
|
|
spdk_json_write_named_string(w, "trtype", trtype_str);
|
|
}
|
|
|
|
adrfam_str = spdk_nvme_transport_id_adrfam_str(trid->adrfam);
|
|
if (adrfam_str) {
|
|
spdk_json_write_named_string(w, "adrfam", adrfam_str);
|
|
}
|
|
|
|
if (trid->traddr[0] != '\0') {
|
|
spdk_json_write_named_string(w, "traddr", trid->traddr);
|
|
}
|
|
|
|
if (trid->trsvcid[0] != '\0') {
|
|
spdk_json_write_named_string(w, "trsvcid", trid->trsvcid);
|
|
}
|
|
|
|
if (trid->subnqn[0] != '\0') {
|
|
spdk_json_write_named_string(w, "subnqn", trid->subnqn);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_bdev_ctrlr_delete(struct nvme_bdev_ctrlr *nbdev_ctrlr,
|
|
struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
pthread_mutex_lock(&g_bdev_nvme_mutex);
|
|
|
|
TAILQ_REMOVE(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
|
|
if (!TAILQ_EMPTY(&nbdev_ctrlr->ctrlrs)) {
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
|
|
return;
|
|
}
|
|
TAILQ_REMOVE(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
|
|
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
|
|
assert(TAILQ_EMPTY(&nbdev_ctrlr->bdevs));
|
|
|
|
free(nbdev_ctrlr->name);
|
|
free(nbdev_ctrlr);
|
|
}
|
|
|
|
static void
|
|
_nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
struct nvme_path_id *path_id, *tmp_path;
|
|
struct nvme_ns *ns, *tmp_ns;
|
|
|
|
free(nvme_ctrlr->copied_ana_desc);
|
|
spdk_free(nvme_ctrlr->ana_log_page);
|
|
|
|
if (nvme_ctrlr->opal_dev) {
|
|
spdk_opal_dev_destruct(nvme_ctrlr->opal_dev);
|
|
nvme_ctrlr->opal_dev = NULL;
|
|
}
|
|
|
|
if (nvme_ctrlr->nbdev_ctrlr) {
|
|
nvme_bdev_ctrlr_delete(nvme_ctrlr->nbdev_ctrlr, nvme_ctrlr);
|
|
}
|
|
|
|
RB_FOREACH_SAFE(ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp_ns) {
|
|
RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, ns);
|
|
free(ns);
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(path_id, &nvme_ctrlr->trids, link, tmp_path) {
|
|
TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
|
|
free(path_id);
|
|
}
|
|
|
|
pthread_mutex_destroy(&nvme_ctrlr->mutex);
|
|
|
|
free(nvme_ctrlr);
|
|
|
|
pthread_mutex_lock(&g_bdev_nvme_mutex);
|
|
if (g_bdev_nvme_module_finish && TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
|
|
spdk_bdev_module_fini_done();
|
|
return;
|
|
}
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
}
|
|
|
|
static int
|
|
nvme_detach_poller(void *arg)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = arg;
|
|
int rc;
|
|
|
|
rc = spdk_nvme_detach_poll_async(nvme_ctrlr->detach_ctx);
|
|
if (rc != -EAGAIN) {
|
|
spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
|
|
_nvme_ctrlr_delete(nvme_ctrlr);
|
|
}
|
|
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_delete(struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
/* First, unregister the adminq poller, as the driver will poll adminq if necessary */
|
|
spdk_poller_unregister(&nvme_ctrlr->adminq_timer_poller);
|
|
|
|
/* If we got here, the reset/detach poller cannot be active */
|
|
assert(nvme_ctrlr->reset_detach_poller == NULL);
|
|
nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(nvme_detach_poller,
|
|
nvme_ctrlr, 1000);
|
|
if (nvme_ctrlr->reset_detach_poller == NULL) {
|
|
SPDK_ERRLOG("Failed to register detach poller\n");
|
|
goto error;
|
|
}
|
|
|
|
rc = spdk_nvme_detach_async(nvme_ctrlr->ctrlr, &nvme_ctrlr->detach_ctx);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Failed to detach the NVMe controller\n");
|
|
goto error;
|
|
}
|
|
|
|
return;
|
|
error:
|
|
/* We don't have a good way to handle errors here, so just do what we can and delete the
|
|
* controller without detaching the underlying NVMe device.
|
|
*/
|
|
spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
|
|
_nvme_ctrlr_delete(nvme_ctrlr);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_unregister_cb(void *io_device)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = io_device;
|
|
|
|
nvme_ctrlr_delete(nvme_ctrlr);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_unregister(struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
spdk_io_device_unregister(nvme_ctrlr, nvme_ctrlr_unregister_cb);
|
|
}
|
|
|
|
static bool
|
|
nvme_ctrlr_can_be_unregistered(struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
if (!nvme_ctrlr->destruct) {
|
|
return false;
|
|
}
|
|
|
|
if (nvme_ctrlr->ref > 0) {
|
|
return false;
|
|
}
|
|
|
|
if (nvme_ctrlr->resetting) {
|
|
return false;
|
|
}
|
|
|
|
if (nvme_ctrlr->ana_log_page_updating) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_release(struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
|
|
assert(nvme_ctrlr->ref > 0);
|
|
nvme_ctrlr->ref--;
|
|
|
|
if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
|
|
nvme_ctrlr_unregister(nvme_ctrlr);
|
|
}
|
|
|
|
static struct nvme_io_path *
|
|
_bdev_nvme_get_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
|
|
{
|
|
struct nvme_io_path *io_path;
|
|
|
|
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
|
|
if (io_path->nvme_ns == nvme_ns) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return io_path;
|
|
}
|
|
|
|
static int
|
|
_bdev_nvme_add_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_ns *nvme_ns)
|
|
{
|
|
struct nvme_io_path *io_path;
|
|
struct spdk_io_channel *ch;
|
|
|
|
io_path = calloc(1, sizeof(*io_path));
|
|
if (io_path == NULL) {
|
|
SPDK_ERRLOG("Failed to alloc io_path.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ch = spdk_get_io_channel(nvme_ns->ctrlr);
|
|
if (ch == NULL) {
|
|
free(io_path);
|
|
SPDK_ERRLOG("Failed to alloc io_channel.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
io_path->ctrlr_ch = spdk_io_channel_get_ctx(ch);
|
|
TAILQ_INSERT_TAIL(&io_path->ctrlr_ch->io_path_list, io_path, tailq);
|
|
|
|
io_path->nvme_ns = nvme_ns;
|
|
|
|
io_path->nbdev_ch = nbdev_ch;
|
|
STAILQ_INSERT_TAIL(&nbdev_ch->io_path_list, io_path, stailq);
|
|
|
|
nbdev_ch->current_io_path = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
_bdev_nvme_delete_io_path(struct nvme_bdev_channel *nbdev_ch, struct nvme_io_path *io_path)
|
|
{
|
|
struct spdk_io_channel *ch;
|
|
|
|
nbdev_ch->current_io_path = NULL;
|
|
|
|
STAILQ_REMOVE(&nbdev_ch->io_path_list, io_path, nvme_io_path, stailq);
|
|
|
|
TAILQ_REMOVE(&io_path->ctrlr_ch->io_path_list, io_path, tailq);
|
|
ch = spdk_io_channel_from_ctx(io_path->ctrlr_ch);
|
|
spdk_put_io_channel(ch);
|
|
|
|
free(io_path);
|
|
}
|
|
|
|
static void
|
|
_bdev_nvme_delete_io_paths(struct nvme_bdev_channel *nbdev_ch)
|
|
{
|
|
struct nvme_io_path *io_path, *tmp_io_path;
|
|
|
|
STAILQ_FOREACH_SAFE(io_path, &nbdev_ch->io_path_list, stailq, tmp_io_path) {
|
|
_bdev_nvme_delete_io_path(nbdev_ch, io_path);
|
|
}
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_create_bdev_channel_cb(void *io_device, void *ctx_buf)
|
|
{
|
|
struct nvme_bdev_channel *nbdev_ch = ctx_buf;
|
|
struct nvme_bdev *nbdev = io_device;
|
|
struct nvme_ns *nvme_ns;
|
|
int rc;
|
|
|
|
STAILQ_INIT(&nbdev_ch->io_path_list);
|
|
TAILQ_INIT(&nbdev_ch->retry_io_list);
|
|
|
|
pthread_mutex_lock(&nbdev->mutex);
|
|
TAILQ_FOREACH(nvme_ns, &nbdev->nvme_ns_list, tailq) {
|
|
rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
|
|
if (rc != 0) {
|
|
pthread_mutex_unlock(&nbdev->mutex);
|
|
|
|
_bdev_nvme_delete_io_paths(nbdev_ch);
|
|
return rc;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&nbdev->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_abort_retry_ios(struct nvme_bdev_channel *nbdev_ch)
|
|
{
|
|
struct spdk_bdev_io *bdev_io, *tmp_io;
|
|
|
|
TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_io) {
|
|
TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_ABORTED);
|
|
}
|
|
|
|
spdk_poller_unregister(&nbdev_ch->retry_io_poller);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_destroy_bdev_channel_cb(void *io_device, void *ctx_buf)
|
|
{
|
|
struct nvme_bdev_channel *nbdev_ch = ctx_buf;
|
|
|
|
bdev_nvme_abort_retry_ios(nbdev_ch);
|
|
_bdev_nvme_delete_io_paths(nbdev_ch);
|
|
}
|
|
|
|
static inline bool
|
|
bdev_nvme_io_type_is_admin(enum spdk_bdev_io_type io_type)
|
|
{
|
|
switch (io_type) {
|
|
case SPDK_BDEV_IO_TYPE_RESET:
|
|
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
|
|
case SPDK_BDEV_IO_TYPE_ABORT:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
nvme_ns_is_accessible(struct nvme_ns *nvme_ns)
|
|
{
|
|
if (spdk_unlikely(nvme_ns->ana_state_updating)) {
|
|
return false;
|
|
}
|
|
|
|
switch (nvme_ns->ana_state) {
|
|
case SPDK_NVME_ANA_OPTIMIZED_STATE:
|
|
case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool
|
|
nvme_io_path_is_connected(struct nvme_io_path *io_path)
|
|
{
|
|
return io_path->ctrlr_ch->qpair != NULL;
|
|
}
|
|
|
|
static inline bool
|
|
nvme_io_path_is_available(struct nvme_io_path *io_path)
|
|
{
|
|
if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
|
|
return false;
|
|
}
|
|
|
|
if (spdk_unlikely(!nvme_ns_is_accessible(io_path->nvme_ns))) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool
|
|
nvme_io_path_is_failed(struct nvme_io_path *io_path)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
|
|
nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(io_path->ctrlr_ch);
|
|
|
|
if (nvme_ctrlr->destruct) {
|
|
return true;
|
|
}
|
|
|
|
/* In a full reset sequence, ctrlr is set to unfailed but it is after
|
|
* destroying all qpairs. Ctrlr may be still failed even after starting
|
|
* a full reset sequence. Hence we check the resetting flag first.
|
|
*/
|
|
if (nvme_ctrlr->resetting) {
|
|
return false;
|
|
}
|
|
|
|
if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
nvme_ctrlr_is_available(struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
if (nvme_ctrlr->destruct) {
|
|
return false;
|
|
}
|
|
|
|
if (spdk_nvme_ctrlr_is_failed(nvme_ctrlr->ctrlr)) {
|
|
return false;
|
|
}
|
|
|
|
if (nvme_ctrlr->resetting) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline struct nvme_io_path *
|
|
bdev_nvme_find_io_path(struct nvme_bdev_channel *nbdev_ch)
|
|
{
|
|
struct nvme_io_path *io_path, *non_optimized = NULL;
|
|
|
|
if (spdk_likely(nbdev_ch->current_io_path != NULL)) {
|
|
return nbdev_ch->current_io_path;
|
|
}
|
|
|
|
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
|
|
if (spdk_unlikely(!nvme_io_path_is_connected(io_path))) {
|
|
/* The device is currently resetting. */
|
|
continue;
|
|
}
|
|
|
|
if (spdk_unlikely(io_path->nvme_ns->ana_state_updating)) {
|
|
continue;
|
|
}
|
|
|
|
switch (io_path->nvme_ns->ana_state) {
|
|
case SPDK_NVME_ANA_OPTIMIZED_STATE:
|
|
nbdev_ch->current_io_path = io_path;
|
|
return io_path;
|
|
case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
|
|
if (non_optimized == NULL) {
|
|
non_optimized = io_path;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return non_optimized;
|
|
}
|
|
|
|
/* Return true if there is any io_path whose qpair is active or ctrlr is not failed,
|
|
* or false otherwise.
|
|
*
|
|
* If any io_path has an active qpair but find_io_path() returned NULL, its namespace
|
|
* is likely to be non-accessible now but may become accessible.
|
|
*
|
|
* If any io_path has an unfailed ctrlr but find_io_path() returned NULL, the ctrlr
|
|
* is likely to be resetting now but the reset may succeed. A ctrlr is set to unfailed
|
|
* when starting to reset it but it is set to failed when the reset failed. Hence, if
|
|
* a ctrlr is unfailed, it is likely that it works fine or is resetting.
|
|
*/
|
|
static bool
|
|
any_io_path_may_become_available(struct nvme_bdev_channel *nbdev_ch)
|
|
{
|
|
struct nvme_io_path *io_path;
|
|
|
|
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
|
|
if (nvme_io_path_is_connected(io_path) ||
|
|
!nvme_io_path_is_failed(io_path)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
any_ctrlr_may_become_available(struct nvme_bdev_channel *nbdev_ch)
|
|
{
|
|
struct nvme_io_path *io_path;
|
|
|
|
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
|
|
if (!nvme_io_path_is_failed(io_path)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_retry_ios(void *arg)
|
|
{
|
|
struct nvme_bdev_channel *nbdev_ch = arg;
|
|
struct spdk_io_channel *ch = spdk_io_channel_from_ctx(nbdev_ch);
|
|
struct spdk_bdev_io *bdev_io, *tmp_bdev_io;
|
|
struct nvme_bdev_io *bio;
|
|
uint64_t now, delay_us;
|
|
|
|
now = spdk_get_ticks();
|
|
|
|
TAILQ_FOREACH_SAFE(bdev_io, &nbdev_ch->retry_io_list, module_link, tmp_bdev_io) {
|
|
bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
|
|
if (bio->retry_ticks > now) {
|
|
break;
|
|
}
|
|
|
|
TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io, module_link);
|
|
|
|
bdev_nvme_submit_request(ch, bdev_io);
|
|
}
|
|
|
|
spdk_poller_unregister(&nbdev_ch->retry_io_poller);
|
|
|
|
bdev_io = TAILQ_FIRST(&nbdev_ch->retry_io_list);
|
|
if (bdev_io != NULL) {
|
|
bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
|
|
|
|
delay_us = (bio->retry_ticks - now) * SPDK_SEC_TO_USEC / spdk_get_ticks_hz();
|
|
|
|
nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
|
|
delay_us);
|
|
}
|
|
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_queue_retry_io(struct nvme_bdev_channel *nbdev_ch,
|
|
struct nvme_bdev_io *bio, uint64_t delay_ms)
|
|
{
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
struct spdk_bdev_io *tmp_bdev_io;
|
|
struct nvme_bdev_io *tmp_bio;
|
|
|
|
bio->retry_ticks = spdk_get_ticks() + delay_ms * spdk_get_ticks_hz() / 1000ULL;
|
|
|
|
TAILQ_FOREACH_REVERSE(tmp_bdev_io, &nbdev_ch->retry_io_list, retry_io_head, module_link) {
|
|
tmp_bio = (struct nvme_bdev_io *)tmp_bdev_io->driver_ctx;
|
|
|
|
if (tmp_bio->retry_ticks <= bio->retry_ticks) {
|
|
TAILQ_INSERT_AFTER(&nbdev_ch->retry_io_list, tmp_bdev_io, bdev_io,
|
|
module_link);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* No earlier I/Os were found. This I/O must be the new head. */
|
|
TAILQ_INSERT_HEAD(&nbdev_ch->retry_io_list, bdev_io, module_link);
|
|
|
|
spdk_poller_unregister(&nbdev_ch->retry_io_poller);
|
|
|
|
nbdev_ch->retry_io_poller = SPDK_POLLER_REGISTER(bdev_nvme_retry_ios, nbdev_ch,
|
|
delay_ms * 1000ULL);
|
|
}
|
|
|
|
static inline void
|
|
bdev_nvme_io_complete_nvme_status(struct nvme_bdev_io *bio,
|
|
const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
struct nvme_bdev_channel *nbdev_ch;
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
uint64_t delay_ms;
|
|
|
|
assert(!bdev_nvme_io_type_is_admin(bdev_io->type));
|
|
|
|
if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
|
|
goto complete;
|
|
}
|
|
|
|
if (cpl->status.dnr != 0 || (g_opts.bdev_retry_count != -1 &&
|
|
bio->retry_count >= g_opts.bdev_retry_count)) {
|
|
goto complete;
|
|
}
|
|
|
|
nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
|
|
|
|
assert(bio->io_path != NULL);
|
|
nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(bio->io_path->ctrlr_ch);
|
|
|
|
if (spdk_nvme_cpl_is_path_error(cpl) ||
|
|
spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
|
|
!nvme_io_path_is_available(bio->io_path) ||
|
|
!nvme_ctrlr_is_available(nvme_ctrlr)) {
|
|
nbdev_ch->current_io_path = NULL;
|
|
if (spdk_nvme_cpl_is_ana_error(cpl)) {
|
|
bio->io_path->nvme_ns->ana_state_updating = true;
|
|
nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
|
|
}
|
|
delay_ms = 0;
|
|
} else if (spdk_nvme_cpl_is_aborted_by_request(cpl)) {
|
|
goto complete;
|
|
} else {
|
|
bio->retry_count++;
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
|
|
|
|
if (cpl->status.crd != 0) {
|
|
delay_ms = cdata->crdt[cpl->status.crd] * 100;
|
|
} else {
|
|
delay_ms = 0;
|
|
}
|
|
}
|
|
|
|
if (any_io_path_may_become_available(nbdev_ch)) {
|
|
bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
|
|
return;
|
|
}
|
|
|
|
complete:
|
|
bio->retry_count = 0;
|
|
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
|
|
}
|
|
|
|
static inline void
|
|
bdev_nvme_io_complete(struct nvme_bdev_io *bio, int rc)
|
|
{
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
struct nvme_bdev_channel *nbdev_ch;
|
|
enum spdk_bdev_io_status io_status;
|
|
|
|
switch (rc) {
|
|
case 0:
|
|
io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
break;
|
|
case -ENOMEM:
|
|
io_status = SPDK_BDEV_IO_STATUS_NOMEM;
|
|
break;
|
|
case -ENXIO:
|
|
nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
|
|
|
|
nbdev_ch->current_io_path = NULL;
|
|
|
|
if (any_io_path_may_become_available(nbdev_ch)) {
|
|
bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
|
|
return;
|
|
}
|
|
|
|
/* fallthrough */
|
|
default:
|
|
io_status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
break;
|
|
}
|
|
|
|
bio->retry_count = 0;
|
|
spdk_bdev_io_complete(bdev_io, io_status);
|
|
}
|
|
|
|
static inline void
|
|
bdev_nvme_admin_passthru_complete(struct nvme_bdev_io *bio, int rc)
|
|
{
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
struct nvme_bdev_channel *nbdev_ch;
|
|
enum spdk_bdev_io_status io_status;
|
|
|
|
switch (rc) {
|
|
case 0:
|
|
io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
break;
|
|
case -ENOMEM:
|
|
io_status = SPDK_BDEV_IO_STATUS_NOMEM;
|
|
break;
|
|
case -ENXIO:
|
|
nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
|
|
|
|
if (any_ctrlr_may_become_available(nbdev_ch)) {
|
|
bdev_nvme_queue_retry_io(nbdev_ch, bio, 1000ULL);
|
|
return;
|
|
}
|
|
|
|
/* fallthrough */
|
|
default:
|
|
io_status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
break;
|
|
}
|
|
|
|
bio->retry_count = 0;
|
|
spdk_bdev_io_complete(bdev_io, io_status);
|
|
}
|
|
|
|
static void
|
|
_bdev_nvme_clear_io_path_cache(struct nvme_ctrlr_channel *ctrlr_ch)
|
|
{
|
|
struct nvme_io_path *io_path;
|
|
|
|
TAILQ_FOREACH(io_path, &ctrlr_ch->io_path_list, tailq) {
|
|
io_path->nbdev_ch->current_io_path = NULL;
|
|
}
|
|
}
|
|
|
|
static struct nvme_ctrlr_channel *
|
|
nvme_poll_group_get_ctrlr_channel(struct nvme_poll_group *group,
|
|
struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct nvme_ctrlr_channel *ctrlr_ch;
|
|
|
|
TAILQ_FOREACH(ctrlr_ch, &group->ctrlr_ch_list, tailq) {
|
|
if (ctrlr_ch->qpair == qpair) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ctrlr_ch;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_destroy_qpair(struct nvme_ctrlr_channel *ctrlr_ch)
|
|
{
|
|
if (ctrlr_ch->qpair != NULL) {
|
|
spdk_nvme_ctrlr_free_io_qpair(ctrlr_ch->qpair);
|
|
ctrlr_ch->qpair = NULL;
|
|
}
|
|
|
|
_bdev_nvme_clear_io_path_cache(ctrlr_ch);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
|
|
{
|
|
struct nvme_poll_group *group = poll_group_ctx;
|
|
struct nvme_ctrlr_channel *ctrlr_ch;
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
|
|
SPDK_NOTICELOG("qpair %p is disconnected, free the qpair and reset controller.\n", qpair);
|
|
/*
|
|
* Free the I/O qpair and reset the nvme_ctrlr.
|
|
*/
|
|
ctrlr_ch = nvme_poll_group_get_ctrlr_channel(group, qpair);
|
|
if (ctrlr_ch != NULL) {
|
|
bdev_nvme_destroy_qpair(ctrlr_ch);
|
|
|
|
nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(ctrlr_ch);
|
|
bdev_nvme_reset(nvme_ctrlr);
|
|
}
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_poll(void *arg)
|
|
{
|
|
struct nvme_poll_group *group = arg;
|
|
int64_t num_completions;
|
|
|
|
if (group->collect_spin_stat && group->start_ticks == 0) {
|
|
group->start_ticks = spdk_get_ticks();
|
|
}
|
|
|
|
num_completions = spdk_nvme_poll_group_process_completions(group->group, 0,
|
|
bdev_nvme_disconnected_qpair_cb);
|
|
if (group->collect_spin_stat) {
|
|
if (num_completions > 0) {
|
|
if (group->end_ticks != 0) {
|
|
group->spin_ticks += (group->end_ticks - group->start_ticks);
|
|
group->end_ticks = 0;
|
|
}
|
|
group->start_ticks = 0;
|
|
} else {
|
|
group->end_ticks = spdk_get_ticks();
|
|
}
|
|
}
|
|
|
|
return num_completions > 0 ? SPDK_POLLER_BUSY : SPDK_POLLER_IDLE;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_poll_adminq(void *arg)
|
|
{
|
|
int32_t rc;
|
|
struct nvme_ctrlr *nvme_ctrlr = arg;
|
|
|
|
assert(nvme_ctrlr != NULL);
|
|
|
|
rc = spdk_nvme_ctrlr_process_admin_completions(nvme_ctrlr->ctrlr);
|
|
if (rc < 0) {
|
|
bdev_nvme_failover(nvme_ctrlr, false);
|
|
}
|
|
|
|
return rc == 0 ? SPDK_POLLER_IDLE : SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
static void
|
|
_bdev_nvme_unregister_dev_cb(void *io_device)
|
|
{
|
|
struct nvme_bdev *nvme_disk = io_device;
|
|
|
|
free(nvme_disk->disk.name);
|
|
free(nvme_disk);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_destruct(void *ctx)
|
|
{
|
|
struct nvme_bdev *nvme_disk = ctx;
|
|
struct nvme_ns *nvme_ns, *tmp_nvme_ns;
|
|
|
|
TAILQ_FOREACH_SAFE(nvme_ns, &nvme_disk->nvme_ns_list, tailq, tmp_nvme_ns) {
|
|
pthread_mutex_lock(&nvme_ns->ctrlr->mutex);
|
|
|
|
nvme_ns->bdev = NULL;
|
|
|
|
assert(nvme_ns->id > 0);
|
|
|
|
if (nvme_ctrlr_get_ns(nvme_ns->ctrlr, nvme_ns->id) == NULL) {
|
|
pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
|
|
|
|
nvme_ctrlr_release(nvme_ns->ctrlr);
|
|
free(nvme_ns);
|
|
} else {
|
|
pthread_mutex_unlock(&nvme_ns->ctrlr->mutex);
|
|
}
|
|
}
|
|
|
|
pthread_mutex_lock(&g_bdev_nvme_mutex);
|
|
TAILQ_REMOVE(&nvme_disk->nbdev_ctrlr->bdevs, nvme_disk, tailq);
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
|
|
spdk_io_device_unregister(nvme_disk, _bdev_nvme_unregister_dev_cb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_flush(struct nvme_bdev_io *bio, uint64_t offset, uint64_t nbytes)
|
|
{
|
|
bdev_nvme_io_complete(bio, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_create_qpair(struct nvme_ctrlr_channel *ctrlr_ch)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
struct spdk_nvme_io_qpair_opts opts;
|
|
struct spdk_nvme_qpair *qpair;
|
|
int rc;
|
|
|
|
nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(ctrlr_ch);
|
|
|
|
spdk_nvme_ctrlr_get_default_io_qpair_opts(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
|
|
opts.delay_cmd_submit = g_opts.delay_cmd_submit;
|
|
opts.create_only = true;
|
|
opts.async_mode = true;
|
|
opts.io_queue_requests = spdk_max(g_opts.io_queue_requests, opts.io_queue_requests);
|
|
g_opts.io_queue_requests = opts.io_queue_requests;
|
|
|
|
qpair = spdk_nvme_ctrlr_alloc_io_qpair(nvme_ctrlr->ctrlr, &opts, sizeof(opts));
|
|
if (qpair == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
assert(ctrlr_ch->group != NULL);
|
|
|
|
rc = spdk_nvme_poll_group_add(ctrlr_ch->group->group, qpair);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Unable to begin polling on NVMe Channel.\n");
|
|
goto err;
|
|
}
|
|
|
|
rc = spdk_nvme_ctrlr_connect_io_qpair(nvme_ctrlr->ctrlr, qpair);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Unable to connect I/O qpair.\n");
|
|
goto err;
|
|
}
|
|
|
|
ctrlr_ch->qpair = qpair;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
spdk_nvme_ctrlr_free_io_qpair(qpair);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_complete_pending_resets(struct spdk_io_channel_iter *i)
|
|
{
|
|
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
|
|
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
|
|
enum spdk_bdev_io_status status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
struct spdk_bdev_io *bdev_io;
|
|
|
|
if (spdk_io_channel_iter_get_ctx(i) != NULL) {
|
|
status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
}
|
|
|
|
while (!TAILQ_EMPTY(&ctrlr_ch->pending_resets)) {
|
|
bdev_io = TAILQ_FIRST(&ctrlr_ch->pending_resets);
|
|
TAILQ_REMOVE(&ctrlr_ch->pending_resets, bdev_io, module_link);
|
|
spdk_bdev_io_complete(bdev_io, status);
|
|
}
|
|
|
|
spdk_for_each_channel_continue(i, 0);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_failover_trid(struct nvme_ctrlr *nvme_ctrlr, bool remove)
|
|
{
|
|
struct nvme_path_id *path_id, *next_path;
|
|
int rc __attribute__((unused));
|
|
|
|
path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
|
|
assert(path_id);
|
|
assert(path_id == nvme_ctrlr->active_path_id);
|
|
next_path = TAILQ_NEXT(path_id, link);
|
|
|
|
path_id->is_failed = true;
|
|
|
|
if (next_path) {
|
|
assert(path_id->trid.trtype != SPDK_NVME_TRANSPORT_PCIE);
|
|
|
|
SPDK_NOTICELOG("Start failover from %s:%s to %s:%s\n", path_id->trid.traddr,
|
|
path_id->trid.trsvcid, next_path->trid.traddr, next_path->trid.trsvcid);
|
|
|
|
spdk_nvme_ctrlr_fail(nvme_ctrlr->ctrlr);
|
|
nvme_ctrlr->active_path_id = next_path;
|
|
rc = spdk_nvme_ctrlr_set_trid(nvme_ctrlr->ctrlr, &next_path->trid);
|
|
assert(rc == 0);
|
|
TAILQ_REMOVE(&nvme_ctrlr->trids, path_id, link);
|
|
if (!remove) {
|
|
/** Shuffle the old trid to the end of the list and use the new one.
|
|
* Allows for round robin through multiple connections.
|
|
*/
|
|
TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, path_id, link);
|
|
} else {
|
|
free(path_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
_bdev_nvme_reset_complete(struct spdk_io_channel_iter *i, int status)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
|
|
bool success = spdk_io_channel_iter_get_ctx(i) == NULL;
|
|
struct nvme_path_id *path_id;
|
|
bdev_nvme_reset_cb reset_cb_fn = nvme_ctrlr->reset_cb_fn;
|
|
void *reset_cb_arg = nvme_ctrlr->reset_cb_arg;
|
|
bool complete_pending_destruct = false;
|
|
|
|
assert(nvme_ctrlr->thread == spdk_get_thread());
|
|
|
|
nvme_ctrlr->reset_cb_fn = NULL;
|
|
nvme_ctrlr->reset_cb_arg = NULL;
|
|
|
|
if (!success) {
|
|
SPDK_ERRLOG("Resetting controller failed.\n");
|
|
} else {
|
|
SPDK_NOTICELOG("Resetting controller successful.\n");
|
|
}
|
|
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
nvme_ctrlr->resetting = false;
|
|
|
|
path_id = TAILQ_FIRST(&nvme_ctrlr->trids);
|
|
assert(path_id != NULL);
|
|
assert(path_id == nvme_ctrlr->active_path_id);
|
|
|
|
path_id->is_failed = !success;
|
|
|
|
if (nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
|
|
/* Complete pending destruct after reset completes. */
|
|
complete_pending_destruct = true;
|
|
}
|
|
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
|
|
if (reset_cb_fn) {
|
|
reset_cb_fn(reset_cb_arg, success);
|
|
}
|
|
|
|
if (complete_pending_destruct) {
|
|
nvme_ctrlr_unregister(nvme_ctrlr);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_reset_complete(struct nvme_ctrlr *nvme_ctrlr, bool success)
|
|
{
|
|
/* Make sure we clear any pending resets before returning. */
|
|
spdk_for_each_channel(nvme_ctrlr,
|
|
bdev_nvme_complete_pending_resets,
|
|
success ? NULL : (void *)0x1,
|
|
_bdev_nvme_reset_complete);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_reset_create_qpairs_failed(struct spdk_io_channel_iter *i, int status)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
|
|
|
|
bdev_nvme_reset_complete(nvme_ctrlr, false);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_reset_destroy_qpair(struct spdk_io_channel_iter *i)
|
|
{
|
|
struct spdk_io_channel *ch = spdk_io_channel_iter_get_channel(i);
|
|
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(ch);
|
|
|
|
bdev_nvme_destroy_qpair(ctrlr_ch);
|
|
|
|
spdk_for_each_channel_continue(i, 0);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_reset_create_qpairs_done(struct spdk_io_channel_iter *i, int status)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
|
|
|
|
if (status == 0) {
|
|
bdev_nvme_reset_complete(nvme_ctrlr, true);
|
|
} else {
|
|
/* Delete the added qpairs and quiesce ctrlr to make the states clean. */
|
|
spdk_for_each_channel(nvme_ctrlr,
|
|
bdev_nvme_reset_destroy_qpair,
|
|
NULL,
|
|
bdev_nvme_reset_create_qpairs_failed);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_reset_create_qpair(struct spdk_io_channel_iter *i)
|
|
{
|
|
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
|
|
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
|
|
int rc;
|
|
|
|
rc = bdev_nvme_create_qpair(ctrlr_ch);
|
|
|
|
spdk_for_each_channel_continue(i, rc);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_ctrlr_reset_poll(void *arg)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = arg;
|
|
int rc;
|
|
|
|
rc = spdk_nvme_ctrlr_reconnect_poll_async(nvme_ctrlr->ctrlr);
|
|
if (rc == -EAGAIN) {
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
spdk_poller_unregister(&nvme_ctrlr->reset_detach_poller);
|
|
if (rc == 0) {
|
|
/* Recreate all of the I/O queue pairs */
|
|
spdk_for_each_channel(nvme_ctrlr,
|
|
bdev_nvme_reset_create_qpair,
|
|
NULL,
|
|
bdev_nvme_reset_create_qpairs_done);
|
|
} else {
|
|
bdev_nvme_reset_complete(nvme_ctrlr, false);
|
|
}
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_reset_ctrlr(struct spdk_io_channel_iter *i, int status)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
|
|
int rc __attribute__((unused));
|
|
|
|
assert(status == 0);
|
|
|
|
/* Disconnect fails if ctrlr is already resetting or removed. Both cases are
|
|
* not possible. Reset is controlled and the callback to hot remove is called
|
|
* when ctrlr is hot removed.
|
|
*/
|
|
rc = spdk_nvme_ctrlr_disconnect(nvme_ctrlr->ctrlr);
|
|
assert(rc == 0);
|
|
|
|
spdk_nvme_ctrlr_reconnect_async(nvme_ctrlr->ctrlr);
|
|
|
|
assert(nvme_ctrlr->reset_detach_poller == NULL);
|
|
nvme_ctrlr->reset_detach_poller = SPDK_POLLER_REGISTER(bdev_nvme_ctrlr_reset_poll,
|
|
nvme_ctrlr, 0);
|
|
}
|
|
|
|
static void
|
|
_bdev_nvme_reset(void *ctx)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = ctx;
|
|
|
|
assert(nvme_ctrlr->resetting == true);
|
|
assert(nvme_ctrlr->thread == spdk_get_thread());
|
|
|
|
spdk_nvme_ctrlr_prepare_for_reset(nvme_ctrlr->ctrlr);
|
|
|
|
/* First, delete all NVMe I/O queue pairs. */
|
|
spdk_for_each_channel(nvme_ctrlr,
|
|
bdev_nvme_reset_destroy_qpair,
|
|
NULL,
|
|
bdev_nvme_reset_ctrlr);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_reset(struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
if (nvme_ctrlr->destruct) {
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (nvme_ctrlr->resetting) {
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
nvme_ctrlr->resetting = true;
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
|
|
spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
bdev_nvme_reset_rpc(struct nvme_ctrlr *nvme_ctrlr, bdev_nvme_reset_cb cb_fn, void *cb_arg)
|
|
{
|
|
int rc;
|
|
|
|
rc = bdev_nvme_reset(nvme_ctrlr);
|
|
if (rc == 0) {
|
|
nvme_ctrlr->reset_cb_fn = cb_fn;
|
|
nvme_ctrlr->reset_cb_arg = cb_arg;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int _bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio);
|
|
|
|
static void
|
|
bdev_nvme_reset_io_complete(struct nvme_bdev_io *bio)
|
|
{
|
|
enum spdk_bdev_io_status io_status;
|
|
|
|
if (bio->cpl.cdw0 == 0) {
|
|
io_status = SPDK_BDEV_IO_STATUS_SUCCESS;
|
|
} else {
|
|
io_status = SPDK_BDEV_IO_STATUS_FAILED;
|
|
}
|
|
|
|
spdk_bdev_io_complete(spdk_bdev_io_from_ctx(bio), io_status);
|
|
}
|
|
|
|
static void
|
|
_bdev_nvme_reset_io_continue(void *ctx)
|
|
{
|
|
struct nvme_bdev_io *bio = ctx;
|
|
struct nvme_io_path *prev_io_path, *next_io_path;
|
|
int rc;
|
|
|
|
prev_io_path = bio->io_path;
|
|
bio->io_path = NULL;
|
|
|
|
if (bio->cpl.cdw0 != 0) {
|
|
goto complete;
|
|
}
|
|
|
|
next_io_path = STAILQ_NEXT(prev_io_path, stailq);
|
|
if (next_io_path == NULL) {
|
|
goto complete;
|
|
}
|
|
|
|
rc = _bdev_nvme_reset_io(next_io_path, bio);
|
|
if (rc == 0) {
|
|
return;
|
|
}
|
|
|
|
bio->cpl.cdw0 = 1;
|
|
|
|
complete:
|
|
bdev_nvme_reset_io_complete(bio);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_reset_io_continue(void *cb_arg, bool success)
|
|
{
|
|
struct nvme_bdev_io *bio = cb_arg;
|
|
|
|
bio->cpl.cdw0 = !success;
|
|
|
|
spdk_thread_send_msg(bio->orig_thread, _bdev_nvme_reset_io_continue, bio);
|
|
}
|
|
|
|
static int
|
|
_bdev_nvme_reset_io(struct nvme_io_path *io_path, struct nvme_bdev_io *bio)
|
|
{
|
|
struct nvme_ctrlr_channel *ctrlr_ch = io_path->ctrlr_ch;
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
struct spdk_bdev_io *bdev_io;
|
|
int rc;
|
|
|
|
nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(ctrlr_ch);
|
|
|
|
rc = bdev_nvme_reset(nvme_ctrlr);
|
|
if (rc == 0) {
|
|
assert(bio->io_path == NULL);
|
|
bio->io_path = io_path;
|
|
|
|
assert(nvme_ctrlr->reset_cb_fn == NULL);
|
|
assert(nvme_ctrlr->reset_cb_arg == NULL);
|
|
nvme_ctrlr->reset_cb_fn = bdev_nvme_reset_io_continue;
|
|
nvme_ctrlr->reset_cb_arg = bio;
|
|
} else if (rc == -EBUSY) {
|
|
/*
|
|
* Reset call is queued only if it is from the app framework. This is on purpose so that
|
|
* we don't interfere with the app framework reset strategy. i.e. we are deferring to the
|
|
* upper level. If they are in the middle of a reset, we won't try to schedule another one.
|
|
*/
|
|
bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
TAILQ_INSERT_TAIL(&ctrlr_ch->pending_resets, bdev_io, module_link);
|
|
} else {
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_reset_io(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio)
|
|
{
|
|
struct nvme_io_path *io_path;
|
|
int rc;
|
|
|
|
bio->cpl.cdw0 = 0;
|
|
bio->orig_thread = spdk_get_thread();
|
|
|
|
/* Reset only the first nvme_ctrlr in the nvme_bdev_ctrlr for now.
|
|
*
|
|
* TODO: Reset all nvme_ctrlrs in the nvme_bdev_ctrlr sequentially.
|
|
* This will be done in the following patches.
|
|
*/
|
|
io_path = STAILQ_FIRST(&nbdev_ch->io_path_list);
|
|
assert(io_path != NULL);
|
|
|
|
rc = _bdev_nvme_reset_io(io_path, bio);
|
|
if (rc != 0) {
|
|
bio->cpl.cdw0 = 1;
|
|
bdev_nvme_reset_io_complete(bio);
|
|
}
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_failover(struct nvme_ctrlr *nvme_ctrlr, bool remove)
|
|
{
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
if (nvme_ctrlr->destruct) {
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
/* Don't bother resetting if the controller is in the process of being destructed. */
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (nvme_ctrlr->resetting) {
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
SPDK_NOTICELOG("Unable to perform reset, already in progress.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
bdev_nvme_failover_trid(nvme_ctrlr, remove);
|
|
|
|
nvme_ctrlr->resetting = true;
|
|
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
|
|
spdk_thread_send_msg(nvme_ctrlr->thread, _bdev_nvme_reset, nvme_ctrlr);
|
|
return 0;
|
|
}
|
|
|
|
static int bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks,
|
|
uint64_t num_blocks);
|
|
|
|
static int bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks,
|
|
uint64_t num_blocks);
|
|
|
|
static void
|
|
bdev_nvme_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io,
|
|
bool success)
|
|
{
|
|
struct nvme_bdev_io *bio = (struct nvme_bdev_io *)bdev_io->driver_ctx;
|
|
struct spdk_bdev *bdev = bdev_io->bdev;
|
|
int ret;
|
|
|
|
if (!success) {
|
|
ret = -EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
|
|
ret = -ENXIO;
|
|
goto exit;
|
|
}
|
|
|
|
ret = bdev_nvme_readv(bio,
|
|
bdev_io->u.bdev.iovs,
|
|
bdev_io->u.bdev.iovcnt,
|
|
bdev_io->u.bdev.md_buf,
|
|
bdev_io->u.bdev.num_blocks,
|
|
bdev_io->u.bdev.offset_blocks,
|
|
bdev->dif_check_flags,
|
|
bdev_io->internal.ext_opts);
|
|
|
|
exit:
|
|
if (spdk_unlikely(ret != 0)) {
|
|
bdev_nvme_io_complete(bio, ret);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io)
|
|
{
|
|
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
|
|
struct spdk_bdev *bdev = bdev_io->bdev;
|
|
struct nvme_bdev_io *nbdev_io = (struct nvme_bdev_io *)bdev_io->driver_ctx;
|
|
struct nvme_bdev_io *nbdev_io_to_abort;
|
|
int rc = 0;
|
|
|
|
nbdev_io->io_path = bdev_nvme_find_io_path(nbdev_ch);
|
|
if (spdk_unlikely(!nbdev_io->io_path)) {
|
|
if (!bdev_nvme_io_type_is_admin(bdev_io->type)) {
|
|
rc = -ENXIO;
|
|
goto exit;
|
|
}
|
|
|
|
/* Admin commands do not use the optimal I/O path.
|
|
* Simply fall through even if it is not found.
|
|
*/
|
|
}
|
|
|
|
switch (bdev_io->type) {
|
|
case SPDK_BDEV_IO_TYPE_READ:
|
|
if (bdev_io->u.bdev.iovs && bdev_io->u.bdev.iovs[0].iov_base) {
|
|
rc = bdev_nvme_readv(nbdev_io,
|
|
bdev_io->u.bdev.iovs,
|
|
bdev_io->u.bdev.iovcnt,
|
|
bdev_io->u.bdev.md_buf,
|
|
bdev_io->u.bdev.num_blocks,
|
|
bdev_io->u.bdev.offset_blocks,
|
|
bdev->dif_check_flags,
|
|
bdev_io->internal.ext_opts);
|
|
} else {
|
|
spdk_bdev_io_get_buf(bdev_io, bdev_nvme_get_buf_cb,
|
|
bdev_io->u.bdev.num_blocks * bdev->blocklen);
|
|
rc = 0;
|
|
}
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_WRITE:
|
|
rc = bdev_nvme_writev(nbdev_io,
|
|
bdev_io->u.bdev.iovs,
|
|
bdev_io->u.bdev.iovcnt,
|
|
bdev_io->u.bdev.md_buf,
|
|
bdev_io->u.bdev.num_blocks,
|
|
bdev_io->u.bdev.offset_blocks,
|
|
bdev->dif_check_flags,
|
|
bdev_io->internal.ext_opts);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_COMPARE:
|
|
rc = bdev_nvme_comparev(nbdev_io,
|
|
bdev_io->u.bdev.iovs,
|
|
bdev_io->u.bdev.iovcnt,
|
|
bdev_io->u.bdev.md_buf,
|
|
bdev_io->u.bdev.num_blocks,
|
|
bdev_io->u.bdev.offset_blocks,
|
|
bdev->dif_check_flags);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
|
|
rc = bdev_nvme_comparev_and_writev(nbdev_io,
|
|
bdev_io->u.bdev.iovs,
|
|
bdev_io->u.bdev.iovcnt,
|
|
bdev_io->u.bdev.fused_iovs,
|
|
bdev_io->u.bdev.fused_iovcnt,
|
|
bdev_io->u.bdev.md_buf,
|
|
bdev_io->u.bdev.num_blocks,
|
|
bdev_io->u.bdev.offset_blocks,
|
|
bdev->dif_check_flags);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_UNMAP:
|
|
rc = bdev_nvme_unmap(nbdev_io,
|
|
bdev_io->u.bdev.offset_blocks,
|
|
bdev_io->u.bdev.num_blocks);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
|
|
rc = bdev_nvme_write_zeroes(nbdev_io,
|
|
bdev_io->u.bdev.offset_blocks,
|
|
bdev_io->u.bdev.num_blocks);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_RESET:
|
|
nbdev_io->io_path = NULL;
|
|
bdev_nvme_reset_io(nbdev_ch, nbdev_io);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_FLUSH:
|
|
rc = bdev_nvme_flush(nbdev_io,
|
|
bdev_io->u.bdev.offset_blocks,
|
|
bdev_io->u.bdev.num_blocks);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
|
|
rc = bdev_nvme_zone_appendv(nbdev_io,
|
|
bdev_io->u.bdev.iovs,
|
|
bdev_io->u.bdev.iovcnt,
|
|
bdev_io->u.bdev.md_buf,
|
|
bdev_io->u.bdev.num_blocks,
|
|
bdev_io->u.bdev.offset_blocks,
|
|
bdev->dif_check_flags);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
|
|
rc = bdev_nvme_get_zone_info(nbdev_io,
|
|
bdev_io->u.zone_mgmt.zone_id,
|
|
bdev_io->u.zone_mgmt.num_zones,
|
|
bdev_io->u.zone_mgmt.buf);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
|
|
rc = bdev_nvme_zone_management(nbdev_io,
|
|
bdev_io->u.zone_mgmt.zone_id,
|
|
bdev_io->u.zone_mgmt.zone_action);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
|
|
nbdev_io->io_path = NULL;
|
|
bdev_nvme_admin_passthru(nbdev_ch,
|
|
nbdev_io,
|
|
&bdev_io->u.nvme_passthru.cmd,
|
|
bdev_io->u.nvme_passthru.buf,
|
|
bdev_io->u.nvme_passthru.nbytes);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_NVME_IO:
|
|
rc = bdev_nvme_io_passthru(nbdev_io,
|
|
&bdev_io->u.nvme_passthru.cmd,
|
|
bdev_io->u.nvme_passthru.buf,
|
|
bdev_io->u.nvme_passthru.nbytes);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
|
|
rc = bdev_nvme_io_passthru_md(nbdev_io,
|
|
&bdev_io->u.nvme_passthru.cmd,
|
|
bdev_io->u.nvme_passthru.buf,
|
|
bdev_io->u.nvme_passthru.nbytes,
|
|
bdev_io->u.nvme_passthru.md_buf,
|
|
bdev_io->u.nvme_passthru.md_len);
|
|
break;
|
|
case SPDK_BDEV_IO_TYPE_ABORT:
|
|
nbdev_io->io_path = NULL;
|
|
nbdev_io_to_abort = (struct nvme_bdev_io *)bdev_io->u.abort.bio_to_abort->driver_ctx;
|
|
bdev_nvme_abort(nbdev_ch,
|
|
nbdev_io,
|
|
nbdev_io_to_abort);
|
|
break;
|
|
default:
|
|
rc = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
exit:
|
|
if (spdk_unlikely(rc != 0)) {
|
|
bdev_nvme_io_complete(nbdev_io, rc);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
bdev_nvme_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type)
|
|
{
|
|
struct nvme_bdev *nbdev = ctx;
|
|
struct nvme_ns *nvme_ns;
|
|
struct spdk_nvme_ns *ns;
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
|
|
nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
|
|
assert(nvme_ns != NULL);
|
|
ns = nvme_ns->ns;
|
|
ctrlr = spdk_nvme_ns_get_ctrlr(ns);
|
|
|
|
switch (io_type) {
|
|
case SPDK_BDEV_IO_TYPE_READ:
|
|
case SPDK_BDEV_IO_TYPE_WRITE:
|
|
case SPDK_BDEV_IO_TYPE_RESET:
|
|
case SPDK_BDEV_IO_TYPE_FLUSH:
|
|
case SPDK_BDEV_IO_TYPE_NVME_ADMIN:
|
|
case SPDK_BDEV_IO_TYPE_NVME_IO:
|
|
case SPDK_BDEV_IO_TYPE_ABORT:
|
|
return true;
|
|
|
|
case SPDK_BDEV_IO_TYPE_COMPARE:
|
|
return spdk_nvme_ns_supports_compare(ns);
|
|
|
|
case SPDK_BDEV_IO_TYPE_NVME_IO_MD:
|
|
return spdk_nvme_ns_get_md_size(ns) ? true : false;
|
|
|
|
case SPDK_BDEV_IO_TYPE_UNMAP:
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
return cdata->oncs.dsm;
|
|
|
|
case SPDK_BDEV_IO_TYPE_WRITE_ZEROES:
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
return cdata->oncs.write_zeroes;
|
|
|
|
case SPDK_BDEV_IO_TYPE_COMPARE_AND_WRITE:
|
|
if (spdk_nvme_ctrlr_get_flags(ctrlr) &
|
|
SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED) {
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
case SPDK_BDEV_IO_TYPE_GET_ZONE_INFO:
|
|
case SPDK_BDEV_IO_TYPE_ZONE_MANAGEMENT:
|
|
return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS;
|
|
|
|
case SPDK_BDEV_IO_TYPE_ZONE_APPEND:
|
|
return spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS &&
|
|
spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_create_ctrlr_channel_cb(void *io_device, void *ctx_buf)
|
|
{
|
|
struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
|
|
struct spdk_io_channel *pg_ch;
|
|
int rc;
|
|
|
|
pg_ch = spdk_get_io_channel(&g_nvme_bdev_ctrlrs);
|
|
if (!pg_ch) {
|
|
return -1;
|
|
}
|
|
|
|
ctrlr_ch->group = spdk_io_channel_get_ctx(pg_ch);
|
|
TAILQ_INSERT_TAIL(&ctrlr_ch->group->ctrlr_ch_list, ctrlr_ch, tailq);
|
|
|
|
#ifdef SPDK_CONFIG_VTUNE
|
|
ctrlr_ch->group->collect_spin_stat = true;
|
|
#else
|
|
ctrlr_ch->group->collect_spin_stat = false;
|
|
#endif
|
|
|
|
TAILQ_INIT(&ctrlr_ch->pending_resets);
|
|
TAILQ_INIT(&ctrlr_ch->io_path_list);
|
|
|
|
rc = bdev_nvme_create_qpair(ctrlr_ch);
|
|
if (rc != 0) {
|
|
goto err_qpair;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_qpair:
|
|
spdk_put_io_channel(pg_ch);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_destroy_ctrlr_channel_cb(void *io_device, void *ctx_buf)
|
|
{
|
|
struct nvme_ctrlr_channel *ctrlr_ch = ctx_buf;
|
|
|
|
assert(ctrlr_ch->group != NULL);
|
|
|
|
bdev_nvme_destroy_qpair(ctrlr_ch);
|
|
|
|
TAILQ_REMOVE(&ctrlr_ch->group->ctrlr_ch_list, ctrlr_ch, tailq);
|
|
|
|
spdk_put_io_channel(spdk_io_channel_from_ctx(ctrlr_ch->group));
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_submit_accel_crc32c(void *ctx, uint32_t *dst, struct iovec *iov,
|
|
uint32_t iov_cnt, uint32_t seed,
|
|
spdk_nvme_accel_completion_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct nvme_poll_group *group = ctx;
|
|
int rc;
|
|
|
|
assert(group->accel_channel != NULL);
|
|
assert(cb_fn != NULL);
|
|
|
|
rc = spdk_accel_submit_crc32cv(group->accel_channel, dst, iov, iov_cnt, seed, cb_fn, cb_arg);
|
|
if (rc) {
|
|
/* For the two cases, spdk_accel_submit_crc32cv does not call the user's cb_fn */
|
|
if (rc == -ENOMEM || rc == -EINVAL) {
|
|
cb_fn(cb_arg, rc);
|
|
}
|
|
SPDK_ERRLOG("Cannot complete the accelerated crc32c operation with iov=%p\n", iov);
|
|
}
|
|
}
|
|
|
|
static struct spdk_nvme_accel_fn_table g_bdev_nvme_accel_fn_table = {
|
|
.table_size = sizeof(struct spdk_nvme_accel_fn_table),
|
|
.submit_accel_crc32c = bdev_nvme_submit_accel_crc32c,
|
|
};
|
|
|
|
static int
|
|
bdev_nvme_create_poll_group_cb(void *io_device, void *ctx_buf)
|
|
{
|
|
struct nvme_poll_group *group = ctx_buf;
|
|
|
|
TAILQ_INIT(&group->ctrlr_ch_list);
|
|
|
|
group->group = spdk_nvme_poll_group_create(group, &g_bdev_nvme_accel_fn_table);
|
|
if (group->group == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
group->accel_channel = spdk_accel_engine_get_io_channel();
|
|
if (!group->accel_channel) {
|
|
spdk_nvme_poll_group_destroy(group->group);
|
|
SPDK_ERRLOG("Cannot get the accel_channel for bdev nvme polling group=%p\n",
|
|
group);
|
|
return -1;
|
|
}
|
|
|
|
group->poller = SPDK_POLLER_REGISTER(bdev_nvme_poll, group, g_opts.nvme_ioq_poll_period_us);
|
|
|
|
if (group->poller == NULL) {
|
|
spdk_put_io_channel(group->accel_channel);
|
|
spdk_nvme_poll_group_destroy(group->group);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_destroy_poll_group_cb(void *io_device, void *ctx_buf)
|
|
{
|
|
struct nvme_poll_group *group = ctx_buf;
|
|
|
|
assert(TAILQ_EMPTY(&group->ctrlr_ch_list));
|
|
|
|
if (group->accel_channel) {
|
|
spdk_put_io_channel(group->accel_channel);
|
|
}
|
|
|
|
spdk_poller_unregister(&group->poller);
|
|
if (spdk_nvme_poll_group_destroy(group->group)) {
|
|
SPDK_ERRLOG("Unable to destroy a poll group for the NVMe bdev module.\n");
|
|
assert(false);
|
|
}
|
|
}
|
|
|
|
static struct spdk_io_channel *
|
|
bdev_nvme_get_io_channel(void *ctx)
|
|
{
|
|
struct nvme_bdev *nvme_bdev = ctx;
|
|
|
|
return spdk_get_io_channel(nvme_bdev);
|
|
}
|
|
|
|
static void *
|
|
bdev_nvme_get_module_ctx(void *ctx)
|
|
{
|
|
struct nvme_bdev *nvme_bdev = ctx;
|
|
struct nvme_ns *nvme_ns;
|
|
|
|
if (!nvme_bdev || nvme_bdev->disk.module != &nvme_if) {
|
|
return NULL;
|
|
}
|
|
|
|
nvme_ns = TAILQ_FIRST(&nvme_bdev->nvme_ns_list);
|
|
if (!nvme_ns) {
|
|
return NULL;
|
|
}
|
|
|
|
return nvme_ns->ns;
|
|
}
|
|
|
|
static const char *
|
|
_nvme_ana_state_str(enum spdk_nvme_ana_state ana_state)
|
|
{
|
|
switch (ana_state) {
|
|
case SPDK_NVME_ANA_OPTIMIZED_STATE:
|
|
return "optimized";
|
|
case SPDK_NVME_ANA_NON_OPTIMIZED_STATE:
|
|
return "non_optimized";
|
|
case SPDK_NVME_ANA_INACCESSIBLE_STATE:
|
|
return "inaccessible";
|
|
case SPDK_NVME_ANA_PERSISTENT_LOSS_STATE:
|
|
return "persistent_loss";
|
|
case SPDK_NVME_ANA_CHANGE_STATE:
|
|
return "change";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_get_memory_domains(void *ctx, struct spdk_memory_domain **domains, int array_size)
|
|
{
|
|
struct nvme_bdev *nbdev = ctx;
|
|
struct nvme_ns *nvme_ns;
|
|
|
|
nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
|
|
assert(nvme_ns != NULL);
|
|
|
|
return spdk_nvme_ctrlr_get_memory_domains(nvme_ns->ctrlr->ctrlr, domains, array_size);
|
|
}
|
|
|
|
static void
|
|
nvme_namespace_info_json(struct spdk_json_write_ctx *w,
|
|
struct nvme_ns *nvme_ns)
|
|
{
|
|
struct spdk_nvme_ns *ns;
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
const struct spdk_nvme_transport_id *trid;
|
|
union spdk_nvme_vs_register vs;
|
|
char buf[128];
|
|
|
|
ns = nvme_ns->ns;
|
|
ctrlr = spdk_nvme_ns_get_ctrlr(ns);
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
trid = spdk_nvme_ctrlr_get_transport_id(ctrlr);
|
|
vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
|
|
|
|
spdk_json_write_object_begin(w);
|
|
|
|
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
spdk_json_write_named_string(w, "pci_address", trid->traddr);
|
|
}
|
|
|
|
spdk_json_write_named_object_begin(w, "trid");
|
|
|
|
nvme_bdev_dump_trid_json(trid, w);
|
|
|
|
spdk_json_write_object_end(w);
|
|
|
|
#ifdef SPDK_CONFIG_NVME_CUSE
|
|
size_t cuse_name_size = 128;
|
|
char cuse_name[cuse_name_size];
|
|
|
|
int rc = spdk_nvme_cuse_get_ns_name(ctrlr, spdk_nvme_ns_get_id(ns),
|
|
cuse_name, &cuse_name_size);
|
|
if (rc == 0) {
|
|
spdk_json_write_named_string(w, "cuse_device", cuse_name);
|
|
}
|
|
#endif
|
|
|
|
spdk_json_write_named_object_begin(w, "ctrlr_data");
|
|
|
|
spdk_json_write_named_string_fmt(w, "vendor_id", "0x%04x", cdata->vid);
|
|
|
|
snprintf(buf, sizeof(cdata->mn) + 1, "%s", cdata->mn);
|
|
spdk_str_trim(buf);
|
|
spdk_json_write_named_string(w, "model_number", buf);
|
|
|
|
snprintf(buf, sizeof(cdata->sn) + 1, "%s", cdata->sn);
|
|
spdk_str_trim(buf);
|
|
spdk_json_write_named_string(w, "serial_number", buf);
|
|
|
|
snprintf(buf, sizeof(cdata->fr) + 1, "%s", cdata->fr);
|
|
spdk_str_trim(buf);
|
|
spdk_json_write_named_string(w, "firmware_revision", buf);
|
|
|
|
if (cdata->subnqn[0] != '\0') {
|
|
spdk_json_write_named_string(w, "subnqn", cdata->subnqn);
|
|
}
|
|
|
|
spdk_json_write_named_object_begin(w, "oacs");
|
|
|
|
spdk_json_write_named_uint32(w, "security", cdata->oacs.security);
|
|
spdk_json_write_named_uint32(w, "format", cdata->oacs.format);
|
|
spdk_json_write_named_uint32(w, "firmware", cdata->oacs.firmware);
|
|
spdk_json_write_named_uint32(w, "ns_manage", cdata->oacs.ns_manage);
|
|
|
|
spdk_json_write_object_end(w);
|
|
|
|
spdk_json_write_object_end(w);
|
|
|
|
spdk_json_write_named_object_begin(w, "vs");
|
|
|
|
spdk_json_write_name(w, "nvme_version");
|
|
if (vs.bits.ter) {
|
|
spdk_json_write_string_fmt(w, "%u.%u.%u", vs.bits.mjr, vs.bits.mnr, vs.bits.ter);
|
|
} else {
|
|
spdk_json_write_string_fmt(w, "%u.%u", vs.bits.mjr, vs.bits.mnr);
|
|
}
|
|
|
|
spdk_json_write_object_end(w);
|
|
|
|
spdk_json_write_named_object_begin(w, "ns_data");
|
|
|
|
spdk_json_write_named_uint32(w, "id", spdk_nvme_ns_get_id(ns));
|
|
|
|
if (cdata->cmic.ana_reporting) {
|
|
spdk_json_write_named_string(w, "ana_state",
|
|
_nvme_ana_state_str(nvme_ns->ana_state));
|
|
}
|
|
|
|
spdk_json_write_object_end(w);
|
|
|
|
if (cdata->oacs.security) {
|
|
spdk_json_write_named_object_begin(w, "security");
|
|
|
|
spdk_json_write_named_bool(w, "opal", nvme_ns->bdev->opal);
|
|
|
|
spdk_json_write_object_end(w);
|
|
}
|
|
|
|
spdk_json_write_object_end(w);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_dump_info_json(void *ctx, struct spdk_json_write_ctx *w)
|
|
{
|
|
struct nvme_bdev *nvme_bdev = ctx;
|
|
struct nvme_ns *nvme_ns;
|
|
|
|
pthread_mutex_lock(&nvme_bdev->mutex);
|
|
spdk_json_write_named_array_begin(w, "nvme");
|
|
TAILQ_FOREACH(nvme_ns, &nvme_bdev->nvme_ns_list, tailq) {
|
|
nvme_namespace_info_json(w, nvme_ns);
|
|
}
|
|
spdk_json_write_array_end(w);
|
|
pthread_mutex_unlock(&nvme_bdev->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w)
|
|
{
|
|
/* No config per bdev needed */
|
|
}
|
|
|
|
static uint64_t
|
|
bdev_nvme_get_spin_time(struct spdk_io_channel *ch)
|
|
{
|
|
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(ch);
|
|
struct nvme_io_path *io_path;
|
|
struct nvme_poll_group *group;
|
|
uint64_t spin_time = 0;
|
|
|
|
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
|
|
group = io_path->ctrlr_ch->group;
|
|
|
|
if (!group || !group->collect_spin_stat) {
|
|
continue;
|
|
}
|
|
|
|
if (group->end_ticks != 0) {
|
|
group->spin_ticks += (group->end_ticks - group->start_ticks);
|
|
group->end_ticks = 0;
|
|
}
|
|
|
|
spin_time += group->spin_ticks;
|
|
group->start_ticks = 0;
|
|
group->spin_ticks = 0;
|
|
}
|
|
|
|
return (spin_time * 1000000ULL) / spdk_get_ticks_hz();
|
|
}
|
|
|
|
static const struct spdk_bdev_fn_table nvmelib_fn_table = {
|
|
.destruct = bdev_nvme_destruct,
|
|
.submit_request = bdev_nvme_submit_request,
|
|
.io_type_supported = bdev_nvme_io_type_supported,
|
|
.get_io_channel = bdev_nvme_get_io_channel,
|
|
.dump_info_json = bdev_nvme_dump_info_json,
|
|
.write_config_json = bdev_nvme_write_config_json,
|
|
.get_spin_time = bdev_nvme_get_spin_time,
|
|
.get_module_ctx = bdev_nvme_get_module_ctx,
|
|
.get_memory_domains = bdev_nvme_get_memory_domains,
|
|
};
|
|
|
|
typedef int (*bdev_nvme_parse_ana_log_page_cb)(
|
|
const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg);
|
|
|
|
static int
|
|
bdev_nvme_parse_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
|
|
bdev_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct spdk_nvme_ana_group_descriptor *copied_desc;
|
|
uint8_t *orig_desc;
|
|
uint32_t i, desc_size, copy_len;
|
|
int rc = 0;
|
|
|
|
if (nvme_ctrlr->ana_log_page == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
copied_desc = nvme_ctrlr->copied_ana_desc;
|
|
|
|
orig_desc = (uint8_t *)nvme_ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
|
|
copy_len = nvme_ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
|
|
|
|
for (i = 0; i < nvme_ctrlr->ana_log_page->num_ana_group_desc; i++) {
|
|
memcpy(copied_desc, orig_desc, copy_len);
|
|
|
|
rc = cb_fn(copied_desc, cb_arg);
|
|
if (rc != 0) {
|
|
break;
|
|
}
|
|
|
|
desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
|
|
copied_desc->num_of_nsid * sizeof(uint32_t);
|
|
orig_desc += desc_size;
|
|
copy_len -= desc_size;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_ns_set_ana_state(const struct spdk_nvme_ana_group_descriptor *desc, void *cb_arg)
|
|
{
|
|
struct nvme_ns *nvme_ns = cb_arg;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < desc->num_of_nsid; i++) {
|
|
if (desc->nsid[i] != spdk_nvme_ns_get_id(nvme_ns->ns)) {
|
|
continue;
|
|
}
|
|
nvme_ns->ana_group_id = desc->ana_group_id;
|
|
nvme_ns->ana_state = desc->ana_state;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_disk_create(struct spdk_bdev *disk, const char *base_name,
|
|
struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns,
|
|
uint32_t prchk_flags, void *ctx)
|
|
{
|
|
const struct spdk_uuid *uuid;
|
|
const uint8_t *nguid;
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
const struct spdk_nvme_ns_data *nsdata;
|
|
enum spdk_nvme_csi csi;
|
|
uint32_t atomic_bs, phys_bs, bs;
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
csi = spdk_nvme_ns_get_csi(ns);
|
|
|
|
switch (csi) {
|
|
case SPDK_NVME_CSI_NVM:
|
|
disk->product_name = "NVMe disk";
|
|
break;
|
|
case SPDK_NVME_CSI_ZNS:
|
|
disk->product_name = "NVMe ZNS disk";
|
|
disk->zoned = true;
|
|
disk->zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
|
|
disk->max_zone_append_size = spdk_nvme_zns_ctrlr_get_max_zone_append_size(ctrlr) /
|
|
spdk_nvme_ns_get_extended_sector_size(ns);
|
|
disk->max_open_zones = spdk_nvme_zns_ns_get_max_open_zones(ns);
|
|
disk->max_active_zones = spdk_nvme_zns_ns_get_max_active_zones(ns);
|
|
break;
|
|
default:
|
|
SPDK_ERRLOG("unsupported CSI: %u\n", csi);
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
disk->name = spdk_sprintf_alloc("%sn%d", base_name, spdk_nvme_ns_get_id(ns));
|
|
if (!disk->name) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
disk->write_cache = 0;
|
|
if (cdata->vwc.present) {
|
|
/* Enable if the Volatile Write Cache exists */
|
|
disk->write_cache = 1;
|
|
}
|
|
if (cdata->oncs.write_zeroes) {
|
|
disk->max_write_zeroes = UINT16_MAX + 1;
|
|
}
|
|
disk->blocklen = spdk_nvme_ns_get_extended_sector_size(ns);
|
|
disk->blockcnt = spdk_nvme_ns_get_num_sectors(ns);
|
|
disk->optimal_io_boundary = spdk_nvme_ns_get_optimal_io_boundary(ns);
|
|
|
|
nguid = spdk_nvme_ns_get_nguid(ns);
|
|
if (!nguid) {
|
|
uuid = spdk_nvme_ns_get_uuid(ns);
|
|
if (uuid) {
|
|
disk->uuid = *uuid;
|
|
}
|
|
} else {
|
|
memcpy(&disk->uuid, nguid, sizeof(disk->uuid));
|
|
}
|
|
|
|
nsdata = spdk_nvme_ns_get_data(ns);
|
|
bs = spdk_nvme_ns_get_sector_size(ns);
|
|
atomic_bs = bs;
|
|
phys_bs = bs;
|
|
if (nsdata->nabo == 0) {
|
|
if (nsdata->nsfeat.ns_atomic_write_unit && nsdata->nawupf) {
|
|
atomic_bs = bs * (1 + nsdata->nawupf);
|
|
} else {
|
|
atomic_bs = bs * (1 + cdata->awupf);
|
|
}
|
|
}
|
|
if (nsdata->nsfeat.optperf) {
|
|
phys_bs = bs * (1 + nsdata->npwg);
|
|
}
|
|
disk->phys_blocklen = spdk_min(phys_bs, atomic_bs);
|
|
|
|
disk->md_len = spdk_nvme_ns_get_md_size(ns);
|
|
if (disk->md_len != 0) {
|
|
disk->md_interleave = nsdata->flbas.extended;
|
|
disk->dif_type = (enum spdk_dif_type)spdk_nvme_ns_get_pi_type(ns);
|
|
if (disk->dif_type != SPDK_DIF_DISABLE) {
|
|
disk->dif_is_head_of_md = nsdata->dps.md_start;
|
|
disk->dif_check_flags = prchk_flags;
|
|
}
|
|
}
|
|
|
|
if (!(spdk_nvme_ctrlr_get_flags(ctrlr) &
|
|
SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED)) {
|
|
disk->acwu = 0;
|
|
} else if (nsdata->nsfeat.ns_atomic_write_unit) {
|
|
disk->acwu = nsdata->nacwu;
|
|
} else {
|
|
disk->acwu = cdata->acwu;
|
|
}
|
|
|
|
disk->ctxt = ctx;
|
|
disk->fn_table = &nvmelib_fn_table;
|
|
disk->module = &nvme_if;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_bdev_create(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
|
|
{
|
|
struct nvme_bdev *bdev;
|
|
int rc;
|
|
|
|
bdev = calloc(1, sizeof(*bdev));
|
|
if (!bdev) {
|
|
SPDK_ERRLOG("bdev calloc() failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rc = pthread_mutex_init(&bdev->mutex, NULL);
|
|
if (rc != 0) {
|
|
free(bdev);
|
|
return rc;
|
|
}
|
|
|
|
bdev->ref = 1;
|
|
TAILQ_INIT(&bdev->nvme_ns_list);
|
|
TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
|
|
bdev->opal = nvme_ctrlr->opal_dev != NULL;
|
|
|
|
rc = nvme_disk_create(&bdev->disk, nvme_ctrlr->nbdev_ctrlr->name, nvme_ctrlr->ctrlr,
|
|
nvme_ns->ns, nvme_ctrlr->prchk_flags, bdev);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Failed to create NVMe disk\n");
|
|
pthread_mutex_destroy(&bdev->mutex);
|
|
free(bdev);
|
|
return rc;
|
|
}
|
|
|
|
spdk_io_device_register(bdev,
|
|
bdev_nvme_create_bdev_channel_cb,
|
|
bdev_nvme_destroy_bdev_channel_cb,
|
|
sizeof(struct nvme_bdev_channel),
|
|
bdev->disk.name);
|
|
|
|
rc = spdk_bdev_register(&bdev->disk);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("spdk_bdev_register() failed\n");
|
|
spdk_io_device_unregister(bdev, NULL);
|
|
pthread_mutex_destroy(&bdev->mutex);
|
|
free(bdev->disk.name);
|
|
free(bdev);
|
|
return rc;
|
|
}
|
|
|
|
nvme_ns->bdev = bdev;
|
|
bdev->nsid = nvme_ns->id;
|
|
|
|
bdev->nbdev_ctrlr = nvme_ctrlr->nbdev_ctrlr;
|
|
TAILQ_INSERT_TAIL(&nvme_ctrlr->nbdev_ctrlr->bdevs, bdev, tailq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
bdev_nvme_compare_ns(struct spdk_nvme_ns *ns1, struct spdk_nvme_ns *ns2)
|
|
{
|
|
const struct spdk_nvme_ns_data *nsdata1, *nsdata2;
|
|
const struct spdk_uuid *uuid1, *uuid2;
|
|
|
|
nsdata1 = spdk_nvme_ns_get_data(ns1);
|
|
nsdata2 = spdk_nvme_ns_get_data(ns2);
|
|
uuid1 = spdk_nvme_ns_get_uuid(ns1);
|
|
uuid2 = spdk_nvme_ns_get_uuid(ns2);
|
|
|
|
return memcmp(nsdata1->nguid, nsdata2->nguid, sizeof(nsdata1->nguid)) == 0 &&
|
|
nsdata1->eui64 == nsdata2->eui64 &&
|
|
uuid1 != NULL && uuid2 != NULL && spdk_uuid_compare(uuid1, uuid2) == 0;
|
|
}
|
|
|
|
static bool
|
|
hotplug_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
struct nvme_probe_skip_entry *entry;
|
|
|
|
TAILQ_FOREACH(entry, &g_skipped_nvme_ctrlrs, tailq) {
|
|
if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
opts->arbitration_burst = (uint8_t)g_opts.arbitration_burst;
|
|
opts->low_priority_weight = (uint8_t)g_opts.low_priority_weight;
|
|
opts->medium_priority_weight = (uint8_t)g_opts.medium_priority_weight;
|
|
opts->high_priority_weight = (uint8_t)g_opts.high_priority_weight;
|
|
opts->disable_read_ana_log_page = true;
|
|
|
|
SPDK_DEBUGLOG(bdev_nvme, "Attaching to %s\n", trid->traddr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
nvme_abort_cpl(void *ctx, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = ctx;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
SPDK_WARNLOG("Abort failed. Resetting controller. sc is %u, sct is %u.\n", cpl->status.sc,
|
|
cpl->status.sct);
|
|
bdev_nvme_reset(nvme_ctrlr);
|
|
} else if (cpl->cdw0 & 0x1) {
|
|
SPDK_WARNLOG("Specified command could not be aborted.\n");
|
|
bdev_nvme_reset(nvme_ctrlr);
|
|
}
|
|
}
|
|
|
|
static void
|
|
timeout_cb(void *cb_arg, struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_qpair *qpair, uint16_t cid)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = cb_arg;
|
|
union spdk_nvme_csts_register csts;
|
|
int rc;
|
|
|
|
assert(nvme_ctrlr->ctrlr == ctrlr);
|
|
|
|
SPDK_WARNLOG("Warning: Detected a timeout. ctrlr=%p qpair=%p cid=%u\n", ctrlr, qpair, cid);
|
|
|
|
/* Only try to read CSTS if it's a PCIe controller or we have a timeout on an I/O
|
|
* queue. (Note: qpair == NULL when there's an admin cmd timeout.) Otherwise we
|
|
* would submit another fabrics cmd on the admin queue to read CSTS and check for its
|
|
* completion recursively.
|
|
*/
|
|
if (nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE || qpair != NULL) {
|
|
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
|
|
if (csts.bits.cfs) {
|
|
SPDK_ERRLOG("Controller Fatal Status, reset required\n");
|
|
bdev_nvme_reset(nvme_ctrlr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
switch (g_opts.action_on_timeout) {
|
|
case SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT:
|
|
if (qpair) {
|
|
/* Don't send abort to ctrlr when ctrlr is not available. */
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
SPDK_NOTICELOG("Quit abort. Ctrlr is not available.\n");
|
|
return;
|
|
}
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
|
|
rc = spdk_nvme_ctrlr_cmd_abort(ctrlr, qpair, cid,
|
|
nvme_abort_cpl, nvme_ctrlr);
|
|
if (rc == 0) {
|
|
return;
|
|
}
|
|
|
|
SPDK_ERRLOG("Unable to send abort. Resetting, rc is %d.\n", rc);
|
|
}
|
|
|
|
/* FALLTHROUGH */
|
|
case SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET:
|
|
bdev_nvme_reset(nvme_ctrlr);
|
|
break;
|
|
case SPDK_BDEV_NVME_TIMEOUT_ACTION_NONE:
|
|
SPDK_DEBUGLOG(bdev_nvme, "No action for nvme controller timeout.\n");
|
|
break;
|
|
default:
|
|
SPDK_ERRLOG("An invalid timeout action value is found.\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_populate_namespace_done(struct nvme_ns *nvme_ns, int rc)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
|
|
struct nvme_async_probe_ctx *ctx = nvme_ns->probe_ctx;
|
|
|
|
if (rc == 0) {
|
|
nvme_ns->probe_ctx = NULL;
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
nvme_ctrlr->ref++;
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
} else {
|
|
RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
|
|
free(nvme_ns);
|
|
}
|
|
|
|
if (ctx) {
|
|
ctx->populates_in_progress--;
|
|
if (ctx->populates_in_progress == 0) {
|
|
nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_add_io_path(struct spdk_io_channel_iter *i)
|
|
{
|
|
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
|
|
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
|
|
struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
|
|
int rc;
|
|
|
|
rc = _bdev_nvme_add_io_path(nbdev_ch, nvme_ns);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Failed to add I/O path to bdev_channel dynamically.\n");
|
|
}
|
|
|
|
spdk_for_each_channel_continue(i, rc);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_delete_io_path(struct spdk_io_channel_iter *i)
|
|
{
|
|
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
|
|
struct nvme_bdev_channel *nbdev_ch = spdk_io_channel_get_ctx(_ch);
|
|
struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
|
|
struct nvme_io_path *io_path;
|
|
|
|
io_path = _bdev_nvme_get_io_path(nbdev_ch, nvme_ns);
|
|
if (io_path != NULL) {
|
|
_bdev_nvme_delete_io_path(nbdev_ch, io_path);
|
|
}
|
|
|
|
spdk_for_each_channel_continue(i, 0);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_add_io_path_failed(struct spdk_io_channel_iter *i, int status)
|
|
{
|
|
struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
|
|
|
|
nvme_ctrlr_populate_namespace_done(nvme_ns, -1);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_add_io_path_done(struct spdk_io_channel_iter *i, int status)
|
|
{
|
|
struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
|
|
struct nvme_bdev *bdev = spdk_io_channel_iter_get_io_device(i);
|
|
|
|
if (status == 0) {
|
|
nvme_ctrlr_populate_namespace_done(nvme_ns, 0);
|
|
} else {
|
|
/* Delete the added io_paths and fail populating the namespace. */
|
|
spdk_for_each_channel(bdev,
|
|
bdev_nvme_delete_io_path,
|
|
nvme_ns,
|
|
bdev_nvme_add_io_path_failed);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_bdev_add_ns(struct nvme_bdev *bdev, struct nvme_ns *nvme_ns)
|
|
{
|
|
struct nvme_ns *tmp_ns;
|
|
const struct spdk_nvme_ns_data *nsdata;
|
|
|
|
nsdata = spdk_nvme_ns_get_data(nvme_ns->ns);
|
|
if (!nsdata->nmic.can_share) {
|
|
SPDK_ERRLOG("Namespace cannot be shared.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pthread_mutex_lock(&bdev->mutex);
|
|
|
|
tmp_ns = TAILQ_FIRST(&bdev->nvme_ns_list);
|
|
assert(tmp_ns != NULL);
|
|
|
|
if (!bdev_nvme_compare_ns(nvme_ns->ns, tmp_ns->ns)) {
|
|
pthread_mutex_unlock(&bdev->mutex);
|
|
SPDK_ERRLOG("Namespaces are not identical.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
bdev->ref++;
|
|
TAILQ_INSERT_TAIL(&bdev->nvme_ns_list, nvme_ns, tailq);
|
|
nvme_ns->bdev = bdev;
|
|
|
|
pthread_mutex_unlock(&bdev->mutex);
|
|
|
|
/* Add nvme_io_path to nvme_bdev_channels dynamically. */
|
|
spdk_for_each_channel(bdev,
|
|
bdev_nvme_add_io_path,
|
|
nvme_ns,
|
|
bdev_nvme_add_io_path_done);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_populate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
|
|
{
|
|
struct spdk_nvme_ns *ns;
|
|
struct nvme_bdev *bdev;
|
|
int rc = 0;
|
|
|
|
ns = spdk_nvme_ctrlr_get_ns(nvme_ctrlr->ctrlr, nvme_ns->id);
|
|
if (!ns) {
|
|
SPDK_DEBUGLOG(bdev_nvme, "Invalid NS %d\n", nvme_ns->id);
|
|
rc = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
nvme_ns->ns = ns;
|
|
nvme_ns->ana_state = SPDK_NVME_ANA_OPTIMIZED_STATE;
|
|
|
|
if (nvme_ctrlr->ana_log_page != NULL) {
|
|
bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ns_set_ana_state, nvme_ns);
|
|
}
|
|
|
|
bdev = nvme_bdev_ctrlr_get_bdev(nvme_ctrlr->nbdev_ctrlr, nvme_ns->id);
|
|
if (bdev == NULL) {
|
|
rc = nvme_bdev_create(nvme_ctrlr, nvme_ns);
|
|
} else {
|
|
rc = nvme_bdev_add_ns(bdev, nvme_ns);
|
|
if (rc == 0) {
|
|
return;
|
|
}
|
|
}
|
|
done:
|
|
nvme_ctrlr_populate_namespace_done(nvme_ns, rc);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_depopulate_namespace_done(struct nvme_ns *nvme_ns)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = nvme_ns->ctrlr;
|
|
|
|
assert(nvme_ctrlr != NULL);
|
|
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
|
|
RB_REMOVE(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
|
|
|
|
if (nvme_ns->bdev != NULL) {
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
return;
|
|
}
|
|
|
|
free(nvme_ns);
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
|
|
nvme_ctrlr_release(nvme_ctrlr);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_delete_io_path_done(struct spdk_io_channel_iter *i, int status)
|
|
{
|
|
struct nvme_ns *nvme_ns = spdk_io_channel_iter_get_ctx(i);
|
|
|
|
nvme_ctrlr_depopulate_namespace_done(nvme_ns);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_depopulate_namespace(struct nvme_ctrlr *nvme_ctrlr, struct nvme_ns *nvme_ns)
|
|
{
|
|
struct nvme_bdev *bdev;
|
|
|
|
bdev = nvme_ns->bdev;
|
|
if (bdev != NULL) {
|
|
pthread_mutex_lock(&bdev->mutex);
|
|
|
|
assert(bdev->ref > 0);
|
|
bdev->ref--;
|
|
if (bdev->ref == 0) {
|
|
pthread_mutex_unlock(&bdev->mutex);
|
|
|
|
spdk_bdev_unregister(&bdev->disk, NULL, NULL);
|
|
} else {
|
|
/* spdk_bdev_unregister() is not called until the last nvme_ns is
|
|
* depopulated. Hence we need to remove nvme_ns from bdev->nvme_ns_list
|
|
* and clear nvme_ns->bdev here.
|
|
*/
|
|
TAILQ_REMOVE(&bdev->nvme_ns_list, nvme_ns, tailq);
|
|
nvme_ns->bdev = NULL;
|
|
|
|
pthread_mutex_unlock(&bdev->mutex);
|
|
|
|
/* Delete nvme_io_paths from nvme_bdev_channels dynamically. After that,
|
|
* we call depopulate_namespace_done() to avoid use-after-free.
|
|
*/
|
|
spdk_for_each_channel(bdev,
|
|
bdev_nvme_delete_io_path,
|
|
nvme_ns,
|
|
bdev_nvme_delete_io_path_done);
|
|
return;
|
|
}
|
|
}
|
|
|
|
nvme_ctrlr_depopulate_namespace_done(nvme_ns);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_populate_namespaces(struct nvme_ctrlr *nvme_ctrlr,
|
|
struct nvme_async_probe_ctx *ctx)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
|
|
struct nvme_ns *nvme_ns, *next;
|
|
struct spdk_nvme_ns *ns;
|
|
struct nvme_bdev *bdev;
|
|
uint32_t nsid;
|
|
int rc;
|
|
uint64_t num_sectors;
|
|
|
|
if (ctx) {
|
|
/* Initialize this count to 1 to handle the populate functions
|
|
* calling nvme_ctrlr_populate_namespace_done() immediately.
|
|
*/
|
|
ctx->populates_in_progress = 1;
|
|
}
|
|
|
|
/* First loop over our existing namespaces and see if they have been
|
|
* removed. */
|
|
nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
|
|
while (nvme_ns != NULL) {
|
|
next = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
|
|
|
|
if (spdk_nvme_ctrlr_is_active_ns(ctrlr, nvme_ns->id)) {
|
|
/* NS is still there but attributes may have changed */
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nvme_ns->id);
|
|
num_sectors = spdk_nvme_ns_get_num_sectors(ns);
|
|
bdev = nvme_ns->bdev;
|
|
assert(bdev != NULL);
|
|
if (bdev->disk.blockcnt != num_sectors) {
|
|
SPDK_NOTICELOG("NSID %u is resized: bdev name %s, old size %" PRIu64 ", new size %" PRIu64 "\n",
|
|
nvme_ns->id,
|
|
bdev->disk.name,
|
|
bdev->disk.blockcnt,
|
|
num_sectors);
|
|
rc = spdk_bdev_notify_blockcnt_change(&bdev->disk, num_sectors);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Could not change num blocks for nvme bdev: name %s, errno: %d.\n",
|
|
bdev->disk.name, rc);
|
|
}
|
|
}
|
|
} else {
|
|
/* Namespace was removed */
|
|
nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
|
|
}
|
|
|
|
nvme_ns = next;
|
|
}
|
|
|
|
/* Loop through all of the namespaces at the nvme level and see if any of them are new */
|
|
nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
|
|
while (nsid != 0) {
|
|
nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
|
|
|
|
if (nvme_ns == NULL) {
|
|
/* Found a new one */
|
|
nvme_ns = calloc(1, sizeof(struct nvme_ns));
|
|
if (nvme_ns == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate namespace\n");
|
|
/* This just fails to attach the namespace. It may work on a future attempt. */
|
|
continue;
|
|
}
|
|
|
|
nvme_ns->id = nsid;
|
|
nvme_ns->ctrlr = nvme_ctrlr;
|
|
|
|
nvme_ns->bdev = NULL;
|
|
|
|
if (ctx) {
|
|
ctx->populates_in_progress++;
|
|
}
|
|
nvme_ns->probe_ctx = ctx;
|
|
|
|
RB_INSERT(nvme_ns_tree, &nvme_ctrlr->namespaces, nvme_ns);
|
|
|
|
nvme_ctrlr_populate_namespace(nvme_ctrlr, nvme_ns);
|
|
}
|
|
|
|
nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid);
|
|
}
|
|
|
|
if (ctx) {
|
|
/* Decrement this count now that the loop is over to account
|
|
* for the one we started with. If the count is then 0, we
|
|
* know any populate_namespace functions completed immediately,
|
|
* so we'll kick the callback here.
|
|
*/
|
|
ctx->populates_in_progress--;
|
|
if (ctx->populates_in_progress == 0) {
|
|
nvme_ctrlr_populate_namespaces_done(nvme_ctrlr, ctx);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_depopulate_namespaces(struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
struct nvme_ns *nvme_ns, *tmp;
|
|
|
|
RB_FOREACH_SAFE(nvme_ns, nvme_ns_tree, &nvme_ctrlr->namespaces, tmp) {
|
|
nvme_ctrlr_depopulate_namespace(nvme_ctrlr, nvme_ns);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_set_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
|
|
void *cb_arg)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = cb_arg;
|
|
struct nvme_ns *nvme_ns;
|
|
uint32_t i, nsid;
|
|
|
|
for (i = 0; i < desc->num_of_nsid; i++) {
|
|
nsid = desc->nsid[i];
|
|
if (nsid == 0) {
|
|
continue;
|
|
}
|
|
|
|
nvme_ns = nvme_ctrlr_get_ns(nvme_ctrlr, nsid);
|
|
|
|
assert(nvme_ns != NULL);
|
|
if (nvme_ns == NULL) {
|
|
/* Target told us that an inactive namespace had an ANA change */
|
|
continue;
|
|
}
|
|
|
|
nvme_ns->ana_group_id = desc->ana_group_id;
|
|
nvme_ns->ana_state = desc->ana_state;
|
|
nvme_ns->ana_state_updating = false;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_clear_io_path_cache(struct spdk_io_channel_iter *i)
|
|
{
|
|
struct spdk_io_channel *_ch = spdk_io_channel_iter_get_channel(i);
|
|
struct nvme_ctrlr_channel *ctrlr_ch = spdk_io_channel_get_ctx(_ch);
|
|
|
|
_bdev_nvme_clear_io_path_cache(ctrlr_ch);
|
|
|
|
spdk_for_each_channel_continue(i, 0);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_clear_io_path_cache_done(struct spdk_io_channel_iter *i, int status)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = spdk_io_channel_iter_get_io_device(i);
|
|
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
|
|
assert(nvme_ctrlr->ana_log_page_updating == true);
|
|
nvme_ctrlr->ana_log_page_updating = false;
|
|
|
|
if (!nvme_ctrlr_can_be_unregistered(nvme_ctrlr)) {
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
|
|
nvme_ctrlr_unregister(nvme_ctrlr);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_read_ana_log_page_done(void *ctx, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = ctx;
|
|
|
|
if (cpl != NULL && spdk_nvme_cpl_is_success(cpl)) {
|
|
bdev_nvme_parse_ana_log_page(nvme_ctrlr, nvme_ctrlr_set_ana_states,
|
|
nvme_ctrlr);
|
|
}
|
|
|
|
spdk_for_each_channel(nvme_ctrlr,
|
|
bdev_nvme_clear_io_path_cache,
|
|
NULL,
|
|
bdev_nvme_clear_io_path_cache_done);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_read_ana_log_page(struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
if (nvme_ctrlr->ana_log_page == NULL) {
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
if (!nvme_ctrlr_is_available(nvme_ctrlr) ||
|
|
nvme_ctrlr->ana_log_page_updating) {
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
return;
|
|
}
|
|
|
|
nvme_ctrlr->ana_log_page_updating = true;
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
|
|
rc = spdk_nvme_ctrlr_cmd_get_log_page(nvme_ctrlr->ctrlr,
|
|
SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
|
|
SPDK_NVME_GLOBAL_NS_TAG,
|
|
nvme_ctrlr->ana_log_page,
|
|
nvme_ctrlr->ana_log_page_size, 0,
|
|
nvme_ctrlr_read_ana_log_page_done,
|
|
nvme_ctrlr);
|
|
if (rc != 0) {
|
|
nvme_ctrlr_read_ana_log_page_done(nvme_ctrlr, NULL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
aer_cb(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = arg;
|
|
union spdk_nvme_async_event_completion event;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
SPDK_WARNLOG("AER request execute failed");
|
|
return;
|
|
}
|
|
|
|
event.raw = cpl->cdw0;
|
|
if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
|
|
(event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
|
|
nvme_ctrlr_populate_namespaces(nvme_ctrlr, NULL);
|
|
} else if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
|
|
(event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
|
|
nvme_ctrlr_read_ana_log_page(nvme_ctrlr);
|
|
}
|
|
}
|
|
|
|
static void
|
|
populate_namespaces_cb(struct nvme_async_probe_ctx *ctx, size_t count, int rc)
|
|
{
|
|
if (ctx->cb_fn) {
|
|
ctx->cb_fn(ctx->cb_ctx, count, rc);
|
|
}
|
|
|
|
ctx->namespaces_populated = true;
|
|
if (ctx->probe_done) {
|
|
/* The probe was already completed, so we need to free the context
|
|
* here. This can happen for cases like OCSSD, where we need to
|
|
* send additional commands to the SSD after attach.
|
|
*/
|
|
free(ctx);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_create_done(struct nvme_ctrlr *nvme_ctrlr,
|
|
struct nvme_async_probe_ctx *ctx)
|
|
{
|
|
spdk_io_device_register(nvme_ctrlr,
|
|
bdev_nvme_create_ctrlr_channel_cb,
|
|
bdev_nvme_destroy_ctrlr_channel_cb,
|
|
sizeof(struct nvme_ctrlr_channel),
|
|
nvme_ctrlr->nbdev_ctrlr->name);
|
|
|
|
nvme_ctrlr_populate_namespaces(nvme_ctrlr, ctx);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_init_ana_log_page_done(void *_ctx, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = _ctx;
|
|
struct nvme_async_probe_ctx *ctx = nvme_ctrlr->probe_ctx;
|
|
|
|
nvme_ctrlr->probe_ctx = NULL;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
nvme_ctrlr_delete(nvme_ctrlr);
|
|
|
|
if (ctx != NULL) {
|
|
populate_namespaces_cb(ctx, 0, -1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
nvme_ctrlr_create_done(nvme_ctrlr, ctx);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_init_ana_log_page(struct nvme_ctrlr *nvme_ctrlr,
|
|
struct nvme_async_probe_ctx *ctx)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
uint32_t ana_log_page_size;
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
|
|
ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
|
|
sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->nn *
|
|
sizeof(uint32_t);
|
|
|
|
nvme_ctrlr->ana_log_page = spdk_zmalloc(ana_log_page_size, 64, NULL,
|
|
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
|
|
if (nvme_ctrlr->ana_log_page == NULL) {
|
|
SPDK_ERRLOG("could not allocate ANA log page buffer\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Each descriptor in a ANA log page is not ensured to be 8-bytes aligned.
|
|
* Hence copy each descriptor to a temporary area when parsing it.
|
|
*
|
|
* Allocate a buffer whose size is as large as ANA log page buffer because
|
|
* we do not know the size of a descriptor until actually reading it.
|
|
*/
|
|
nvme_ctrlr->copied_ana_desc = calloc(1, ana_log_page_size);
|
|
if (nvme_ctrlr->copied_ana_desc == NULL) {
|
|
SPDK_ERRLOG("could not allocate a buffer to parse ANA descriptor\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
nvme_ctrlr->ana_log_page_size = ana_log_page_size;
|
|
|
|
nvme_ctrlr->probe_ctx = ctx;
|
|
|
|
return spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
|
|
SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
|
|
SPDK_NVME_GLOBAL_NS_TAG,
|
|
nvme_ctrlr->ana_log_page,
|
|
nvme_ctrlr->ana_log_page_size, 0,
|
|
nvme_ctrlr_init_ana_log_page_done,
|
|
nvme_ctrlr);
|
|
}
|
|
|
|
/* hostnqn and subnqn were already verified before attaching a controller.
|
|
* Hence check only the multipath capability and cntlid here.
|
|
*/
|
|
static bool
|
|
bdev_nvme_check_multipath(struct nvme_bdev_ctrlr *nbdev_ctrlr, struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_ctrlr *tmp;
|
|
const struct spdk_nvme_ctrlr_data *cdata, *tmp_cdata;
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
|
|
if (!cdata->cmic.multi_ctrlr) {
|
|
SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
|
|
return false;
|
|
}
|
|
|
|
TAILQ_FOREACH(tmp, &nbdev_ctrlr->ctrlrs, tailq) {
|
|
tmp_cdata = spdk_nvme_ctrlr_get_data(tmp->ctrlr);
|
|
|
|
if (!tmp_cdata->cmic.multi_ctrlr) {
|
|
SPDK_ERRLOG("Ctrlr%u does not support multipath.\n", cdata->cntlid);
|
|
return false;
|
|
}
|
|
if (cdata->cntlid == tmp_cdata->cntlid) {
|
|
SPDK_ERRLOG("cntlid %u are duplicated.\n", tmp_cdata->cntlid);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
nvme_bdev_ctrlr_create(const char *name, struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
struct nvme_bdev_ctrlr *nbdev_ctrlr;
|
|
struct spdk_nvme_ctrlr *ctrlr = nvme_ctrlr->ctrlr;
|
|
int rc = 0;
|
|
|
|
pthread_mutex_lock(&g_bdev_nvme_mutex);
|
|
|
|
nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
|
|
if (nbdev_ctrlr != NULL) {
|
|
if (!bdev_nvme_check_multipath(nbdev_ctrlr, ctrlr)) {
|
|
rc = -EINVAL;
|
|
goto exit;
|
|
}
|
|
} else {
|
|
nbdev_ctrlr = calloc(1, sizeof(*nbdev_ctrlr));
|
|
if (nbdev_ctrlr == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate nvme_bdev_ctrlr.\n");
|
|
rc = -ENOMEM;
|
|
goto exit;
|
|
}
|
|
nbdev_ctrlr->name = strdup(name);
|
|
if (nbdev_ctrlr->name == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate name of nvme_bdev_ctrlr.\n");
|
|
free(nbdev_ctrlr);
|
|
goto exit;
|
|
}
|
|
TAILQ_INIT(&nbdev_ctrlr->ctrlrs);
|
|
TAILQ_INIT(&nbdev_ctrlr->bdevs);
|
|
TAILQ_INSERT_TAIL(&g_nvme_bdev_ctrlrs, nbdev_ctrlr, tailq);
|
|
}
|
|
nvme_ctrlr->nbdev_ctrlr = nbdev_ctrlr;
|
|
TAILQ_INSERT_TAIL(&nbdev_ctrlr->ctrlrs, nvme_ctrlr, tailq);
|
|
exit:
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_create(struct spdk_nvme_ctrlr *ctrlr,
|
|
const char *name,
|
|
const struct spdk_nvme_transport_id *trid,
|
|
uint32_t prchk_flags,
|
|
struct nvme_async_probe_ctx *ctx)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
struct nvme_path_id *path_id;
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
int rc;
|
|
|
|
nvme_ctrlr = calloc(1, sizeof(*nvme_ctrlr));
|
|
if (nvme_ctrlr == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate device struct\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rc = pthread_mutex_init(&nvme_ctrlr->mutex, NULL);
|
|
if (rc != 0) {
|
|
free(nvme_ctrlr);
|
|
return rc;
|
|
}
|
|
|
|
TAILQ_INIT(&nvme_ctrlr->trids);
|
|
|
|
RB_INIT(&nvme_ctrlr->namespaces);
|
|
|
|
path_id = calloc(1, sizeof(*path_id));
|
|
if (path_id == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate trid entry pointer\n");
|
|
rc = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
path_id->trid = *trid;
|
|
if (ctx != NULL) {
|
|
memcpy(path_id->hostid.hostaddr, ctx->opts.src_addr, sizeof(path_id->hostid.hostaddr));
|
|
memcpy(path_id->hostid.hostsvcid, ctx->opts.src_svcid, sizeof(path_id->hostid.hostsvcid));
|
|
}
|
|
nvme_ctrlr->active_path_id = path_id;
|
|
TAILQ_INSERT_HEAD(&nvme_ctrlr->trids, path_id, link);
|
|
|
|
nvme_ctrlr->thread = spdk_get_thread();
|
|
nvme_ctrlr->ctrlr = ctrlr;
|
|
nvme_ctrlr->ref = 1;
|
|
|
|
if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
|
|
SPDK_ERRLOG("OCSSDs are not supported");
|
|
rc = -ENOTSUP;
|
|
goto err;
|
|
}
|
|
|
|
nvme_ctrlr->prchk_flags = prchk_flags;
|
|
|
|
nvme_ctrlr->adminq_timer_poller = SPDK_POLLER_REGISTER(bdev_nvme_poll_adminq, nvme_ctrlr,
|
|
g_opts.nvme_adminq_poll_period_us);
|
|
|
|
if (g_opts.timeout_us > 0) {
|
|
/* Register timeout callback. Timeout values for IO vs. admin reqs can be different. */
|
|
/* If timeout_admin_us is 0 (not specified), admin uses same timeout as IO. */
|
|
uint64_t adm_timeout_us = (g_opts.timeout_admin_us == 0) ?
|
|
g_opts.timeout_us : g_opts.timeout_admin_us;
|
|
spdk_nvme_ctrlr_register_timeout_callback(ctrlr, g_opts.timeout_us,
|
|
adm_timeout_us, timeout_cb, nvme_ctrlr);
|
|
}
|
|
|
|
spdk_nvme_ctrlr_register_aer_callback(ctrlr, aer_cb, nvme_ctrlr);
|
|
spdk_nvme_ctrlr_set_remove_cb(ctrlr, remove_cb, nvme_ctrlr);
|
|
|
|
if (spdk_nvme_ctrlr_get_flags(ctrlr) &
|
|
SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED) {
|
|
nvme_ctrlr->opal_dev = spdk_opal_dev_construct(ctrlr);
|
|
}
|
|
|
|
rc = nvme_bdev_ctrlr_create(name, nvme_ctrlr);
|
|
if (rc != 0) {
|
|
goto err;
|
|
}
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
|
|
if (cdata->cmic.ana_reporting) {
|
|
rc = nvme_ctrlr_init_ana_log_page(nvme_ctrlr, ctx);
|
|
if (rc == 0) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
nvme_ctrlr_create_done(nvme_ctrlr, ctx);
|
|
return 0;
|
|
}
|
|
|
|
err:
|
|
nvme_ctrlr_delete(nvme_ctrlr);
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
char *name;
|
|
|
|
name = spdk_sprintf_alloc("HotInNvme%d", g_hot_insert_nvme_controller_index++);
|
|
if (!name) {
|
|
SPDK_ERRLOG("Failed to assign name to NVMe device\n");
|
|
return;
|
|
}
|
|
|
|
SPDK_DEBUGLOG(bdev_nvme, "Attached to %s (%s)\n", trid->traddr, name);
|
|
|
|
nvme_ctrlr_create(ctrlr, name, trid, 0, NULL);
|
|
|
|
free(name);
|
|
}
|
|
|
|
static void
|
|
_nvme_ctrlr_destruct(void *ctx)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = ctx;
|
|
|
|
nvme_ctrlr_depopulate_namespaces(nvme_ctrlr);
|
|
nvme_ctrlr_release(nvme_ctrlr);
|
|
}
|
|
|
|
static int
|
|
_bdev_nvme_delete(struct nvme_ctrlr *nvme_ctrlr, bool hotplug)
|
|
{
|
|
struct nvme_probe_skip_entry *entry;
|
|
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
|
|
/* The controller's destruction was already started */
|
|
if (nvme_ctrlr->destruct) {
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
return 0;
|
|
}
|
|
|
|
if (!hotplug &&
|
|
nvme_ctrlr->active_path_id->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
entry = calloc(1, sizeof(*entry));
|
|
if (!entry) {
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
return -ENOMEM;
|
|
}
|
|
entry->trid = nvme_ctrlr->active_path_id->trid;
|
|
TAILQ_INSERT_TAIL(&g_skipped_nvme_ctrlrs, entry, tailq);
|
|
}
|
|
|
|
nvme_ctrlr->destruct = true;
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
|
|
_nvme_ctrlr_destruct(nvme_ctrlr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_ctrlr *nvme_ctrlr = cb_ctx;
|
|
|
|
_bdev_nvme_delete(nvme_ctrlr, true);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_hotplug_probe(void *arg)
|
|
{
|
|
if (g_hotplug_probe_ctx == NULL) {
|
|
spdk_poller_unregister(&g_hotplug_probe_poller);
|
|
return SPDK_POLLER_IDLE;
|
|
}
|
|
|
|
if (spdk_nvme_probe_poll_async(g_hotplug_probe_ctx) != -EAGAIN) {
|
|
g_hotplug_probe_ctx = NULL;
|
|
spdk_poller_unregister(&g_hotplug_probe_poller);
|
|
}
|
|
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_hotplug(void *arg)
|
|
{
|
|
struct spdk_nvme_transport_id trid_pcie;
|
|
|
|
if (g_hotplug_probe_ctx) {
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
memset(&trid_pcie, 0, sizeof(trid_pcie));
|
|
spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
|
|
|
|
g_hotplug_probe_ctx = spdk_nvme_probe_async(&trid_pcie, NULL,
|
|
hotplug_probe_cb, attach_cb, NULL);
|
|
|
|
if (g_hotplug_probe_ctx) {
|
|
assert(g_hotplug_probe_poller == NULL);
|
|
g_hotplug_probe_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug_probe, NULL, 1000);
|
|
}
|
|
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
void
|
|
bdev_nvme_get_opts(struct spdk_bdev_nvme_opts *opts)
|
|
{
|
|
*opts = g_opts;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_validate_opts(const struct spdk_bdev_nvme_opts *opts)
|
|
{
|
|
if ((opts->timeout_us == 0) && (opts->timeout_admin_us != 0)) {
|
|
/* Can't set timeout_admin_us without also setting timeout_us */
|
|
SPDK_WARNLOG("Invalid options: Can't have (timeout_us == 0) with (timeout_admin_us > 0)\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (opts->bdev_retry_count < -1) {
|
|
SPDK_WARNLOG("Invalid option: bdev_retry_count can't be less than -1.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
bdev_nvme_set_opts(const struct spdk_bdev_nvme_opts *opts)
|
|
{
|
|
int ret = bdev_nvme_validate_opts(opts);
|
|
if (ret) {
|
|
SPDK_WARNLOG("Failed to set nvme opts.\n");
|
|
return ret;
|
|
}
|
|
|
|
if (g_bdev_nvme_init_thread != NULL) {
|
|
if (!TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
|
|
return -EPERM;
|
|
}
|
|
}
|
|
|
|
g_opts = *opts;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct set_nvme_hotplug_ctx {
|
|
uint64_t period_us;
|
|
bool enabled;
|
|
spdk_msg_fn fn;
|
|
void *fn_ctx;
|
|
};
|
|
|
|
static void
|
|
set_nvme_hotplug_period_cb(void *_ctx)
|
|
{
|
|
struct set_nvme_hotplug_ctx *ctx = _ctx;
|
|
|
|
spdk_poller_unregister(&g_hotplug_poller);
|
|
if (ctx->enabled) {
|
|
g_hotplug_poller = SPDK_POLLER_REGISTER(bdev_nvme_hotplug, NULL, ctx->period_us);
|
|
}
|
|
|
|
g_nvme_hotplug_poll_period_us = ctx->period_us;
|
|
g_nvme_hotplug_enabled = ctx->enabled;
|
|
if (ctx->fn) {
|
|
ctx->fn(ctx->fn_ctx);
|
|
}
|
|
|
|
free(ctx);
|
|
}
|
|
|
|
int
|
|
bdev_nvme_set_hotplug(bool enabled, uint64_t period_us, spdk_msg_fn cb, void *cb_ctx)
|
|
{
|
|
struct set_nvme_hotplug_ctx *ctx;
|
|
|
|
if (enabled == true && !spdk_process_is_primary()) {
|
|
return -EPERM;
|
|
}
|
|
|
|
ctx = calloc(1, sizeof(*ctx));
|
|
if (ctx == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
period_us = period_us == 0 ? NVME_HOTPLUG_POLL_PERIOD_DEFAULT : period_us;
|
|
ctx->period_us = spdk_min(period_us, NVME_HOTPLUG_POLL_PERIOD_MAX);
|
|
ctx->enabled = enabled;
|
|
ctx->fn = cb;
|
|
ctx->fn_ctx = cb_ctx;
|
|
|
|
spdk_thread_send_msg(g_bdev_nvme_init_thread, set_nvme_hotplug_period_cb, ctx);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_populate_namespaces_done(struct nvme_ctrlr *nvme_ctrlr,
|
|
struct nvme_async_probe_ctx *ctx)
|
|
{
|
|
struct nvme_ns *nvme_ns;
|
|
struct nvme_bdev *nvme_bdev;
|
|
size_t j;
|
|
|
|
assert(nvme_ctrlr != NULL);
|
|
|
|
/*
|
|
* Report the new bdevs that were created in this call.
|
|
* There can be more than one bdev per NVMe controller.
|
|
*/
|
|
j = 0;
|
|
nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
|
|
while (nvme_ns != NULL) {
|
|
nvme_bdev = nvme_ns->bdev;
|
|
if (j < ctx->count) {
|
|
ctx->names[j] = nvme_bdev->disk.name;
|
|
j++;
|
|
} else {
|
|
SPDK_ERRLOG("Maximum number of namespaces supported per NVMe controller is %du. Unable to return all names of created bdevs\n",
|
|
ctx->count);
|
|
populate_namespaces_cb(ctx, 0, -ERANGE);
|
|
return;
|
|
}
|
|
|
|
nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
|
|
}
|
|
|
|
populate_namespaces_cb(ctx, j, 0);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_compare_trids(struct nvme_ctrlr *nvme_ctrlr,
|
|
struct spdk_nvme_ctrlr *new_ctrlr,
|
|
struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct nvme_path_id *tmp_trid;
|
|
|
|
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
SPDK_ERRLOG("PCIe failover is not supported.\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Currently we only support failover to the same transport type. */
|
|
if (nvme_ctrlr->active_path_id->trid.trtype != trid->trtype) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Currently we only support failover to the same NQN. */
|
|
if (strncmp(trid->subnqn, nvme_ctrlr->active_path_id->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Skip all the other checks if we've already registered this path. */
|
|
TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
|
|
if (!spdk_nvme_transport_id_compare(&tmp_trid->trid, trid)) {
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_compare_namespaces(struct nvme_ctrlr *nvme_ctrlr,
|
|
struct spdk_nvme_ctrlr *new_ctrlr)
|
|
{
|
|
struct nvme_ns *nvme_ns;
|
|
struct spdk_nvme_ns *new_ns;
|
|
|
|
nvme_ns = nvme_ctrlr_get_first_active_ns(nvme_ctrlr);
|
|
while (nvme_ns != NULL) {
|
|
new_ns = spdk_nvme_ctrlr_get_ns(new_ctrlr, nvme_ns->id);
|
|
assert(new_ns != NULL);
|
|
|
|
if (!bdev_nvme_compare_ns(nvme_ns->ns, new_ns)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
nvme_ns = nvme_ctrlr_get_next_active_ns(nvme_ctrlr, nvme_ns);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
_bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
|
|
struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct nvme_path_id *new_trid, *tmp_trid;
|
|
|
|
new_trid = calloc(1, sizeof(*new_trid));
|
|
if (new_trid == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
new_trid->trid = *trid;
|
|
new_trid->is_failed = false;
|
|
|
|
TAILQ_FOREACH(tmp_trid, &nvme_ctrlr->trids, link) {
|
|
if (tmp_trid->is_failed) {
|
|
TAILQ_INSERT_BEFORE(tmp_trid, new_trid, link);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&nvme_ctrlr->trids, new_trid, link);
|
|
return 0;
|
|
}
|
|
|
|
/* This is the case that a secondary path is added to an existing
|
|
* nvme_ctrlr for failover. After checking if it can access the same
|
|
* namespaces as the primary path, it is disconnected until failover occurs.
|
|
*/
|
|
static int
|
|
bdev_nvme_add_secondary_trid(struct nvme_ctrlr *nvme_ctrlr,
|
|
struct spdk_nvme_ctrlr *new_ctrlr,
|
|
struct spdk_nvme_transport_id *trid)
|
|
{
|
|
int rc;
|
|
|
|
assert(nvme_ctrlr != NULL);
|
|
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
|
|
rc = bdev_nvme_compare_trids(nvme_ctrlr, new_ctrlr, trid);
|
|
if (rc != 0) {
|
|
goto exit;
|
|
}
|
|
|
|
rc = bdev_nvme_compare_namespaces(nvme_ctrlr, new_ctrlr);
|
|
if (rc != 0) {
|
|
goto exit;
|
|
}
|
|
|
|
rc = _bdev_nvme_add_secondary_trid(nvme_ctrlr, trid);
|
|
|
|
exit:
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
|
|
spdk_nvme_detach(new_ctrlr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
connect_attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
|
|
struct nvme_async_probe_ctx *ctx;
|
|
int rc;
|
|
|
|
ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, opts);
|
|
ctx->ctrlr_attached = true;
|
|
|
|
rc = nvme_ctrlr_create(ctrlr, ctx->base_name, &ctx->trid, ctx->prchk_flags, ctx);
|
|
if (rc != 0) {
|
|
populate_namespaces_cb(ctx, 0, rc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
connect_set_failover_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr *ctrlr,
|
|
const struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
struct spdk_nvme_ctrlr_opts *user_opts = cb_ctx;
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
struct nvme_async_probe_ctx *ctx;
|
|
int rc;
|
|
|
|
ctx = SPDK_CONTAINEROF(user_opts, struct nvme_async_probe_ctx, opts);
|
|
ctx->ctrlr_attached = true;
|
|
|
|
nvme_ctrlr = nvme_ctrlr_get_by_name(ctx->base_name);
|
|
if (nvme_ctrlr) {
|
|
rc = bdev_nvme_add_secondary_trid(nvme_ctrlr, ctrlr, &ctx->trid);
|
|
} else {
|
|
rc = -ENODEV;
|
|
}
|
|
|
|
populate_namespaces_cb(ctx, 0, rc);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_async_poll(void *arg)
|
|
{
|
|
struct nvme_async_probe_ctx *ctx = arg;
|
|
int rc;
|
|
|
|
rc = spdk_nvme_probe_poll_async(ctx->probe_ctx);
|
|
if (spdk_unlikely(rc != -EAGAIN)) {
|
|
ctx->probe_done = true;
|
|
spdk_poller_unregister(&ctx->poller);
|
|
if (!ctx->ctrlr_attached) {
|
|
/* The probe is done, but no controller was attached.
|
|
* That means we had a failure, so report -EIO back to
|
|
* the caller (usually the RPC). populate_namespaces_cb()
|
|
* will take care of freeing the nvme_async_probe_ctx.
|
|
*/
|
|
populate_namespaces_cb(ctx, 0, -EIO);
|
|
} else if (ctx->namespaces_populated) {
|
|
/* The namespaces for the attached controller were all
|
|
* populated and the response was already sent to the
|
|
* caller (usually the RPC). So free the context here.
|
|
*/
|
|
free(ctx);
|
|
}
|
|
}
|
|
|
|
return SPDK_POLLER_BUSY;
|
|
}
|
|
|
|
int
|
|
bdev_nvme_create(struct spdk_nvme_transport_id *trid,
|
|
const char *base_name,
|
|
const char **names,
|
|
uint32_t count,
|
|
uint32_t prchk_flags,
|
|
spdk_bdev_create_nvme_fn cb_fn,
|
|
void *cb_ctx,
|
|
struct spdk_nvme_ctrlr_opts *opts,
|
|
bool multipath)
|
|
{
|
|
struct nvme_probe_skip_entry *entry, *tmp;
|
|
struct nvme_async_probe_ctx *ctx;
|
|
spdk_nvme_attach_cb attach_cb;
|
|
|
|
/* TODO expand this check to include both the host and target TRIDs.
|
|
* Only if both are the same should we fail.
|
|
*/
|
|
if (nvme_ctrlr_get(trid) != NULL) {
|
|
SPDK_ERRLOG("A controller with the provided trid (traddr: %s) already exists.\n", trid->traddr);
|
|
return -EEXIST;
|
|
}
|
|
|
|
ctx = calloc(1, sizeof(*ctx));
|
|
if (!ctx) {
|
|
return -ENOMEM;
|
|
}
|
|
ctx->base_name = base_name;
|
|
ctx->names = names;
|
|
ctx->count = count;
|
|
ctx->cb_fn = cb_fn;
|
|
ctx->cb_ctx = cb_ctx;
|
|
ctx->prchk_flags = prchk_flags;
|
|
ctx->trid = *trid;
|
|
|
|
if (trid->trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, tmp) {
|
|
if (spdk_nvme_transport_id_compare(trid, &entry->trid) == 0) {
|
|
TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
|
|
free(entry);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (opts) {
|
|
memcpy(&ctx->opts, opts, sizeof(*opts));
|
|
} else {
|
|
spdk_nvme_ctrlr_get_default_ctrlr_opts(&ctx->opts, sizeof(ctx->opts));
|
|
}
|
|
|
|
ctx->opts.transport_retry_count = g_opts.transport_retry_count;
|
|
ctx->opts.keep_alive_timeout_ms = g_opts.keep_alive_timeout_ms;
|
|
ctx->opts.disable_read_ana_log_page = true;
|
|
|
|
if (nvme_bdev_ctrlr_get_by_name(base_name) == NULL || multipath) {
|
|
attach_cb = connect_attach_cb;
|
|
} else {
|
|
attach_cb = connect_set_failover_cb;
|
|
}
|
|
|
|
ctx->probe_ctx = spdk_nvme_connect_async(trid, &ctx->opts, attach_cb);
|
|
if (ctx->probe_ctx == NULL) {
|
|
SPDK_ERRLOG("No controller was found with provided trid (traddr: %s)\n", trid->traddr);
|
|
free(ctx);
|
|
return -ENODEV;
|
|
}
|
|
ctx->poller = SPDK_POLLER_REGISTER(bdev_nvme_async_poll, ctx, 1000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
bdev_nvme_delete(const char *name, const struct nvme_path_id *path_id)
|
|
{
|
|
struct nvme_bdev_ctrlr *nbdev_ctrlr;
|
|
struct nvme_ctrlr *nvme_ctrlr, *tmp_nvme_ctrlr;
|
|
struct nvme_path_id *p, *t;
|
|
int rc = -ENXIO;
|
|
|
|
if (name == NULL || path_id == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
nbdev_ctrlr = nvme_bdev_ctrlr_get_by_name(name);
|
|
if (nbdev_ctrlr == NULL) {
|
|
SPDK_ERRLOG("Failed to find NVMe bdev controller\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq, tmp_nvme_ctrlr) {
|
|
TAILQ_FOREACH_REVERSE_SAFE(p, &nvme_ctrlr->trids, nvme_paths, link, t) {
|
|
if (path_id->trid.trtype != 0) {
|
|
if (path_id->trid.trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
|
|
if (strcasecmp(path_id->trid.trstring, p->trid.trstring) != 0) {
|
|
continue;
|
|
}
|
|
} else {
|
|
if (path_id->trid.trtype != p->trid.trtype) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!spdk_mem_all_zero(path_id->trid.traddr, sizeof(path_id->trid.traddr))) {
|
|
if (strcasecmp(path_id->trid.traddr, p->trid.traddr) != 0) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (path_id->trid.adrfam != 0) {
|
|
if (path_id->trid.adrfam != p->trid.adrfam) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!spdk_mem_all_zero(path_id->trid.trsvcid, sizeof(path_id->trid.trsvcid))) {
|
|
if (strcasecmp(path_id->trid.trsvcid, p->trid.trsvcid) != 0) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!spdk_mem_all_zero(path_id->trid.subnqn, sizeof(path_id->trid.subnqn))) {
|
|
if (strcmp(path_id->trid.subnqn, p->trid.subnqn) != 0) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!spdk_mem_all_zero(path_id->hostid.hostaddr, sizeof(path_id->hostid.hostaddr))) {
|
|
if (strcmp(path_id->hostid.hostaddr, p->hostid.hostaddr) != 0) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!spdk_mem_all_zero(path_id->hostid.hostsvcid, sizeof(path_id->hostid.hostsvcid))) {
|
|
if (strcmp(path_id->hostid.hostsvcid, p->hostid.hostsvcid) != 0) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* If we made it here, then this path is a match! Now we need to remove it. */
|
|
if (p == nvme_ctrlr->active_path_id) {
|
|
/* This is the active path in use right now. The active path is always the first in the list. */
|
|
|
|
if (!TAILQ_NEXT(p, link)) {
|
|
/* The current path is the only path. */
|
|
rc = _bdev_nvme_delete(nvme_ctrlr, false);
|
|
} else {
|
|
/* There is an alternative path. */
|
|
rc = bdev_nvme_failover(nvme_ctrlr, true);
|
|
}
|
|
} else {
|
|
/* We are not using the specified path. */
|
|
TAILQ_REMOVE(&nvme_ctrlr->trids, p, link);
|
|
free(p);
|
|
rc = 0;
|
|
}
|
|
|
|
if (rc < 0 && rc != -ENXIO) {
|
|
return rc;
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
|
|
/* All nvme_ctrlrs were deleted or no nvme_ctrlr which had the trid was found. */
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_library_init(void)
|
|
{
|
|
g_bdev_nvme_init_thread = spdk_get_thread();
|
|
|
|
spdk_io_device_register(&g_nvme_bdev_ctrlrs, bdev_nvme_create_poll_group_cb,
|
|
bdev_nvme_destroy_poll_group_cb,
|
|
sizeof(struct nvme_poll_group), "nvme_poll_groups");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_library_fini(void)
|
|
{
|
|
struct nvme_bdev_ctrlr *nbdev_ctrlr;
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
struct nvme_probe_skip_entry *entry, *entry_tmp;
|
|
|
|
spdk_poller_unregister(&g_hotplug_poller);
|
|
free(g_hotplug_probe_ctx);
|
|
g_hotplug_probe_ctx = NULL;
|
|
|
|
TAILQ_FOREACH_SAFE(entry, &g_skipped_nvme_ctrlrs, tailq, entry_tmp) {
|
|
TAILQ_REMOVE(&g_skipped_nvme_ctrlrs, entry, tailq);
|
|
free(entry);
|
|
}
|
|
|
|
pthread_mutex_lock(&g_bdev_nvme_mutex);
|
|
TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
|
|
TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
|
|
pthread_mutex_lock(&nvme_ctrlr->mutex);
|
|
if (nvme_ctrlr->destruct) {
|
|
/* This controller's destruction was already started
|
|
* before the application started shutting down
|
|
*/
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
continue;
|
|
}
|
|
nvme_ctrlr->destruct = true;
|
|
pthread_mutex_unlock(&nvme_ctrlr->mutex);
|
|
|
|
spdk_thread_send_msg(nvme_ctrlr->thread, _nvme_ctrlr_destruct,
|
|
nvme_ctrlr);
|
|
}
|
|
}
|
|
|
|
g_bdev_nvme_module_finish = true;
|
|
if (TAILQ_EMPTY(&g_nvme_bdev_ctrlrs)) {
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
spdk_io_device_unregister(&g_nvme_bdev_ctrlrs, NULL);
|
|
spdk_bdev_module_fini_done();
|
|
return;
|
|
}
|
|
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_verify_pi_error(struct nvme_bdev_io *bio)
|
|
{
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
struct spdk_bdev *bdev = bdev_io->bdev;
|
|
struct spdk_dif_ctx dif_ctx;
|
|
struct spdk_dif_error err_blk = {};
|
|
int rc;
|
|
|
|
rc = spdk_dif_ctx_init(&dif_ctx,
|
|
bdev->blocklen, bdev->md_len, bdev->md_interleave,
|
|
bdev->dif_is_head_of_md, bdev->dif_type, bdev->dif_check_flags,
|
|
bdev_io->u.bdev.offset_blocks, 0, 0, 0, 0);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("Initialization of DIF context failed\n");
|
|
return;
|
|
}
|
|
|
|
if (bdev->md_interleave) {
|
|
rc = spdk_dif_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
|
|
bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
|
|
} else {
|
|
struct iovec md_iov = {
|
|
.iov_base = bdev_io->u.bdev.md_buf,
|
|
.iov_len = bdev_io->u.bdev.num_blocks * bdev->md_len,
|
|
};
|
|
|
|
rc = spdk_dix_verify(bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt,
|
|
&md_iov, bdev_io->u.bdev.num_blocks, &dif_ctx, &err_blk);
|
|
}
|
|
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n",
|
|
err_blk.err_type, err_blk.err_offset);
|
|
} else {
|
|
SPDK_ERRLOG("Hardware reported PI error but SPDK could not find any.\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_no_pi_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
|
|
if (spdk_nvme_cpl_is_success(cpl)) {
|
|
/* Run PI verification for read data buffer. */
|
|
bdev_nvme_verify_pi_error(bio);
|
|
}
|
|
|
|
/* Return original completion status */
|
|
bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_readv_done(void *ref, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
int ret;
|
|
|
|
if (spdk_unlikely(spdk_nvme_cpl_is_pi_error(cpl))) {
|
|
SPDK_ERRLOG("readv completed with PI error (sct=%d, sc=%d)\n",
|
|
cpl->status.sct, cpl->status.sc);
|
|
|
|
/* Save completion status to use after verifying PI error. */
|
|
bio->cpl = *cpl;
|
|
|
|
if (spdk_likely(nvme_io_path_is_available(bio->io_path))) {
|
|
/* Read without PI checking to verify PI error. */
|
|
ret = bdev_nvme_no_pi_readv(bio,
|
|
bdev_io->u.bdev.iovs,
|
|
bdev_io->u.bdev.iovcnt,
|
|
bdev_io->u.bdev.md_buf,
|
|
bdev_io->u.bdev.num_blocks,
|
|
bdev_io->u.bdev.offset_blocks);
|
|
if (ret == 0) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
bdev_nvme_io_complete_nvme_status(bio, cpl);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
|
|
if (spdk_nvme_cpl_is_pi_error(cpl)) {
|
|
SPDK_ERRLOG("writev completed with PI error (sct=%d, sc=%d)\n",
|
|
cpl->status.sct, cpl->status.sc);
|
|
/* Run PI verification for write data buffer if PI error is detected. */
|
|
bdev_nvme_verify_pi_error(bio);
|
|
}
|
|
|
|
bdev_nvme_io_complete_nvme_status(bio, cpl);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_zone_appendv_done(void *ref, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
|
|
/* spdk_bdev_io_get_append_location() requires that the ALBA is stored in offset_blocks.
|
|
* Additionally, offset_blocks has to be set before calling bdev_nvme_verify_pi_error().
|
|
*/
|
|
bdev_io->u.bdev.offset_blocks = *(uint64_t *)&cpl->cdw0;
|
|
|
|
if (spdk_nvme_cpl_is_pi_error(cpl)) {
|
|
SPDK_ERRLOG("zone append completed with PI error (sct=%d, sc=%d)\n",
|
|
cpl->status.sct, cpl->status.sc);
|
|
/* Run PI verification for zone append data buffer if PI error is detected. */
|
|
bdev_nvme_verify_pi_error(bio);
|
|
}
|
|
|
|
bdev_nvme_io_complete_nvme_status(bio, cpl);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_comparev_done(void *ref, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
|
|
if (spdk_nvme_cpl_is_pi_error(cpl)) {
|
|
SPDK_ERRLOG("comparev completed with PI error (sct=%d, sc=%d)\n",
|
|
cpl->status.sct, cpl->status.sc);
|
|
/* Run PI verification for compare data buffer if PI error is detected. */
|
|
bdev_nvme_verify_pi_error(bio);
|
|
}
|
|
|
|
bdev_nvme_io_complete_nvme_status(bio, cpl);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_comparev_and_writev_done(void *ref, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
|
|
/* Compare operation completion */
|
|
if ((cpl->cdw0 & 0xFF) == SPDK_NVME_OPC_COMPARE) {
|
|
/* Save compare result for write callback */
|
|
bio->cpl = *cpl;
|
|
return;
|
|
}
|
|
|
|
/* Write operation completion */
|
|
if (spdk_nvme_cpl_is_error(&bio->cpl)) {
|
|
/* If bio->cpl is already an error, it means the compare operation failed. In that case,
|
|
* complete the IO with the compare operation's status.
|
|
*/
|
|
if (!spdk_nvme_cpl_is_error(cpl)) {
|
|
SPDK_ERRLOG("Unexpected write success after compare failure.\n");
|
|
}
|
|
|
|
bdev_nvme_io_complete_nvme_status(bio, &bio->cpl);
|
|
} else {
|
|
bdev_nvme_io_complete_nvme_status(bio, cpl);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_queued_done(void *ref, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
|
|
bdev_nvme_io_complete_nvme_status(bio, cpl);
|
|
}
|
|
|
|
static int
|
|
fill_zone_from_report(struct spdk_bdev_zone_info *info, struct spdk_nvme_zns_zone_desc *desc)
|
|
{
|
|
switch (desc->zs) {
|
|
case SPDK_NVME_ZONE_STATE_EMPTY:
|
|
info->state = SPDK_BDEV_ZONE_STATE_EMPTY;
|
|
break;
|
|
case SPDK_NVME_ZONE_STATE_IOPEN:
|
|
info->state = SPDK_BDEV_ZONE_STATE_IMP_OPEN;
|
|
break;
|
|
case SPDK_NVME_ZONE_STATE_EOPEN:
|
|
info->state = SPDK_BDEV_ZONE_STATE_EXP_OPEN;
|
|
break;
|
|
case SPDK_NVME_ZONE_STATE_CLOSED:
|
|
info->state = SPDK_BDEV_ZONE_STATE_CLOSED;
|
|
break;
|
|
case SPDK_NVME_ZONE_STATE_RONLY:
|
|
info->state = SPDK_BDEV_ZONE_STATE_READ_ONLY;
|
|
break;
|
|
case SPDK_NVME_ZONE_STATE_FULL:
|
|
info->state = SPDK_BDEV_ZONE_STATE_FULL;
|
|
break;
|
|
case SPDK_NVME_ZONE_STATE_OFFLINE:
|
|
info->state = SPDK_BDEV_ZONE_STATE_OFFLINE;
|
|
break;
|
|
default:
|
|
SPDK_ERRLOG("Invalid zone state: %#x in zone report\n", desc->zs);
|
|
return -EIO;
|
|
}
|
|
|
|
info->zone_id = desc->zslba;
|
|
info->write_pointer = desc->wp;
|
|
info->capacity = desc->zcap;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_get_zone_info_done(void *ref, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
uint64_t zone_id = bdev_io->u.zone_mgmt.zone_id;
|
|
uint32_t zones_to_copy = bdev_io->u.zone_mgmt.num_zones;
|
|
struct spdk_bdev_zone_info *info = bdev_io->u.zone_mgmt.buf;
|
|
uint64_t max_zones_per_buf, i;
|
|
uint32_t zone_report_bufsize;
|
|
struct spdk_nvme_ns *ns;
|
|
struct spdk_nvme_qpair *qpair;
|
|
int ret;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
goto out_complete_io_nvme_cpl;
|
|
}
|
|
|
|
if (spdk_unlikely(!nvme_io_path_is_available(bio->io_path))) {
|
|
ret = -ENXIO;
|
|
goto out_complete_io_ret;
|
|
}
|
|
|
|
ns = bio->io_path->nvme_ns->ns;
|
|
qpair = bio->io_path->ctrlr_ch->qpair;
|
|
|
|
zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
|
|
max_zones_per_buf = (zone_report_bufsize - sizeof(*bio->zone_report_buf)) /
|
|
sizeof(bio->zone_report_buf->descs[0]);
|
|
|
|
if (bio->zone_report_buf->nr_zones > max_zones_per_buf) {
|
|
ret = -EINVAL;
|
|
goto out_complete_io_ret;
|
|
}
|
|
|
|
if (!bio->zone_report_buf->nr_zones) {
|
|
ret = -EINVAL;
|
|
goto out_complete_io_ret;
|
|
}
|
|
|
|
for (i = 0; i < bio->zone_report_buf->nr_zones && bio->handled_zones < zones_to_copy; i++) {
|
|
ret = fill_zone_from_report(&info[bio->handled_zones],
|
|
&bio->zone_report_buf->descs[i]);
|
|
if (ret) {
|
|
goto out_complete_io_ret;
|
|
}
|
|
bio->handled_zones++;
|
|
}
|
|
|
|
if (bio->handled_zones < zones_to_copy) {
|
|
uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
|
|
uint64_t slba = zone_id + (zone_size_lba * bio->handled_zones);
|
|
|
|
memset(bio->zone_report_buf, 0, zone_report_bufsize);
|
|
ret = spdk_nvme_zns_report_zones(ns, qpair,
|
|
bio->zone_report_buf, zone_report_bufsize,
|
|
slba, SPDK_NVME_ZRA_LIST_ALL, true,
|
|
bdev_nvme_get_zone_info_done, bio);
|
|
if (!ret) {
|
|
return;
|
|
} else {
|
|
goto out_complete_io_ret;
|
|
}
|
|
}
|
|
|
|
out_complete_io_nvme_cpl:
|
|
free(bio->zone_report_buf);
|
|
bio->zone_report_buf = NULL;
|
|
bdev_nvme_io_complete_nvme_status(bio, cpl);
|
|
return;
|
|
|
|
out_complete_io_ret:
|
|
free(bio->zone_report_buf);
|
|
bio->zone_report_buf = NULL;
|
|
bdev_nvme_io_complete(bio, ret);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_zone_management_done(void *ref, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
|
|
bdev_nvme_io_complete_nvme_status(bio, cpl);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_admin_passthru_complete_nvme_status(void *ctx)
|
|
{
|
|
struct nvme_bdev_io *bio = ctx;
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
const struct spdk_nvme_cpl *cpl = &bio->cpl;
|
|
struct nvme_bdev_channel *nbdev_ch;
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
uint64_t delay_ms;
|
|
|
|
assert(bdev_nvme_io_type_is_admin(bdev_io->type));
|
|
|
|
if (spdk_likely(spdk_nvme_cpl_is_success(cpl))) {
|
|
goto complete;
|
|
}
|
|
|
|
if (cpl->status.dnr != 0 || (g_opts.bdev_retry_count != -1 &&
|
|
bio->retry_count >= g_opts.bdev_retry_count)) {
|
|
goto complete;
|
|
}
|
|
|
|
nbdev_ch = spdk_io_channel_get_ctx(spdk_bdev_io_get_io_channel(bdev_io));
|
|
nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(bio->io_path->ctrlr_ch);
|
|
|
|
if (spdk_nvme_cpl_is_path_error(cpl) ||
|
|
spdk_nvme_cpl_is_aborted_sq_deletion(cpl) ||
|
|
!nvme_ctrlr_is_available(nvme_ctrlr)) {
|
|
delay_ms = 0;
|
|
} else if (spdk_nvme_cpl_is_aborted_by_request(cpl)) {
|
|
goto complete;
|
|
} else {
|
|
bio->retry_count++;
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(nvme_ctrlr->ctrlr);
|
|
|
|
if (cpl->status.crd != 0) {
|
|
delay_ms = cdata->crdt[cpl->status.crd] * 100;
|
|
} else {
|
|
delay_ms = 0;
|
|
}
|
|
}
|
|
|
|
if (any_ctrlr_may_become_available(nbdev_ch)) {
|
|
bdev_nvme_queue_retry_io(nbdev_ch, bio, delay_ms);
|
|
return;
|
|
}
|
|
|
|
complete:
|
|
bio->retry_count = 0;
|
|
spdk_bdev_io_complete_nvme_status(bdev_io, cpl->cdw0, cpl->status.sct, cpl->status.sc);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_abort_complete(void *ctx)
|
|
{
|
|
struct nvme_bdev_io *bio = ctx;
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
|
|
if (spdk_nvme_cpl_is_abort_success(&bio->cpl)) {
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
} else {
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_abort_done(void *ref, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
|
|
bio->cpl = *cpl;
|
|
spdk_thread_send_msg(bio->orig_thread, bdev_nvme_abort_complete, bio);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_admin_passthru_done(void *ref, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
|
|
bio->cpl = *cpl;
|
|
spdk_thread_send_msg(bio->orig_thread,
|
|
bdev_nvme_admin_passthru_complete_nvme_status, bio);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_queued_reset_sgl(void *ref, uint32_t sgl_offset)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
struct iovec *iov;
|
|
|
|
bio->iov_offset = sgl_offset;
|
|
for (bio->iovpos = 0; bio->iovpos < bio->iovcnt; bio->iovpos++) {
|
|
iov = &bio->iovs[bio->iovpos];
|
|
if (bio->iov_offset < iov->iov_len) {
|
|
break;
|
|
}
|
|
|
|
bio->iov_offset -= iov->iov_len;
|
|
}
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_queued_next_sge(void *ref, void **address, uint32_t *length)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
struct iovec *iov;
|
|
|
|
assert(bio->iovpos < bio->iovcnt);
|
|
|
|
iov = &bio->iovs[bio->iovpos];
|
|
|
|
*address = iov->iov_base;
|
|
*length = iov->iov_len;
|
|
|
|
if (bio->iov_offset) {
|
|
assert(bio->iov_offset <= iov->iov_len);
|
|
*address += bio->iov_offset;
|
|
*length -= bio->iov_offset;
|
|
}
|
|
|
|
bio->iov_offset += *length;
|
|
if (bio->iov_offset == iov->iov_len) {
|
|
bio->iovpos++;
|
|
bio->iov_offset = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_queued_reset_fused_sgl(void *ref, uint32_t sgl_offset)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
struct iovec *iov;
|
|
|
|
bio->fused_iov_offset = sgl_offset;
|
|
for (bio->fused_iovpos = 0; bio->fused_iovpos < bio->fused_iovcnt; bio->fused_iovpos++) {
|
|
iov = &bio->fused_iovs[bio->fused_iovpos];
|
|
if (bio->fused_iov_offset < iov->iov_len) {
|
|
break;
|
|
}
|
|
|
|
bio->fused_iov_offset -= iov->iov_len;
|
|
}
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_queued_next_fused_sge(void *ref, void **address, uint32_t *length)
|
|
{
|
|
struct nvme_bdev_io *bio = ref;
|
|
struct iovec *iov;
|
|
|
|
assert(bio->fused_iovpos < bio->fused_iovcnt);
|
|
|
|
iov = &bio->fused_iovs[bio->fused_iovpos];
|
|
|
|
*address = iov->iov_base;
|
|
*length = iov->iov_len;
|
|
|
|
if (bio->fused_iov_offset) {
|
|
assert(bio->fused_iov_offset <= iov->iov_len);
|
|
*address += bio->fused_iov_offset;
|
|
*length -= bio->fused_iov_offset;
|
|
}
|
|
|
|
bio->fused_iov_offset += *length;
|
|
if (bio->fused_iov_offset == iov->iov_len) {
|
|
bio->fused_iovpos++;
|
|
bio->fused_iov_offset = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_no_pi_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
|
|
void *md, uint64_t lba_count, uint64_t lba)
|
|
{
|
|
int rc;
|
|
|
|
SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 " without PI check\n",
|
|
lba_count, lba);
|
|
|
|
bio->iovs = iov;
|
|
bio->iovcnt = iovcnt;
|
|
bio->iovpos = 0;
|
|
bio->iov_offset = 0;
|
|
|
|
rc = spdk_nvme_ns_cmd_readv_with_md(bio->io_path->nvme_ns->ns,
|
|
bio->io_path->ctrlr_ch->qpair,
|
|
lba, lba_count,
|
|
bdev_nvme_no_pi_readv_done, bio, 0,
|
|
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
|
|
md, 0, 0);
|
|
|
|
if (rc != 0 && rc != -ENOMEM) {
|
|
SPDK_ERRLOG("no_pi_readv failed: rc = %d\n", rc);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_readv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
|
|
void *md, uint64_t lba_count, uint64_t lba, uint32_t flags,
|
|
struct spdk_bdev_ext_io_opts *ext_opts)
|
|
{
|
|
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
|
|
struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair;
|
|
int rc;
|
|
|
|
SPDK_DEBUGLOG(bdev_nvme, "read %" PRIu64 " blocks with offset %#" PRIx64 "\n",
|
|
lba_count, lba);
|
|
|
|
bio->iovs = iov;
|
|
bio->iovcnt = iovcnt;
|
|
bio->iovpos = 0;
|
|
bio->iov_offset = 0;
|
|
|
|
if (ext_opts) {
|
|
bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
|
|
bio->ext_opts.memory_domain = ext_opts->memory_domain;
|
|
bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
|
|
bio->ext_opts.io_flags = flags;
|
|
bio->ext_opts.metadata = md;
|
|
|
|
rc = spdk_nvme_ns_cmd_readv_ext(ns, qpair, lba, lba_count,
|
|
bdev_nvme_readv_done, bio,
|
|
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
|
|
&bio->ext_opts);
|
|
} else if (iovcnt == 1) {
|
|
rc = spdk_nvme_ns_cmd_read_with_md(ns, qpair, iov[0].iov_base, md, lba,
|
|
lba_count,
|
|
bdev_nvme_readv_done, bio,
|
|
flags,
|
|
0, 0);
|
|
} else {
|
|
rc = spdk_nvme_ns_cmd_readv_with_md(ns, qpair, lba, lba_count,
|
|
bdev_nvme_readv_done, bio, flags,
|
|
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
|
|
md, 0, 0);
|
|
}
|
|
|
|
if (rc != 0 && rc != -ENOMEM) {
|
|
SPDK_ERRLOG("readv failed: rc = %d\n", rc);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_writev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
|
|
void *md, uint64_t lba_count, uint64_t lba,
|
|
uint32_t flags, struct spdk_bdev_ext_io_opts *ext_opts)
|
|
{
|
|
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
|
|
struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair;
|
|
int rc;
|
|
|
|
SPDK_DEBUGLOG(bdev_nvme, "write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
|
|
lba_count, lba);
|
|
|
|
bio->iovs = iov;
|
|
bio->iovcnt = iovcnt;
|
|
bio->iovpos = 0;
|
|
bio->iov_offset = 0;
|
|
|
|
if (ext_opts) {
|
|
bio->ext_opts.size = sizeof(struct spdk_nvme_ns_cmd_ext_io_opts);
|
|
bio->ext_opts.memory_domain = ext_opts->memory_domain;
|
|
bio->ext_opts.memory_domain_ctx = ext_opts->memory_domain_ctx;
|
|
bio->ext_opts.io_flags = flags;
|
|
bio->ext_opts.metadata = md;
|
|
|
|
rc = spdk_nvme_ns_cmd_writev_ext(ns, qpair, lba, lba_count,
|
|
bdev_nvme_writev_done, bio,
|
|
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
|
|
&bio->ext_opts);
|
|
} else if (iovcnt == 1) {
|
|
rc = spdk_nvme_ns_cmd_write_with_md(ns, qpair, iov[0].iov_base, md, lba,
|
|
lba_count,
|
|
bdev_nvme_writev_done, bio,
|
|
flags,
|
|
0, 0);
|
|
} else {
|
|
rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
|
|
bdev_nvme_writev_done, bio, flags,
|
|
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
|
|
md, 0, 0);
|
|
}
|
|
|
|
if (rc != 0 && rc != -ENOMEM) {
|
|
SPDK_ERRLOG("writev failed: rc = %d\n", rc);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_zone_appendv(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
|
|
void *md, uint64_t lba_count, uint64_t zslba,
|
|
uint32_t flags)
|
|
{
|
|
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
|
|
struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair;
|
|
int rc;
|
|
|
|
SPDK_DEBUGLOG(bdev_nvme, "zone append %" PRIu64 " blocks to zone start lba %#" PRIx64 "\n",
|
|
lba_count, zslba);
|
|
|
|
bio->iovs = iov;
|
|
bio->iovcnt = iovcnt;
|
|
bio->iovpos = 0;
|
|
bio->iov_offset = 0;
|
|
|
|
if (iovcnt == 1) {
|
|
rc = spdk_nvme_zns_zone_append_with_md(ns, qpair, iov[0].iov_base, md, zslba,
|
|
lba_count,
|
|
bdev_nvme_zone_appendv_done, bio,
|
|
flags,
|
|
0, 0);
|
|
} else {
|
|
rc = spdk_nvme_zns_zone_appendv_with_md(ns, qpair, zslba, lba_count,
|
|
bdev_nvme_zone_appendv_done, bio, flags,
|
|
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
|
|
md, 0, 0);
|
|
}
|
|
|
|
if (rc != 0 && rc != -ENOMEM) {
|
|
SPDK_ERRLOG("zone append failed: rc = %d\n", rc);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_comparev(struct nvme_bdev_io *bio, struct iovec *iov, int iovcnt,
|
|
void *md, uint64_t lba_count, uint64_t lba,
|
|
uint32_t flags)
|
|
{
|
|
int rc;
|
|
|
|
SPDK_DEBUGLOG(bdev_nvme, "compare %" PRIu64 " blocks with offset %#" PRIx64 "\n",
|
|
lba_count, lba);
|
|
|
|
bio->iovs = iov;
|
|
bio->iovcnt = iovcnt;
|
|
bio->iovpos = 0;
|
|
bio->iov_offset = 0;
|
|
|
|
rc = spdk_nvme_ns_cmd_comparev_with_md(bio->io_path->nvme_ns->ns,
|
|
bio->io_path->ctrlr_ch->qpair,
|
|
lba, lba_count,
|
|
bdev_nvme_comparev_done, bio, flags,
|
|
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge,
|
|
md, 0, 0);
|
|
|
|
if (rc != 0 && rc != -ENOMEM) {
|
|
SPDK_ERRLOG("comparev failed: rc = %d\n", rc);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_comparev_and_writev(struct nvme_bdev_io *bio, struct iovec *cmp_iov, int cmp_iovcnt,
|
|
struct iovec *write_iov, int write_iovcnt,
|
|
void *md, uint64_t lba_count, uint64_t lba, uint32_t flags)
|
|
{
|
|
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
|
|
struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair;
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
int rc;
|
|
|
|
SPDK_DEBUGLOG(bdev_nvme, "compare and write %" PRIu64 " blocks with offset %#" PRIx64 "\n",
|
|
lba_count, lba);
|
|
|
|
bio->iovs = cmp_iov;
|
|
bio->iovcnt = cmp_iovcnt;
|
|
bio->iovpos = 0;
|
|
bio->iov_offset = 0;
|
|
bio->fused_iovs = write_iov;
|
|
bio->fused_iovcnt = write_iovcnt;
|
|
bio->fused_iovpos = 0;
|
|
bio->fused_iov_offset = 0;
|
|
|
|
if (bdev_io->num_retries == 0) {
|
|
bio->first_fused_submitted = false;
|
|
}
|
|
|
|
if (!bio->first_fused_submitted) {
|
|
flags |= SPDK_NVME_IO_FLAGS_FUSE_FIRST;
|
|
memset(&bio->cpl, 0, sizeof(bio->cpl));
|
|
|
|
rc = spdk_nvme_ns_cmd_comparev_with_md(ns, qpair, lba, lba_count,
|
|
bdev_nvme_comparev_and_writev_done, bio, flags,
|
|
bdev_nvme_queued_reset_sgl, bdev_nvme_queued_next_sge, md, 0, 0);
|
|
if (rc == 0) {
|
|
bio->first_fused_submitted = true;
|
|
flags &= ~SPDK_NVME_IO_FLAGS_FUSE_FIRST;
|
|
} else {
|
|
if (rc != -ENOMEM) {
|
|
SPDK_ERRLOG("compare failed: rc = %d\n", rc);
|
|
}
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
flags |= SPDK_NVME_IO_FLAGS_FUSE_SECOND;
|
|
|
|
rc = spdk_nvme_ns_cmd_writev_with_md(ns, qpair, lba, lba_count,
|
|
bdev_nvme_comparev_and_writev_done, bio, flags,
|
|
bdev_nvme_queued_reset_fused_sgl, bdev_nvme_queued_next_fused_sge, md, 0, 0);
|
|
if (rc != 0 && rc != -ENOMEM) {
|
|
SPDK_ERRLOG("write failed: rc = %d\n", rc);
|
|
rc = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_unmap(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
|
|
{
|
|
struct spdk_nvme_dsm_range dsm_ranges[SPDK_NVME_DATASET_MANAGEMENT_MAX_RANGES];
|
|
struct spdk_nvme_dsm_range *range;
|
|
uint64_t offset, remaining;
|
|
uint64_t num_ranges_u64;
|
|
uint16_t num_ranges;
|
|
int rc;
|
|
|
|
num_ranges_u64 = (num_blocks + SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS - 1) /
|
|
SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
|
|
if (num_ranges_u64 > SPDK_COUNTOF(dsm_ranges)) {
|
|
SPDK_ERRLOG("Unmap request for %" PRIu64 " blocks is too large\n", num_blocks);
|
|
return -EINVAL;
|
|
}
|
|
num_ranges = (uint16_t)num_ranges_u64;
|
|
|
|
offset = offset_blocks;
|
|
remaining = num_blocks;
|
|
range = &dsm_ranges[0];
|
|
|
|
/* Fill max-size ranges until the remaining blocks fit into one range */
|
|
while (remaining > SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS) {
|
|
range->attributes.raw = 0;
|
|
range->length = SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
|
|
range->starting_lba = offset;
|
|
|
|
offset += SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
|
|
remaining -= SPDK_NVME_DATASET_MANAGEMENT_RANGE_MAX_BLOCKS;
|
|
range++;
|
|
}
|
|
|
|
/* Final range describes the remaining blocks */
|
|
range->attributes.raw = 0;
|
|
range->length = remaining;
|
|
range->starting_lba = offset;
|
|
|
|
rc = spdk_nvme_ns_cmd_dataset_management(bio->io_path->nvme_ns->ns,
|
|
bio->io_path->ctrlr_ch->qpair,
|
|
SPDK_NVME_DSM_ATTR_DEALLOCATE,
|
|
dsm_ranges, num_ranges,
|
|
bdev_nvme_queued_done, bio);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_write_zeroes(struct nvme_bdev_io *bio, uint64_t offset_blocks, uint64_t num_blocks)
|
|
{
|
|
if (num_blocks > UINT16_MAX + 1) {
|
|
SPDK_ERRLOG("NVMe write zeroes is limited to 16-bit block count\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return spdk_nvme_ns_cmd_write_zeroes(bio->io_path->nvme_ns->ns,
|
|
bio->io_path->ctrlr_ch->qpair,
|
|
offset_blocks, num_blocks,
|
|
bdev_nvme_queued_done, bio,
|
|
0);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_get_zone_info(struct nvme_bdev_io *bio, uint64_t zone_id, uint32_t num_zones,
|
|
struct spdk_bdev_zone_info *info)
|
|
{
|
|
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
|
|
struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair;
|
|
uint32_t zone_report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
|
|
uint64_t zone_size = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
|
|
uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
|
|
|
|
if (zone_id % zone_size != 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (num_zones > total_zones || !num_zones) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
assert(!bio->zone_report_buf);
|
|
bio->zone_report_buf = calloc(1, zone_report_bufsize);
|
|
if (!bio->zone_report_buf) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
bio->handled_zones = 0;
|
|
|
|
return spdk_nvme_zns_report_zones(ns, qpair, bio->zone_report_buf, zone_report_bufsize,
|
|
zone_id, SPDK_NVME_ZRA_LIST_ALL, true,
|
|
bdev_nvme_get_zone_info_done, bio);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_zone_management(struct nvme_bdev_io *bio, uint64_t zone_id,
|
|
enum spdk_bdev_zone_action action)
|
|
{
|
|
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
|
|
struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair;
|
|
|
|
switch (action) {
|
|
case SPDK_BDEV_ZONE_CLOSE:
|
|
return spdk_nvme_zns_close_zone(ns, qpair, zone_id, false,
|
|
bdev_nvme_zone_management_done, bio);
|
|
case SPDK_BDEV_ZONE_FINISH:
|
|
return spdk_nvme_zns_finish_zone(ns, qpair, zone_id, false,
|
|
bdev_nvme_zone_management_done, bio);
|
|
case SPDK_BDEV_ZONE_OPEN:
|
|
return spdk_nvme_zns_open_zone(ns, qpair, zone_id, false,
|
|
bdev_nvme_zone_management_done, bio);
|
|
case SPDK_BDEV_ZONE_RESET:
|
|
return spdk_nvme_zns_reset_zone(ns, qpair, zone_id, false,
|
|
bdev_nvme_zone_management_done, bio);
|
|
case SPDK_BDEV_ZONE_OFFLINE:
|
|
return spdk_nvme_zns_offline_zone(ns, qpair, zone_id, false,
|
|
bdev_nvme_zone_management_done, bio);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_admin_passthru(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
|
|
struct spdk_nvme_cmd *cmd, void *buf, size_t nbytes)
|
|
{
|
|
struct nvme_io_path *io_path;
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
uint32_t max_xfer_size;
|
|
int rc = -ENXIO;
|
|
|
|
/* Choose the first ctrlr which is not failed. */
|
|
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
|
|
nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(io_path->ctrlr_ch);
|
|
|
|
/* We should skip any unavailable nvme_ctrlr rather than checking
|
|
* if the return value of spdk_nvme_ctrlr_cmd_admin_raw() is -ENXIO.
|
|
*/
|
|
if (!nvme_ctrlr_is_available(nvme_ctrlr)) {
|
|
continue;
|
|
}
|
|
|
|
max_xfer_size = spdk_nvme_ctrlr_get_max_xfer_size(nvme_ctrlr->ctrlr);
|
|
|
|
if (nbytes > max_xfer_size) {
|
|
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
|
|
rc = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
bio->io_path = io_path;
|
|
bio->orig_thread = spdk_get_thread();
|
|
|
|
rc = spdk_nvme_ctrlr_cmd_admin_raw(nvme_ctrlr->ctrlr, cmd, buf, (uint32_t)nbytes,
|
|
bdev_nvme_admin_passthru_done, bio);
|
|
if (rc == 0) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
err:
|
|
bdev_nvme_admin_passthru_complete(bio, rc);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_io_passthru(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
|
|
void *buf, size_t nbytes)
|
|
{
|
|
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
|
|
struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair;
|
|
uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
|
|
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
|
|
|
|
if (nbytes > max_xfer_size) {
|
|
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
|
|
* so fill it out automatically.
|
|
*/
|
|
cmd->nsid = spdk_nvme_ns_get_id(ns);
|
|
|
|
return spdk_nvme_ctrlr_cmd_io_raw(ctrlr, qpair, cmd, buf,
|
|
(uint32_t)nbytes, bdev_nvme_queued_done, bio);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_io_passthru_md(struct nvme_bdev_io *bio, struct spdk_nvme_cmd *cmd,
|
|
void *buf, size_t nbytes, void *md_buf, size_t md_len)
|
|
{
|
|
struct spdk_nvme_ns *ns = bio->io_path->nvme_ns->ns;
|
|
struct spdk_nvme_qpair *qpair = bio->io_path->ctrlr_ch->qpair;
|
|
size_t nr_sectors = nbytes / spdk_nvme_ns_get_extended_sector_size(ns);
|
|
uint32_t max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
|
|
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
|
|
|
|
if (nbytes > max_xfer_size) {
|
|
SPDK_ERRLOG("nbytes is greater than MDTS %" PRIu32 ".\n", max_xfer_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (md_len != nr_sectors * spdk_nvme_ns_get_md_size(ns)) {
|
|
SPDK_ERRLOG("invalid meta data buffer size\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Each NVMe bdev is a specific namespace, and all NVMe I/O commands require a nsid,
|
|
* so fill it out automatically.
|
|
*/
|
|
cmd->nsid = spdk_nvme_ns_get_id(ns);
|
|
|
|
return spdk_nvme_ctrlr_cmd_io_raw_with_md(ctrlr, qpair, cmd, buf,
|
|
(uint32_t)nbytes, md_buf, bdev_nvme_queued_done, bio);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_abort(struct nvme_bdev_channel *nbdev_ch, struct nvme_bdev_io *bio,
|
|
struct nvme_bdev_io *bio_to_abort)
|
|
{
|
|
struct spdk_bdev_io *bdev_io = spdk_bdev_io_from_ctx(bio);
|
|
struct spdk_bdev_io *bdev_io_to_abort;
|
|
struct nvme_io_path *io_path;
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
int rc = 0;
|
|
|
|
bio->orig_thread = spdk_get_thread();
|
|
|
|
/* Traverse the retry_io_list first. */
|
|
TAILQ_FOREACH(bdev_io_to_abort, &nbdev_ch->retry_io_list, module_link) {
|
|
if ((struct nvme_bdev_io *)bdev_io_to_abort->driver_ctx == bio_to_abort) {
|
|
TAILQ_REMOVE(&nbdev_ch->retry_io_list, bdev_io_to_abort, module_link);
|
|
spdk_bdev_io_complete(bdev_io_to_abort, SPDK_BDEV_IO_STATUS_ABORTED);
|
|
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Even admin commands, they were submitted to only nvme_ctrlrs which were
|
|
* on any io_path. So traverse the io_path list for not only I/O commands
|
|
* but also admin commands.
|
|
*/
|
|
STAILQ_FOREACH(io_path, &nbdev_ch->io_path_list, stailq) {
|
|
nvme_ctrlr = nvme_ctrlr_channel_get_ctrlr(io_path->ctrlr_ch);
|
|
|
|
rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
|
|
io_path->ctrlr_ch->qpair,
|
|
bio_to_abort,
|
|
bdev_nvme_abort_done, bio);
|
|
if (rc == -ENOENT) {
|
|
/* If no command was found in I/O qpair, the target command may be
|
|
* admin command.
|
|
*/
|
|
rc = spdk_nvme_ctrlr_cmd_abort_ext(nvme_ctrlr->ctrlr,
|
|
NULL,
|
|
bio_to_abort,
|
|
bdev_nvme_abort_done, bio);
|
|
}
|
|
|
|
if (rc != -ENOENT) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (rc != 0) {
|
|
/* If no command was found or there was any error, complete the abort
|
|
* request with failure.
|
|
*/
|
|
spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_opts_config_json(struct spdk_json_write_ctx *w)
|
|
{
|
|
const char *action;
|
|
|
|
if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_RESET) {
|
|
action = "reset";
|
|
} else if (g_opts.action_on_timeout == SPDK_BDEV_NVME_TIMEOUT_ACTION_ABORT) {
|
|
action = "abort";
|
|
} else {
|
|
action = "none";
|
|
}
|
|
|
|
spdk_json_write_object_begin(w);
|
|
|
|
spdk_json_write_named_string(w, "method", "bdev_nvme_set_options");
|
|
|
|
spdk_json_write_named_object_begin(w, "params");
|
|
spdk_json_write_named_string(w, "action_on_timeout", action);
|
|
spdk_json_write_named_uint64(w, "timeout_us", g_opts.timeout_us);
|
|
spdk_json_write_named_uint64(w, "timeout_admin_us", g_opts.timeout_admin_us);
|
|
spdk_json_write_named_uint32(w, "keep_alive_timeout_ms", g_opts.keep_alive_timeout_ms);
|
|
spdk_json_write_named_uint32(w, "transport_retry_count", g_opts.transport_retry_count);
|
|
spdk_json_write_named_uint32(w, "arbitration_burst", g_opts.arbitration_burst);
|
|
spdk_json_write_named_uint32(w, "low_priority_weight", g_opts.low_priority_weight);
|
|
spdk_json_write_named_uint32(w, "medium_priority_weight", g_opts.medium_priority_weight);
|
|
spdk_json_write_named_uint32(w, "high_priority_weight", g_opts.high_priority_weight);
|
|
spdk_json_write_named_uint64(w, "nvme_adminq_poll_period_us", g_opts.nvme_adminq_poll_period_us);
|
|
spdk_json_write_named_uint64(w, "nvme_ioq_poll_period_us", g_opts.nvme_ioq_poll_period_us);
|
|
spdk_json_write_named_uint32(w, "io_queue_requests", g_opts.io_queue_requests);
|
|
spdk_json_write_named_bool(w, "delay_cmd_submit", g_opts.delay_cmd_submit);
|
|
spdk_json_write_named_int32(w, "bdev_retry_count", g_opts.bdev_retry_count);
|
|
spdk_json_write_object_end(w);
|
|
|
|
spdk_json_write_object_end(w);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_config_json(struct spdk_json_write_ctx *w,
|
|
struct nvme_ctrlr *nvme_ctrlr)
|
|
{
|
|
struct spdk_nvme_transport_id *trid;
|
|
|
|
trid = &nvme_ctrlr->active_path_id->trid;
|
|
|
|
spdk_json_write_object_begin(w);
|
|
|
|
spdk_json_write_named_string(w, "method", "bdev_nvme_attach_controller");
|
|
|
|
spdk_json_write_named_object_begin(w, "params");
|
|
spdk_json_write_named_string(w, "name", nvme_ctrlr->nbdev_ctrlr->name);
|
|
nvme_bdev_dump_trid_json(trid, w);
|
|
spdk_json_write_named_bool(w, "prchk_reftag",
|
|
(nvme_ctrlr->prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) != 0);
|
|
spdk_json_write_named_bool(w, "prchk_guard",
|
|
(nvme_ctrlr->prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) != 0);
|
|
|
|
spdk_json_write_object_end(w);
|
|
|
|
spdk_json_write_object_end(w);
|
|
}
|
|
|
|
static void
|
|
bdev_nvme_hotplug_config_json(struct spdk_json_write_ctx *w)
|
|
{
|
|
spdk_json_write_object_begin(w);
|
|
spdk_json_write_named_string(w, "method", "bdev_nvme_set_hotplug");
|
|
|
|
spdk_json_write_named_object_begin(w, "params");
|
|
spdk_json_write_named_uint64(w, "period_us", g_nvme_hotplug_poll_period_us);
|
|
spdk_json_write_named_bool(w, "enable", g_nvme_hotplug_enabled);
|
|
spdk_json_write_object_end(w);
|
|
|
|
spdk_json_write_object_end(w);
|
|
}
|
|
|
|
static int
|
|
bdev_nvme_config_json(struct spdk_json_write_ctx *w)
|
|
{
|
|
struct nvme_bdev_ctrlr *nbdev_ctrlr;
|
|
struct nvme_ctrlr *nvme_ctrlr;
|
|
|
|
bdev_nvme_opts_config_json(w);
|
|
|
|
pthread_mutex_lock(&g_bdev_nvme_mutex);
|
|
|
|
TAILQ_FOREACH(nbdev_ctrlr, &g_nvme_bdev_ctrlrs, tailq) {
|
|
TAILQ_FOREACH(nvme_ctrlr, &nbdev_ctrlr->ctrlrs, tailq) {
|
|
nvme_ctrlr_config_json(w, nvme_ctrlr);
|
|
}
|
|
}
|
|
|
|
/* Dump as last parameter to give all NVMe bdevs chance to be constructed
|
|
* before enabling hotplug poller.
|
|
*/
|
|
bdev_nvme_hotplug_config_json(w);
|
|
|
|
pthread_mutex_unlock(&g_bdev_nvme_mutex);
|
|
return 0;
|
|
}
|
|
|
|
struct spdk_nvme_ctrlr *
|
|
bdev_nvme_get_ctrlr(struct spdk_bdev *bdev)
|
|
{
|
|
struct nvme_bdev *nbdev;
|
|
struct nvme_ns *nvme_ns;
|
|
|
|
if (!bdev || bdev->module != &nvme_if) {
|
|
return NULL;
|
|
}
|
|
|
|
nbdev = SPDK_CONTAINEROF(bdev, struct nvme_bdev, disk);
|
|
nvme_ns = TAILQ_FIRST(&nbdev->nvme_ns_list);
|
|
assert(nvme_ns != NULL);
|
|
|
|
return nvme_ns->ctrlr->ctrlr;
|
|
}
|
|
|
|
SPDK_LOG_REGISTER_COMPONENT(bdev_nvme)
|