numam-spdk/lib/nvme/nvme.c
Josh Soref cc6920a476 spelling: lib
Part of #2256

* accessible
* activation
* additional
* allocate
* association
* attempt
* barrier
* broadcast
* buffer
* calculate
* cases
* channel
* children
* command
* completion
* connect
* copied
* currently
* descriptor
* destroy
* detachment
* doesn't
* enqueueing
* exceeds
* execution
* extended
* fallback
* finalize
* first
* handling
* hugepages
* ignored
* implementation
* in_capsule
* initialization
* initialized
* initializing
* initiator
* negotiated
* notification
* occurred
* original
* outstanding
* partially
* partition
* processing
* receive
* received
* receiving
* redirected
* regions
* request
* requested
* response
* retrieved
* running
* satisfied
* should
* snapshot
* status
* succeeds
* successfully
* supplied
* those
* transferred
* translate
* triggering
* unregister
* unsupported
* urlsafe
* virtqueue
* volumes
* workaround
* zeroed

Change-Id: I569218754bd9d332ba517d4a61ad23d29eedfd0c
Signed-off-by: Josh Soref <jsoref@gmail.com>
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/10405
Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2021-12-03 08:12:55 +00:00

1587 lines
41 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation. All rights reserved.
* Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/nvmf_spec.h"
#include "spdk/string.h"
#include "spdk/env.h"
#include "nvme_internal.h"
#include "nvme_io_msg.h"
#define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"
struct nvme_driver *g_spdk_nvme_driver;
pid_t g_spdk_nvme_pid;
/* gross timeout of 180 seconds in milliseconds */
static int g_nvme_driver_timeout_ms = 3 * 60 * 1000;
/* Per-process attached controller list */
static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_attached_ctrlrs =
TAILQ_HEAD_INITIALIZER(g_nvme_attached_ctrlrs);
/* Returns true if ctrlr should be stored on the multi-process shared_attached_ctrlrs list */
static bool
nvme_ctrlr_shared(const struct spdk_nvme_ctrlr *ctrlr)
{
return ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE;
}
void
nvme_ctrlr_connected(struct spdk_nvme_probe_ctx *probe_ctx,
struct spdk_nvme_ctrlr *ctrlr)
{
TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
}
static void
nvme_ctrlr_detach_async_finish(struct spdk_nvme_ctrlr *ctrlr)
{
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
if (nvme_ctrlr_shared(ctrlr)) {
TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
} else {
TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq);
}
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
}
static int
nvme_ctrlr_detach_async(struct spdk_nvme_ctrlr *ctrlr,
struct nvme_ctrlr_detach_ctx **_ctx)
{
struct nvme_ctrlr_detach_ctx *ctx;
int ref_count;
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
ref_count = nvme_ctrlr_get_ref_count(ctrlr);
assert(ref_count > 0);
if (ref_count == 1) {
/* This is the last reference to the controller, so we need to
* allocate a context to destruct it.
*/
ctx = calloc(1, sizeof(*ctx));
if (ctx == NULL) {
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return -ENOMEM;
}
ctx->ctrlr = ctrlr;
ctx->cb_fn = nvme_ctrlr_detach_async_finish;
nvme_ctrlr_proc_put_ref(ctrlr);
nvme_io_msg_ctrlr_detach(ctrlr);
nvme_ctrlr_destruct_async(ctrlr, ctx);
*_ctx = ctx;
} else {
nvme_ctrlr_proc_put_ref(ctrlr);
}
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return 0;
}
static int
nvme_ctrlr_detach_poll_async(struct nvme_ctrlr_detach_ctx *ctx)
{
int rc;
rc = nvme_ctrlr_destruct_poll_async(ctx->ctrlr, ctx);
if (rc == -EAGAIN) {
return -EAGAIN;
}
free(ctx);
return rc;
}
int
spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_ctrlr_detach_ctx *ctx = NULL;
int rc;
rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
if (rc != 0) {
return rc;
} else if (ctx == NULL) {
/* ctrlr was detached from the caller process but any other process
* still attaches it.
*/
return 0;
}
while (1) {
rc = nvme_ctrlr_detach_poll_async(ctx);
if (rc != -EAGAIN) {
break;
}
nvme_delay(1000);
}
return 0;
}
int
spdk_nvme_detach_async(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_detach_ctx **_detach_ctx)
{
struct spdk_nvme_detach_ctx *detach_ctx;
struct nvme_ctrlr_detach_ctx *ctx = NULL;
int rc;
if (ctrlr == NULL || _detach_ctx == NULL) {
return -EINVAL;
}
/* Use a context header to poll detachment for multiple controllers.
* Allocate an new one if not allocated yet, or use the passed one otherwise.
*/
detach_ctx = *_detach_ctx;
if (detach_ctx == NULL) {
detach_ctx = calloc(1, sizeof(*detach_ctx));
if (detach_ctx == NULL) {
return -ENOMEM;
}
TAILQ_INIT(&detach_ctx->head);
}
rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
if (rc != 0 || ctx == NULL) {
/* If this detach failed and the context header is empty, it means we just
* allocated the header and need to free it before returning.
*/
if (TAILQ_EMPTY(&detach_ctx->head)) {
free(detach_ctx);
}
return rc;
}
/* Append a context for this detachment to the context header. */
TAILQ_INSERT_TAIL(&detach_ctx->head, ctx, link);
*_detach_ctx = detach_ctx;
return 0;
}
int
spdk_nvme_detach_poll_async(struct spdk_nvme_detach_ctx *detach_ctx)
{
struct nvme_ctrlr_detach_ctx *ctx, *tmp_ctx;
int rc;
if (detach_ctx == NULL) {
return -EINVAL;
}
TAILQ_FOREACH_SAFE(ctx, &detach_ctx->head, link, tmp_ctx) {
TAILQ_REMOVE(&detach_ctx->head, ctx, link);
rc = nvme_ctrlr_detach_poll_async(ctx);
if (rc == -EAGAIN) {
/* If not -EAGAIN, ctx was freed by nvme_ctrlr_detach_poll_async(). */
TAILQ_INSERT_HEAD(&detach_ctx->head, ctx, link);
}
}
if (!TAILQ_EMPTY(&detach_ctx->head)) {
return -EAGAIN;
}
free(detach_ctx);
return 0;
}
void
spdk_nvme_detach_poll(struct spdk_nvme_detach_ctx *detach_ctx)
{
while (detach_ctx && spdk_nvme_detach_poll_async(detach_ctx) == -EAGAIN) {
;
}
}
void
nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_completion_poll_status *status = arg;
if (status->timed_out) {
/* There is no routine waiting for the completion of this request, free allocated memory */
spdk_free(status->dma_data);
free(status);
return;
}
/*
* Copy status into the argument passed by the caller, so that
* the caller can check the status to determine if the
* the request passed or failed.
*/
memcpy(&status->cpl, cpl, sizeof(*cpl));
status->done = true;
}
static void
dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
{
}
int
nvme_wait_for_completion_robust_lock_timeout_poll(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
pthread_mutex_t *robust_mutex)
{
int rc;
if (robust_mutex) {
nvme_robust_mutex_lock(robust_mutex);
}
if (qpair->poll_group) {
rc = (int)spdk_nvme_poll_group_process_completions(qpair->poll_group->group, 0,
dummy_disconnected_qpair_cb);
} else {
rc = spdk_nvme_qpair_process_completions(qpair, 0);
}
if (robust_mutex) {
nvme_robust_mutex_unlock(robust_mutex);
}
if (rc < 0) {
status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
status->cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
goto error;
}
if (!status->done && status->timeout_tsc && spdk_get_ticks() > status->timeout_tsc) {
goto error;
}
if (qpair->ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
union spdk_nvme_csts_register csts = spdk_nvme_ctrlr_get_regs_csts(qpair->ctrlr);
if (csts.raw == SPDK_NVME_INVALID_REGISTER_VALUE) {
status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
status->cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
goto error;
}
}
if (!status->done) {
return -EAGAIN;
} else if (spdk_nvme_cpl_is_error(&status->cpl)) {
return -EIO;
} else {
return 0;
}
error:
/* Either transport error occurred or we've timed out. Either way, if the response hasn't
* been received yet, mark the command as timed out, so the status gets freed when the
* command is completed or aborted.
*/
if (!status->done) {
status->timed_out = true;
}
return -ECANCELED;
}
/**
* Poll qpair for completions until a command completes.
*
* \param qpair queue to poll
* \param status completion status. The user must fill this structure with zeroes before calling
* this function
* \param robust_mutex optional robust mutex to lock while polling qpair
* \param timeout_in_usecs optional timeout
*
* \return 0 if command completed without error,
* -EIO if command completed with error,
* -ECANCELED if command is not completed due to transport/device error or time expired
*
* The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
* and status as the callback argument.
*/
int
nvme_wait_for_completion_robust_lock_timeout(
struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
pthread_mutex_t *robust_mutex,
uint64_t timeout_in_usecs)
{
int rc;
if (timeout_in_usecs) {
status->timeout_tsc = spdk_get_ticks() + timeout_in_usecs *
spdk_get_ticks_hz() / SPDK_SEC_TO_USEC;
} else {
status->timeout_tsc = 0;
}
status->cpl.status_raw = 0;
do {
rc = nvme_wait_for_completion_robust_lock_timeout_poll(qpair, status, robust_mutex);
} while (rc == -EAGAIN);
return rc;
}
/**
* Poll qpair for completions until a command completes.
*
* \param qpair queue to poll
* \param status completion status. The user must fill this structure with zeroes before calling
* this function
* \param robust_mutex optional robust mutex to lock while polling qpair
*
* \return 0 if command completed without error,
* -EIO if command completed with error,
* -ECANCELED if command is not completed due to transport/device error
*
* The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
* and status as the callback argument.
*/
int
nvme_wait_for_completion_robust_lock(
struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
pthread_mutex_t *robust_mutex)
{
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, robust_mutex, 0);
}
int
nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status)
{
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, 0);
}
/**
* Poll qpair for completions until a command completes.
*
* \param qpair queue to poll
* \param status completion status. The user must fill this structure with zeroes before calling
* this function
* \param timeout_in_usecs optional timeout
*
* \return 0 if command completed without error,
* -EIO if command completed with error,
* -ECANCELED if command is not completed due to transport/device error or time expired
*
* The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
* and status as the callback argument.
*/
int
nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
struct nvme_completion_poll_status *status,
uint64_t timeout_in_usecs)
{
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, timeout_in_usecs);
}
static void
nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_request *req = arg;
enum spdk_nvme_data_transfer xfer;
if (req->user_buffer && req->payload_size) {
/* Copy back to the user buffer and free the contig buffer */
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
assert(req->pid == getpid());
memcpy(req->user_buffer, req->payload.contig_or_cb_arg, req->payload_size);
}
spdk_free(req->payload.contig_or_cb_arg);
}
/* Call the user's original callback now that the buffer has been copied */
req->user_cb_fn(req->user_cb_arg, cpl);
}
/**
* Allocate a request as well as a DMA-capable buffer to copy to/from the user's buffer.
*
* This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
* where the overhead of a copy is not a problem.
*/
struct nvme_request *
nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
void *cb_arg, bool host_to_controller)
{
struct nvme_request *req;
void *dma_buffer = NULL;
if (buffer && payload_size) {
dma_buffer = spdk_zmalloc(payload_size, 4096, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
if (!dma_buffer) {
return NULL;
}
if (host_to_controller) {
memcpy(dma_buffer, buffer, payload_size);
}
}
req = nvme_allocate_request_contig(qpair, dma_buffer, payload_size, nvme_user_copy_cmd_complete,
NULL);
if (!req) {
spdk_free(dma_buffer);
return NULL;
}
req->user_cb_fn = cb_fn;
req->user_cb_arg = cb_arg;
req->user_buffer = buffer;
req->cb_arg = req;
return req;
}
/**
* Check if a request has exceeded the controller timeout.
*
* \param req request to check for timeout.
* \param cid command ID for command submitted by req (will be passed to timeout_cb_fn)
* \param active_proc per-process data for the controller associated with req
* \param now_tick current time from spdk_get_ticks()
* \return 0 if requests submitted more recently than req should still be checked for timeouts, or
* 1 if requests newer than req need not be checked.
*
* The request's timeout callback will be called if needed; the caller is only responsible for
* calling this function on each outstanding request.
*/
int
nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
struct spdk_nvme_ctrlr_process *active_proc,
uint64_t now_tick)
{
struct spdk_nvme_qpair *qpair = req->qpair;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
uint64_t timeout_ticks = nvme_qpair_is_admin_queue(qpair) ?
active_proc->timeout_admin_ticks : active_proc->timeout_io_ticks;
assert(active_proc->timeout_cb_fn != NULL);
if (req->timed_out || req->submit_tick == 0) {
return 0;
}
if (req->pid != g_spdk_nvme_pid) {
return 0;
}
if (nvme_qpair_is_admin_queue(qpair) &&
req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
return 0;
}
if (req->submit_tick + timeout_ticks > now_tick) {
return 1;
}
req->timed_out = true;
/*
* We don't want to expose the admin queue to the user,
* so when we're timing out admin commands set the
* qpair to NULL.
*/
active_proc->timeout_cb_fn(active_proc->timeout_cb_arg, ctrlr,
nvme_qpair_is_admin_queue(qpair) ? NULL : qpair,
cid);
return 0;
}
int
nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
{
int rc = 0;
#ifdef __FreeBSD__
pthread_mutex_init(mtx, NULL);
#else
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr)) {
return -1;
}
if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
pthread_mutex_init(mtx, &attr)) {
rc = -1;
}
pthread_mutexattr_destroy(&attr);
#endif
return rc;
}
int
nvme_driver_init(void)
{
static pthread_mutex_t g_init_mutex = PTHREAD_MUTEX_INITIALIZER;
int ret = 0;
/* Any socket ID */
int socket_id = -1;
/* Use a special process-private mutex to ensure the global
* nvme driver object (g_spdk_nvme_driver) gets initialized by
* only one thread. Once that object is established and its
* mutex is initialized, we can unlock this mutex and use that
* one instead.
*/
pthread_mutex_lock(&g_init_mutex);
/* Each process needs its own pid. */
g_spdk_nvme_pid = getpid();
/*
* Only one thread from one process will do this driver init work.
* The primary process will reserve the shared memory and do the
* initialization.
* The secondary process will lookup the existing reserved memory.
*/
if (spdk_process_is_primary()) {
/* The unique named memzone already reserved. */
if (g_spdk_nvme_driver != NULL) {
pthread_mutex_unlock(&g_init_mutex);
return 0;
} else {
g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
sizeof(struct nvme_driver), socket_id,
SPDK_MEMZONE_NO_IOVA_CONTIG);
}
if (g_spdk_nvme_driver == NULL) {
SPDK_ERRLOG("primary process failed to reserve memory\n");
pthread_mutex_unlock(&g_init_mutex);
return -1;
}
} else {
g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);
/* The unique named memzone already reserved by the primary process. */
if (g_spdk_nvme_driver != NULL) {
int ms_waited = 0;
/* Wait the nvme driver to get initialized. */
while ((g_spdk_nvme_driver->initialized == false) &&
(ms_waited < g_nvme_driver_timeout_ms)) {
ms_waited++;
nvme_delay(1000); /* delay 1ms */
}
if (g_spdk_nvme_driver->initialized == false) {
SPDK_ERRLOG("timeout waiting for primary process to init\n");
pthread_mutex_unlock(&g_init_mutex);
return -1;
}
} else {
SPDK_ERRLOG("primary process is not started yet\n");
pthread_mutex_unlock(&g_init_mutex);
return -1;
}
pthread_mutex_unlock(&g_init_mutex);
return 0;
}
/*
* At this moment, only one thread from the primary process will do
* the g_spdk_nvme_driver initialization
*/
assert(spdk_process_is_primary());
ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
if (ret != 0) {
SPDK_ERRLOG("failed to initialize mutex\n");
spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
pthread_mutex_unlock(&g_init_mutex);
return ret;
}
/* The lock in the shared g_spdk_nvme_driver object is now ready to
* be used - so we can unlock the g_init_mutex here.
*/
pthread_mutex_unlock(&g_init_mutex);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
g_spdk_nvme_driver->initialized = false;
g_spdk_nvme_driver->hotplug_fd = spdk_pci_event_listen();
if (g_spdk_nvme_driver->hotplug_fd < 0) {
SPDK_DEBUGLOG(nvme, "Failed to open uevent netlink socket\n");
}
TAILQ_INIT(&g_spdk_nvme_driver->shared_attached_ctrlrs);
spdk_uuid_generate(&g_spdk_nvme_driver->default_extended_host_id);
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return ret;
}
/* This function must only be called while holding g_spdk_nvme_driver->lock */
int
nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_probe_ctx *probe_ctx, void *devhandle)
{
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ctrlr_opts opts;
assert(trid != NULL);
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
if (!probe_ctx->probe_cb || probe_ctx->probe_cb(probe_ctx->cb_ctx, trid, &opts)) {
ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid);
if (ctrlr) {
/* This ctrlr already exists. */
if (ctrlr->is_destructed) {
/* This ctrlr is being destructed asynchronously. */
SPDK_ERRLOG("NVMe controller for SSD: %s is being destructed\n",
trid->traddr);
return -EBUSY;
}
/* Increase the ref count before calling attach_cb() as the user may
* call nvme_detach() immediately. */
nvme_ctrlr_proc_get_ref(ctrlr);
if (probe_ctx->attach_cb) {
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
}
return 0;
}
ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle);
if (ctrlr == NULL) {
SPDK_ERRLOG("Failed to construct NVMe controller for SSD: %s\n", trid->traddr);
return -1;
}
ctrlr->remove_cb = probe_ctx->remove_cb;
ctrlr->cb_ctx = probe_ctx->cb_ctx;
nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
return 0;
}
return 1;
}
static void
nvme_ctrlr_poll_internal(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_probe_ctx *probe_ctx)
{
int rc = 0;
rc = nvme_ctrlr_process_init(ctrlr);
if (rc) {
/* Controller failed to initialize. */
TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
SPDK_ERRLOG("Failed to initialize SSD: %s\n", ctrlr->trid.traddr);
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
nvme_ctrlr_fail(ctrlr, false);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
nvme_ctrlr_destruct(ctrlr);
return;
}
if (ctrlr->state != NVME_CTRLR_STATE_READY) {
return;
}
STAILQ_INIT(&ctrlr->io_producers);
/*
* Controller has been initialized.
* Move it to the attached_ctrlrs list.
*/
TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
if (nvme_ctrlr_shared(ctrlr)) {
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
} else {
TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, ctrlr, tailq);
}
/*
* Increase the ref count before calling attach_cb() as the user may
* call nvme_detach() immediately.
*/
nvme_ctrlr_proc_get_ref(ctrlr);
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
if (probe_ctx->attach_cb) {
probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
}
}
static int
nvme_init_controllers(struct spdk_nvme_probe_ctx *probe_ctx)
{
int rc = 0;
while (true) {
rc = spdk_nvme_probe_poll_async(probe_ctx);
if (rc != -EAGAIN) {
return rc;
}
}
return rc;
}
/* This function must not be called while holding g_spdk_nvme_driver->lock */
static struct spdk_nvme_ctrlr *
nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid)
{
struct spdk_nvme_ctrlr *ctrlr;
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid);
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return ctrlr;
}
/* This function must be called while holding g_spdk_nvme_driver->lock */
struct spdk_nvme_ctrlr *
nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid)
{
struct spdk_nvme_ctrlr *ctrlr;
/* Search per-process list */
TAILQ_FOREACH(ctrlr, &g_nvme_attached_ctrlrs, tailq) {
if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
return ctrlr;
}
}
/* Search multi-process shared list */
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
return ctrlr;
}
}
return NULL;
}
/* This function must only be called while holding g_spdk_nvme_driver->lock */
static int
nvme_probe_internal(struct spdk_nvme_probe_ctx *probe_ctx,
bool direct_connect)
{
int rc;
struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
spdk_nvme_trid_populate_transport(&probe_ctx->trid, probe_ctx->trid.trtype);
if (!spdk_nvme_transport_available_by_name(probe_ctx->trid.trstring)) {
SPDK_ERRLOG("NVMe trtype %u not available\n", probe_ctx->trid.trtype);
return -1;
}
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
rc = nvme_transport_ctrlr_scan(probe_ctx, direct_connect);
if (rc != 0) {
SPDK_ERRLOG("NVMe ctrlr scan failed\n");
TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
nvme_transport_ctrlr_destruct(ctrlr);
}
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return -1;
}
/*
* Probe controllers on the shared_attached_ctrlrs list
*/
if (!spdk_process_is_primary() && (probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) {
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
/* Do not attach other ctrlrs if user specify a valid trid */
if ((strlen(probe_ctx->trid.traddr) != 0) &&
(spdk_nvme_transport_id_compare(&probe_ctx->trid, &ctrlr->trid))) {
continue;
}
/* Do not attach if we failed to initialize it in this process */
if (nvme_ctrlr_get_current_process(ctrlr) == NULL) {
continue;
}
nvme_ctrlr_proc_get_ref(ctrlr);
/*
* Unlock while calling attach_cb() so the user can call other functions
* that may take the driver lock, like nvme_detach().
*/
if (probe_ctx->attach_cb) {
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
}
}
}
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return 0;
}
static void
nvme_probe_ctx_init(struct spdk_nvme_probe_ctx *probe_ctx,
const struct spdk_nvme_transport_id *trid,
void *cb_ctx,
spdk_nvme_probe_cb probe_cb,
spdk_nvme_attach_cb attach_cb,
spdk_nvme_remove_cb remove_cb)
{
probe_ctx->trid = *trid;
probe_ctx->cb_ctx = cb_ctx;
probe_ctx->probe_cb = probe_cb;
probe_ctx->attach_cb = attach_cb;
probe_ctx->remove_cb = remove_cb;
TAILQ_INIT(&probe_ctx->init_ctrlrs);
}
int
spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
spdk_nvme_remove_cb remove_cb)
{
struct spdk_nvme_transport_id trid_pcie;
struct spdk_nvme_probe_ctx *probe_ctx;
if (trid == NULL) {
memset(&trid_pcie, 0, sizeof(trid_pcie));
spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
trid = &trid_pcie;
}
probe_ctx = spdk_nvme_probe_async(trid, cb_ctx, probe_cb,
attach_cb, remove_cb);
if (!probe_ctx) {
SPDK_ERRLOG("Create probe context failed\n");
return -1;
}
/*
* Keep going even if one or more nvme_attach() calls failed,
* but maintain the value of rc to signal errors when we return.
*/
return nvme_init_controllers(probe_ctx);
}
static bool
nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
struct spdk_nvme_ctrlr_opts *requested_opts = cb_ctx;
assert(requested_opts);
memcpy(opts, requested_opts, sizeof(*opts));
return true;
}
static void
nvme_ctrlr_opts_init(struct spdk_nvme_ctrlr_opts *opts,
const struct spdk_nvme_ctrlr_opts *opts_user,
size_t opts_size_user)
{
assert(opts);
assert(opts_user);
spdk_nvme_ctrlr_get_default_ctrlr_opts(opts, opts_size_user);
#define FIELD_OK(field) \
offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= (opts->opts_size)
#define SET_FIELD(field) \
if (FIELD_OK(field)) { \
opts->field = opts_user->field; \
}
#define SET_FIELD_ARRAY(field) \
if (FIELD_OK(field)) { \
memcpy(opts->field, opts_user->field, sizeof(opts_user->field)); \
}
SET_FIELD(num_io_queues);
SET_FIELD(use_cmb_sqs);
SET_FIELD(no_shn_notification);
SET_FIELD(arb_mechanism);
SET_FIELD(arbitration_burst);
SET_FIELD(low_priority_weight);
SET_FIELD(medium_priority_weight);
SET_FIELD(high_priority_weight);
SET_FIELD(keep_alive_timeout_ms);
SET_FIELD(transport_retry_count);
SET_FIELD(io_queue_size);
SET_FIELD_ARRAY(hostnqn);
SET_FIELD(io_queue_requests);
SET_FIELD_ARRAY(src_addr);
SET_FIELD_ARRAY(src_svcid);
SET_FIELD_ARRAY(host_id);
SET_FIELD_ARRAY(extended_host_id);
SET_FIELD(command_set);
SET_FIELD(admin_timeout_ms);
SET_FIELD(header_digest);
SET_FIELD(data_digest);
SET_FIELD(disable_error_logging);
SET_FIELD(transport_ack_timeout);
SET_FIELD(admin_queue_size);
SET_FIELD(fabrics_connect_timeout_us);
SET_FIELD(disable_read_ana_log_page);
/* Do not remove this statement. When you add a new field, please do update this
* assert with the correct size. And do not forget to add a new SET_FIELD statement
* related with your new added field. */
SPDK_STATIC_ASSERT(sizeof(struct spdk_nvme_ctrlr_opts) == 616, "Incorrect size");
#undef FIELD_OK
#undef SET_FIELD
#undef SET_FIELD_ARRAY
}
struct spdk_nvme_ctrlr *
spdk_nvme_connect(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
{
int rc;
struct spdk_nvme_ctrlr *ctrlr = NULL;
struct spdk_nvme_probe_ctx *probe_ctx;
struct spdk_nvme_ctrlr_opts *opts_local_p = NULL;
struct spdk_nvme_ctrlr_opts opts_local;
if (trid == NULL) {
SPDK_ERRLOG("No transport ID specified\n");
return NULL;
}
if (opts) {
opts_local_p = &opts_local;
nvme_ctrlr_opts_init(opts_local_p, opts, opts_size);
}
probe_ctx = spdk_nvme_connect_async(trid, opts_local_p, NULL);
if (!probe_ctx) {
SPDK_ERRLOG("Create probe context failed\n");
return NULL;
}
rc = nvme_init_controllers(probe_ctx);
if (rc != 0) {
return NULL;
}
ctrlr = nvme_get_ctrlr_by_trid(trid);
return ctrlr;
}
void
spdk_nvme_trid_populate_transport(struct spdk_nvme_transport_id *trid,
enum spdk_nvme_transport_type trtype)
{
const char *trstring = "";
trid->trtype = trtype;
switch (trtype) {
case SPDK_NVME_TRANSPORT_FC:
trstring = SPDK_NVME_TRANSPORT_NAME_FC;
break;
case SPDK_NVME_TRANSPORT_PCIE:
trstring = SPDK_NVME_TRANSPORT_NAME_PCIE;
break;
case SPDK_NVME_TRANSPORT_RDMA:
trstring = SPDK_NVME_TRANSPORT_NAME_RDMA;
break;
case SPDK_NVME_TRANSPORT_TCP:
trstring = SPDK_NVME_TRANSPORT_NAME_TCP;
break;
case SPDK_NVME_TRANSPORT_VFIOUSER:
trstring = SPDK_NVME_TRANSPORT_NAME_VFIOUSER;
break;
case SPDK_NVME_TRANSPORT_CUSTOM:
trstring = SPDK_NVME_TRANSPORT_NAME_CUSTOM;
break;
default:
SPDK_ERRLOG("no available transports\n");
assert(0);
return;
}
snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
}
int
spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
{
int len, i, rc;
if (trstring == NULL) {
return -EINVAL;
}
len = strnlen(trstring, SPDK_NVMF_TRSTRING_MAX_LEN);
if (len == SPDK_NVMF_TRSTRING_MAX_LEN) {
return -EINVAL;
}
rc = snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
if (rc < 0) {
return rc;
}
/* cast official trstring to uppercase version of input. */
for (i = 0; i < len; i++) {
trid->trstring[i] = toupper(trid->trstring[i]);
}
return 0;
}
int
spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str)
{
if (trtype == NULL || str == NULL) {
return -EINVAL;
}
if (strcasecmp(str, "PCIe") == 0) {
*trtype = SPDK_NVME_TRANSPORT_PCIE;
} else if (strcasecmp(str, "RDMA") == 0) {
*trtype = SPDK_NVME_TRANSPORT_RDMA;
} else if (strcasecmp(str, "FC") == 0) {
*trtype = SPDK_NVME_TRANSPORT_FC;
} else if (strcasecmp(str, "TCP") == 0) {
*trtype = SPDK_NVME_TRANSPORT_TCP;
} else if (strcasecmp(str, "VFIOUSER") == 0) {
*trtype = SPDK_NVME_TRANSPORT_VFIOUSER;
} else {
*trtype = SPDK_NVME_TRANSPORT_CUSTOM;
}
return 0;
}
const char *
spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
{
switch (trtype) {
case SPDK_NVME_TRANSPORT_PCIE:
return "PCIe";
case SPDK_NVME_TRANSPORT_RDMA:
return "RDMA";
case SPDK_NVME_TRANSPORT_FC:
return "FC";
case SPDK_NVME_TRANSPORT_TCP:
return "TCP";
case SPDK_NVME_TRANSPORT_VFIOUSER:
return "VFIOUSER";
case SPDK_NVME_TRANSPORT_CUSTOM:
return "CUSTOM";
default:
return NULL;
}
}
int
spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str)
{
if (adrfam == NULL || str == NULL) {
return -EINVAL;
}
if (strcasecmp(str, "IPv4") == 0) {
*adrfam = SPDK_NVMF_ADRFAM_IPV4;
} else if (strcasecmp(str, "IPv6") == 0) {
*adrfam = SPDK_NVMF_ADRFAM_IPV6;
} else if (strcasecmp(str, "IB") == 0) {
*adrfam = SPDK_NVMF_ADRFAM_IB;
} else if (strcasecmp(str, "FC") == 0) {
*adrfam = SPDK_NVMF_ADRFAM_FC;
} else {
return -ENOENT;
}
return 0;
}
const char *
spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam)
{
switch (adrfam) {
case SPDK_NVMF_ADRFAM_IPV4:
return "IPv4";
case SPDK_NVMF_ADRFAM_IPV6:
return "IPv6";
case SPDK_NVMF_ADRFAM_IB:
return "IB";
case SPDK_NVMF_ADRFAM_FC:
return "FC";
default:
return NULL;
}
}
static size_t
parse_next_key(const char **str, char *key, char *val, size_t key_buf_size, size_t val_buf_size)
{
const char *sep, *sep1;
const char *whitespace = " \t\n";
size_t key_len, val_len;
*str += strspn(*str, whitespace);
sep = strchr(*str, ':');
if (!sep) {
sep = strchr(*str, '=');
if (!sep) {
SPDK_ERRLOG("Key without ':' or '=' separator\n");
return 0;
}
} else {
sep1 = strchr(*str, '=');
if ((sep1 != NULL) && (sep1 < sep)) {
sep = sep1;
}
}
key_len = sep - *str;
if (key_len >= key_buf_size) {
SPDK_ERRLOG("Key length %zu greater than maximum allowed %zu\n",
key_len, key_buf_size - 1);
return 0;
}
memcpy(key, *str, key_len);
key[key_len] = '\0';
*str += key_len + 1; /* Skip key: */
val_len = strcspn(*str, whitespace);
if (val_len == 0) {
SPDK_ERRLOG("Key without value\n");
return 0;
}
if (val_len >= val_buf_size) {
SPDK_ERRLOG("Value length %zu greater than maximum allowed %zu\n",
val_len, val_buf_size - 1);
return 0;
}
memcpy(val, *str, val_len);
val[val_len] = '\0';
*str += val_len;
return val_len;
}
int
spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str)
{
size_t val_len;
char key[32];
char val[1024];
if (trid == NULL || str == NULL) {
return -EINVAL;
}
while (*str != '\0') {
val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
if (val_len == 0) {
SPDK_ERRLOG("Failed to parse transport ID\n");
return -EINVAL;
}
if (strcasecmp(key, "trtype") == 0) {
if (spdk_nvme_transport_id_populate_trstring(trid, val) != 0) {
SPDK_ERRLOG("invalid transport '%s'\n", val);
return -EINVAL;
}
if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) {
SPDK_ERRLOG("Unknown trtype '%s'\n", val);
return -EINVAL;
}
} else if (strcasecmp(key, "adrfam") == 0) {
if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) {
SPDK_ERRLOG("Unknown adrfam '%s'\n", val);
return -EINVAL;
}
} else if (strcasecmp(key, "traddr") == 0) {
if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n",
val_len, SPDK_NVMF_TRADDR_MAX_LEN);
return -EINVAL;
}
memcpy(trid->traddr, val, val_len + 1);
} else if (strcasecmp(key, "trsvcid") == 0) {
if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
return -EINVAL;
}
memcpy(trid->trsvcid, val, val_len + 1);
} else if (strcasecmp(key, "priority") == 0) {
if (val_len > SPDK_NVMF_PRIORITY_MAX_LEN) {
SPDK_ERRLOG("priority length %zu greater than maximum allowed %u\n",
val_len, SPDK_NVMF_PRIORITY_MAX_LEN);
return -EINVAL;
}
trid->priority = spdk_strtol(val, 10);
} else if (strcasecmp(key, "subnqn") == 0) {
if (val_len > SPDK_NVMF_NQN_MAX_LEN) {
SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n",
val_len, SPDK_NVMF_NQN_MAX_LEN);
return -EINVAL;
}
memcpy(trid->subnqn, val, val_len + 1);
} else if (strcasecmp(key, "hostaddr") == 0) {
continue;
} else if (strcasecmp(key, "hostsvcid") == 0) {
continue;
} else if (strcasecmp(key, "hostnqn") == 0) {
continue;
} else if (strcasecmp(key, "ns") == 0) {
/*
* Special case. The namespace id parameter may
* optionally be passed in the transport id string
* for an SPDK application (e.g. nvme/perf)
* and additionally parsed therein to limit
* targeting a specific namespace. For this
* scenario, just silently ignore this key
* rather than letting it default to logging
* it as an invalid key.
*/
continue;
} else if (strcasecmp(key, "alt_traddr") == 0) {
/*
* Used by applications for enabling transport ID failover.
* Please see the case above for more information on custom parameters.
*/
continue;
} else {
SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
}
}
return 0;
}
int
spdk_nvme_host_id_parse(struct spdk_nvme_host_id *hostid, const char *str)
{
size_t key_size = 32;
size_t val_size = 1024;
size_t val_len;
char key[key_size];
char val[val_size];
if (hostid == NULL || str == NULL) {
return -EINVAL;
}
while (*str != '\0') {
val_len = parse_next_key(&str, key, val, key_size, val_size);
if (val_len == 0) {
SPDK_ERRLOG("Failed to parse host ID\n");
return val_len;
}
/* Ignore the rest of the options from the transport ID. */
if (strcasecmp(key, "trtype") == 0) {
continue;
} else if (strcasecmp(key, "adrfam") == 0) {
continue;
} else if (strcasecmp(key, "traddr") == 0) {
continue;
} else if (strcasecmp(key, "trsvcid") == 0) {
continue;
} else if (strcasecmp(key, "subnqn") == 0) {
continue;
} else if (strcasecmp(key, "priority") == 0) {
continue;
} else if (strcasecmp(key, "ns") == 0) {
continue;
} else if (strcasecmp(key, "hostaddr") == 0) {
if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
SPDK_ERRLOG("hostaddr length %zu greater than maximum allowed %u\n",
val_len, SPDK_NVMF_TRADDR_MAX_LEN);
return -EINVAL;
}
memcpy(hostid->hostaddr, val, val_len + 1);
} else if (strcasecmp(key, "hostsvcid") == 0) {
if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
return -EINVAL;
}
memcpy(hostid->hostsvcid, val, val_len + 1);
} else {
SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
}
}
return 0;
}
static int
cmp_int(int a, int b)
{
return a - b;
}
int
spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1,
const struct spdk_nvme_transport_id *trid2)
{
int cmp;
if (trid1->trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
cmp = strcasecmp(trid1->trstring, trid2->trstring);
} else {
cmp = cmp_int(trid1->trtype, trid2->trtype);
}
if (cmp) {
return cmp;
}
if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) {
struct spdk_pci_addr pci_addr1 = {};
struct spdk_pci_addr pci_addr2 = {};
/* Normalize PCI addresses before comparing */
if (spdk_pci_addr_parse(&pci_addr1, trid1->traddr) < 0 ||
spdk_pci_addr_parse(&pci_addr2, trid2->traddr) < 0) {
return -1;
}
/* PCIe transport ID only uses trtype and traddr */
return spdk_pci_addr_compare(&pci_addr1, &pci_addr2);
}
cmp = strcasecmp(trid1->traddr, trid2->traddr);
if (cmp) {
return cmp;
}
cmp = cmp_int(trid1->adrfam, trid2->adrfam);
if (cmp) {
return cmp;
}
cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid);
if (cmp) {
return cmp;
}
cmp = strcmp(trid1->subnqn, trid2->subnqn);
if (cmp) {
return cmp;
}
return 0;
}
int
spdk_nvme_prchk_flags_parse(uint32_t *prchk_flags, const char *str)
{
size_t val_len;
char key[32];
char val[1024];
if (prchk_flags == NULL || str == NULL) {
return -EINVAL;
}
while (*str != '\0') {
val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
if (val_len == 0) {
SPDK_ERRLOG("Failed to parse prchk\n");
return -EINVAL;
}
if (strcasecmp(key, "prchk") == 0) {
if (strcasestr(val, "reftag") != NULL) {
*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG;
}
if (strcasestr(val, "guard") != NULL) {
*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD;
}
} else {
SPDK_ERRLOG("Unknown key '%s'\n", key);
return -EINVAL;
}
}
return 0;
}
const char *
spdk_nvme_prchk_flags_str(uint32_t prchk_flags)
{
if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) {
if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
return "prchk:reftag|guard";
} else {
return "prchk:reftag";
}
} else {
if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
return "prchk:guard";
} else {
return NULL;
}
}
}
struct spdk_nvme_probe_ctx *
spdk_nvme_probe_async(const struct spdk_nvme_transport_id *trid,
void *cb_ctx,
spdk_nvme_probe_cb probe_cb,
spdk_nvme_attach_cb attach_cb,
spdk_nvme_remove_cb remove_cb)
{
int rc;
struct spdk_nvme_probe_ctx *probe_ctx;
rc = nvme_driver_init();
if (rc != 0) {
return NULL;
}
probe_ctx = calloc(1, sizeof(*probe_ctx));
if (!probe_ctx) {
return NULL;
}
nvme_probe_ctx_init(probe_ctx, trid, cb_ctx, probe_cb, attach_cb, remove_cb);
rc = nvme_probe_internal(probe_ctx, false);
if (rc != 0) {
free(probe_ctx);
return NULL;
}
return probe_ctx;
}
int
spdk_nvme_probe_poll_async(struct spdk_nvme_probe_ctx *probe_ctx)
{
struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
if (!spdk_process_is_primary() && probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
free(probe_ctx);
return 0;
}
TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
nvme_ctrlr_poll_internal(ctrlr, probe_ctx);
}
if (TAILQ_EMPTY(&probe_ctx->init_ctrlrs)) {
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
g_spdk_nvme_driver->initialized = true;
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
free(probe_ctx);
return 0;
}
return -EAGAIN;
}
struct spdk_nvme_probe_ctx *
spdk_nvme_connect_async(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
spdk_nvme_attach_cb attach_cb)
{
int rc;
spdk_nvme_probe_cb probe_cb = NULL;
struct spdk_nvme_probe_ctx *probe_ctx;
rc = nvme_driver_init();
if (rc != 0) {
return NULL;
}
probe_ctx = calloc(1, sizeof(*probe_ctx));
if (!probe_ctx) {
return NULL;
}
if (opts) {
probe_cb = nvme_connect_probe_cb;
}
nvme_probe_ctx_init(probe_ctx, trid, (void *)opts, probe_cb, attach_cb, NULL);
rc = nvme_probe_internal(probe_ctx, true);
if (rc != 0) {
free(probe_ctx);
return NULL;
}
return probe_ctx;
}
SPDK_LOG_REGISTER_COMPONENT(nvme)