7a0a2800e0
The NVMe bdev module will support two features, delayed reconnect and delete after multiple failures of reconnect to improve error recovery. The recently added two APIs, spdk_nvme_ctrlr_reset_async() and spdk_nvme_ctrlr_reset_poll_async(), were not good enough. spdk_nvme_ctrlr_reset_ctx was not necessary. It had only a pointer to ctrlr. Using a pointer to ctrlr directly saves us from undesirable malloc error processing. Separate spdk_nvme_ctrlr_reset_async() into spdk_nvme_ctrlr_disconnect() and spdk_nvme_ctrlr_reconnect_async(). spdk_nvme_ctrlr_disconnect() disconnects ctrlr including disconnecting adminq. spdk_nvme_ctrlr_reconnect_async() moves the ctrlr state to INIT. Then rename spdk_nvme_ctrlr_reset_poll_async() by spdk_nvme_ctrlr_reconnect_poll_async(). Finally deprecate spdk_nvme_ctrlr_reset_async() and spdk_nvme_ctrlr_reset_poll_async(). The following patches will change the NVMe bdev module to use these new APIs. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: Id1d6858dcdc5fc2e9db0a6ebf3f79cab4f9bbcb7 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/10091 Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com> Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com>
5248 lines
145 KiB
C
5248 lines
145 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2019-2021 Mellanox Technologies LTD. All rights reserved.
|
|
* Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include "nvme_internal.h"
|
|
#include "nvme_io_msg.h"
|
|
|
|
#include "spdk/env.h"
|
|
#include "spdk/string.h"
|
|
#include "spdk/endian.h"
|
|
|
|
struct nvme_active_ns_ctx;
|
|
|
|
static void nvme_ctrlr_destruct_namespaces(struct spdk_nvme_ctrlr *ctrlr);
|
|
static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct nvme_async_event_request *aer);
|
|
static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx);
|
|
static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns);
|
|
static int nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns);
|
|
static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns);
|
|
static void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr);
|
|
static void nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
|
|
uint64_t timeout_in_ms);
|
|
|
|
#define CTRLR_STRING(ctrlr) \
|
|
((ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP || ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA) ? \
|
|
ctrlr->trid.subnqn : ctrlr->trid.traddr)
|
|
|
|
#define NVME_CTRLR_ERRLOG(ctrlr, format, ...) \
|
|
SPDK_ERRLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
|
|
|
|
#define NVME_CTRLR_WARNLOG(ctrlr, format, ...) \
|
|
SPDK_WARNLOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
|
|
|
|
#define NVME_CTRLR_NOTICELOG(ctrlr, format, ...) \
|
|
SPDK_NOTICELOG("[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
|
|
|
|
#define NVME_CTRLR_INFOLOG(ctrlr, format, ...) \
|
|
SPDK_INFOLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
|
|
|
|
#ifdef DEBUG
|
|
#define NVME_CTRLR_DEBUGLOG(ctrlr, format, ...) \
|
|
SPDK_DEBUGLOG(nvme, "[%s] " format, CTRLR_STRING(ctrlr), ##__VA_ARGS__);
|
|
#else
|
|
#define NVME_CTRLR_DEBUGLOG(ctrlr, ...) do { } while (0)
|
|
#endif
|
|
|
|
#define nvme_ctrlr_get_reg_async(ctrlr, reg, sz, cb_fn, cb_arg) \
|
|
nvme_transport_ctrlr_get_reg_ ## sz ## _async(ctrlr, \
|
|
offsetof(struct spdk_nvme_registers, reg), cb_fn, cb_arg)
|
|
|
|
#define nvme_ctrlr_set_reg_async(ctrlr, reg, sz, val, cb_fn, cb_arg) \
|
|
nvme_transport_ctrlr_set_reg_ ## sz ## _async(ctrlr, \
|
|
offsetof(struct spdk_nvme_registers, reg), val, cb_fn, cb_arg)
|
|
|
|
#define nvme_ctrlr_get_cc_async(ctrlr, cb_fn, cb_arg) \
|
|
nvme_ctrlr_get_reg_async(ctrlr, cc, 4, cb_fn, cb_arg)
|
|
|
|
#define nvme_ctrlr_get_csts_async(ctrlr, cb_fn, cb_arg) \
|
|
nvme_ctrlr_get_reg_async(ctrlr, csts, 4, cb_fn, cb_arg)
|
|
|
|
#define nvme_ctrlr_get_cap_async(ctrlr, cb_fn, cb_arg) \
|
|
nvme_ctrlr_get_reg_async(ctrlr, cap, 8, cb_fn, cb_arg)
|
|
|
|
#define nvme_ctrlr_get_vs_async(ctrlr, cb_fn, cb_arg) \
|
|
nvme_ctrlr_get_reg_async(ctrlr, vs, 4, cb_fn, cb_arg)
|
|
|
|
#define nvme_ctrlr_set_cc_async(ctrlr, value, cb_fn, cb_arg) \
|
|
nvme_ctrlr_set_reg_async(ctrlr, cc, 4, value, cb_fn, cb_arg)
|
|
|
|
static int
|
|
nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc)
|
|
{
|
|
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
|
|
&cc->raw);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts)
|
|
{
|
|
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw),
|
|
&csts->raw);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap)
|
|
{
|
|
return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw),
|
|
&cap->raw);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs)
|
|
{
|
|
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw),
|
|
&vs->raw);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz)
|
|
{
|
|
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
|
|
&cmbsz->raw);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_get_pmrcap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_pmrcap_register *pmrcap)
|
|
{
|
|
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, pmrcap.raw),
|
|
&pmrcap->raw);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_get_bpinfo(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bpinfo_register *bpinfo)
|
|
{
|
|
return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bpinfo.raw),
|
|
&bpinfo->raw);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_set_bprsel(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_bprsel_register *bprsel)
|
|
{
|
|
return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, bprsel.raw),
|
|
bprsel->raw);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_set_bpmbl(struct spdk_nvme_ctrlr *ctrlr, uint64_t bpmbl_value)
|
|
{
|
|
return nvme_transport_ctrlr_set_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, bpmbl),
|
|
bpmbl_value);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_set_nssr(struct spdk_nvme_ctrlr *ctrlr, uint32_t nssr_value)
|
|
{
|
|
return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, nssr),
|
|
nssr_value);
|
|
}
|
|
|
|
bool
|
|
nvme_ctrlr_multi_iocs_enabled(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS &&
|
|
ctrlr->opts.command_set == SPDK_NVME_CC_CSS_IOCS;
|
|
}
|
|
|
|
/* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please
|
|
* also update the nvme_ctrl_opts_init function in nvme_ctrlr.c
|
|
*/
|
|
void
|
|
spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
|
|
{
|
|
char host_id_str[SPDK_UUID_STRING_LEN];
|
|
|
|
assert(opts);
|
|
|
|
opts->opts_size = opts_size;
|
|
|
|
#define FIELD_OK(field) \
|
|
offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size
|
|
|
|
#define SET_FIELD(field, value) \
|
|
if (offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size) { \
|
|
opts->field = value; \
|
|
} \
|
|
|
|
SET_FIELD(num_io_queues, DEFAULT_MAX_IO_QUEUES);
|
|
SET_FIELD(use_cmb_sqs, false);
|
|
SET_FIELD(no_shn_notification, false);
|
|
SET_FIELD(arb_mechanism, SPDK_NVME_CC_AMS_RR);
|
|
SET_FIELD(arbitration_burst, 0);
|
|
SET_FIELD(low_priority_weight, 0);
|
|
SET_FIELD(medium_priority_weight, 0);
|
|
SET_FIELD(high_priority_weight, 0);
|
|
SET_FIELD(keep_alive_timeout_ms, MIN_KEEP_ALIVE_TIMEOUT_IN_MS);
|
|
SET_FIELD(transport_retry_count, SPDK_NVME_DEFAULT_RETRY_COUNT);
|
|
SET_FIELD(io_queue_size, DEFAULT_IO_QUEUE_SIZE);
|
|
|
|
if (nvme_driver_init() == 0) {
|
|
if (FIELD_OK(hostnqn)) {
|
|
spdk_uuid_fmt_lower(host_id_str, sizeof(host_id_str),
|
|
&g_spdk_nvme_driver->default_extended_host_id);
|
|
snprintf(opts->hostnqn, sizeof(opts->hostnqn),
|
|
"nqn.2014-08.org.nvmexpress:uuid:%s", host_id_str);
|
|
}
|
|
|
|
if (FIELD_OK(extended_host_id)) {
|
|
memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id,
|
|
sizeof(opts->extended_host_id));
|
|
}
|
|
|
|
}
|
|
|
|
SET_FIELD(io_queue_requests, DEFAULT_IO_QUEUE_REQUESTS);
|
|
|
|
if (FIELD_OK(src_addr)) {
|
|
memset(opts->src_addr, 0, sizeof(opts->src_addr));
|
|
}
|
|
|
|
if (FIELD_OK(src_svcid)) {
|
|
memset(opts->src_svcid, 0, sizeof(opts->src_svcid));
|
|
}
|
|
|
|
if (FIELD_OK(host_id)) {
|
|
memset(opts->host_id, 0, sizeof(opts->host_id));
|
|
}
|
|
|
|
SET_FIELD(command_set, CHAR_BIT);
|
|
SET_FIELD(admin_timeout_ms, NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000);
|
|
SET_FIELD(header_digest, false);
|
|
SET_FIELD(data_digest, false);
|
|
SET_FIELD(disable_error_logging, false);
|
|
SET_FIELD(transport_ack_timeout, SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT);
|
|
SET_FIELD(admin_queue_size, DEFAULT_ADMIN_QUEUE_SIZE);
|
|
SET_FIELD(fabrics_connect_timeout_us, NVME_FABRIC_CONNECT_COMMAND_TIMEOUT);
|
|
SET_FIELD(disable_read_ana_log_page, false);
|
|
|
|
#undef FIELD_OK
|
|
#undef SET_FIELD
|
|
}
|
|
|
|
const struct spdk_nvme_ctrlr_opts *
|
|
spdk_nvme_ctrlr_get_opts(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return &ctrlr->opts;
|
|
}
|
|
|
|
/**
|
|
* This function will be called when the process allocates the IO qpair.
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
|
|
active_proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
if (active_proc) {
|
|
TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq);
|
|
qpair->active_proc = active_proc;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function will be called when the process frees the IO qpair.
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
struct spdk_nvme_qpair *active_qpair, *tmp_qpair;
|
|
|
|
active_proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
if (!active_proc) {
|
|
return;
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs,
|
|
per_process_tailq, tmp_qpair) {
|
|
if (active_qpair == qpair) {
|
|
TAILQ_REMOVE(&active_proc->allocated_io_qpairs,
|
|
active_qpair, per_process_tailq);
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_io_qpair_opts *opts,
|
|
size_t opts_size)
|
|
{
|
|
assert(ctrlr);
|
|
|
|
assert(opts);
|
|
|
|
memset(opts, 0, opts_size);
|
|
|
|
#define FIELD_OK(field) \
|
|
offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size
|
|
|
|
if (FIELD_OK(qprio)) {
|
|
opts->qprio = SPDK_NVME_QPRIO_URGENT;
|
|
}
|
|
|
|
if (FIELD_OK(io_queue_size)) {
|
|
opts->io_queue_size = ctrlr->opts.io_queue_size;
|
|
}
|
|
|
|
if (FIELD_OK(io_queue_requests)) {
|
|
opts->io_queue_requests = ctrlr->opts.io_queue_requests;
|
|
}
|
|
|
|
if (FIELD_OK(delay_cmd_submit)) {
|
|
opts->delay_cmd_submit = false;
|
|
}
|
|
|
|
if (FIELD_OK(sq.vaddr)) {
|
|
opts->sq.vaddr = NULL;
|
|
}
|
|
|
|
if (FIELD_OK(sq.paddr)) {
|
|
opts->sq.paddr = 0;
|
|
}
|
|
|
|
if (FIELD_OK(sq.buffer_size)) {
|
|
opts->sq.buffer_size = 0;
|
|
}
|
|
|
|
if (FIELD_OK(cq.vaddr)) {
|
|
opts->cq.vaddr = NULL;
|
|
}
|
|
|
|
if (FIELD_OK(cq.paddr)) {
|
|
opts->cq.paddr = 0;
|
|
}
|
|
|
|
if (FIELD_OK(cq.buffer_size)) {
|
|
opts->cq.buffer_size = 0;
|
|
}
|
|
|
|
if (FIELD_OK(create_only)) {
|
|
opts->create_only = false;
|
|
}
|
|
|
|
if (FIELD_OK(async_mode)) {
|
|
opts->async_mode = false;
|
|
}
|
|
|
|
#undef FIELD_OK
|
|
}
|
|
|
|
static struct spdk_nvme_qpair *
|
|
nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
|
|
const struct spdk_nvme_io_qpair_opts *opts)
|
|
{
|
|
int32_t qid;
|
|
struct spdk_nvme_qpair *qpair;
|
|
union spdk_nvme_cc_register cc;
|
|
|
|
if (!ctrlr) {
|
|
return NULL;
|
|
}
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
cc.raw = ctrlr->process_init_cc.raw;
|
|
|
|
if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) {
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the
|
|
* default round robin arbitration method.
|
|
*/
|
|
if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "invalid queue priority for default round robin arbitration method\n");
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return NULL;
|
|
}
|
|
|
|
qid = spdk_nvme_ctrlr_alloc_qid(ctrlr);
|
|
if (qid < 0) {
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return NULL;
|
|
}
|
|
|
|
qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts);
|
|
if (qpair == NULL) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_create_io_qpair() failed\n");
|
|
spdk_nvme_ctrlr_free_qid(ctrlr, qid);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return NULL;
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq);
|
|
|
|
nvme_ctrlr_proc_add_io_qpair(qpair);
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return qpair;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
|
|
{
|
|
int rc;
|
|
|
|
if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) {
|
|
return -EISCONN;
|
|
}
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) {
|
|
spdk_delay_us(100);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
struct spdk_nvme_qpair *
|
|
spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
|
|
const struct spdk_nvme_io_qpair_opts *user_opts,
|
|
size_t opts_size)
|
|
{
|
|
|
|
struct spdk_nvme_qpair *qpair;
|
|
struct spdk_nvme_io_qpair_opts opts;
|
|
int rc;
|
|
|
|
/*
|
|
* Get the default options, then overwrite them with the user-provided options
|
|
* up to opts_size.
|
|
*
|
|
* This allows for extensions of the opts structure without breaking
|
|
* ABI compatibility.
|
|
*/
|
|
spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts));
|
|
if (user_opts) {
|
|
memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size));
|
|
|
|
/* If user passes buffers, make sure they're big enough for the requested queue size */
|
|
if (opts.sq.vaddr) {
|
|
if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "sq buffer size %" PRIx64 " is too small for sq size %zx\n",
|
|
opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd)));
|
|
return NULL;
|
|
}
|
|
}
|
|
if (opts.cq.vaddr) {
|
|
if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "cq buffer size %" PRIx64 " is too small for cq size %zx\n",
|
|
opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl)));
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts);
|
|
|
|
if (qpair == NULL || opts.create_only == true) {
|
|
return qpair;
|
|
}
|
|
|
|
rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair);
|
|
if (rc != 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "nvme_transport_ctrlr_connect_io_qpair() failed\n");
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
nvme_ctrlr_proc_remove_io_qpair(qpair);
|
|
TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
|
|
spdk_bit_array_set(ctrlr->free_io_qids, qpair->id);
|
|
nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return NULL;
|
|
}
|
|
|
|
return qpair;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
enum nvme_qpair_state qpair_state;
|
|
int rc;
|
|
|
|
assert(qpair != NULL);
|
|
assert(nvme_qpair_is_admin_queue(qpair) == false);
|
|
assert(qpair->ctrlr != NULL);
|
|
|
|
ctrlr = qpair->ctrlr;
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
qpair_state = nvme_qpair_get_state(qpair);
|
|
|
|
if (ctrlr->is_removed) {
|
|
rc = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) {
|
|
rc = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) {
|
|
rc = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
if (qpair_state != NVME_QPAIR_DISCONNECTED) {
|
|
rc = 0;
|
|
goto out;
|
|
}
|
|
|
|
rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
|
|
if (rc) {
|
|
rc = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return rc;
|
|
}
|
|
|
|
spdk_nvme_qp_failure_reason
|
|
spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->adminq->transport_failure_reason;
|
|
}
|
|
|
|
/*
|
|
* This internal function will attempt to take the controller
|
|
* lock before calling disconnect on a controller qpair.
|
|
* Functions already holding the controller lock should
|
|
* call nvme_transport_ctrlr_disconnect_qpair directly.
|
|
*/
|
|
void
|
|
nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
|
|
assert(ctrlr != NULL);
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
|
|
if (qpair == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
ctrlr = qpair->ctrlr;
|
|
|
|
if (qpair->in_completion_context) {
|
|
/*
|
|
* There are many cases where it is convenient to delete an io qpair in the context
|
|
* of that qpair's completion routine. To handle this properly, set a flag here
|
|
* so that the completion routine will perform an actual delete after the context
|
|
* unwinds.
|
|
*/
|
|
qpair->delete_after_completion_context = 1;
|
|
return 0;
|
|
}
|
|
|
|
if (qpair->poll_group && qpair->poll_group->in_completion_context) {
|
|
/* Same as above, but in a poll group. */
|
|
qpair->poll_group->num_qpairs_to_delete++;
|
|
qpair->delete_after_completion_context = 1;
|
|
return 0;
|
|
}
|
|
|
|
if (qpair->poll_group) {
|
|
spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair);
|
|
}
|
|
|
|
nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
|
|
|
|
/* Do not retry. */
|
|
nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
|
|
|
|
/* In the multi-process case, a process may call this function on a foreign
|
|
* I/O qpair (i.e. one that this process did not create) when that qpairs process
|
|
* exits unexpectedly. In that case, we must not try to abort any reqs associated
|
|
* with that qpair, since the callbacks will also be foreign to this process.
|
|
*/
|
|
if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) {
|
|
nvme_qpair_abort_all_queued_reqs(qpair, 1);
|
|
}
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
nvme_ctrlr_proc_remove_io_qpair(qpair);
|
|
|
|
TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq);
|
|
spdk_nvme_ctrlr_free_qid(ctrlr, qpair->id);
|
|
|
|
nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_intel_log_page_directory *log_page_directory)
|
|
{
|
|
if (log_page_directory == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (ctrlr->cdata.vid != SPDK_PCI_VID_INTEL) {
|
|
return;
|
|
}
|
|
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
|
|
|
|
if (log_page_directory->read_latency_log_len ||
|
|
(ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) {
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
|
|
}
|
|
if (log_page_directory->write_latency_log_len ||
|
|
(ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) {
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
|
|
}
|
|
if (log_page_directory->temperature_statistics_log_len) {
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true;
|
|
}
|
|
if (log_page_directory->smart_log_len) {
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true;
|
|
}
|
|
if (log_page_directory->marketing_description_log_len) {
|
|
ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true;
|
|
}
|
|
}
|
|
|
|
struct intel_log_pages_ctx {
|
|
struct spdk_nvme_intel_log_page_directory log_page_directory;
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
};
|
|
|
|
static void
|
|
nvme_ctrlr_set_intel_support_log_pages_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct intel_log_pages_ctx *ctx = arg;
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
|
|
|
|
if (!spdk_nvme_cpl_is_error(cpl)) {
|
|
nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, &ctx->log_page_directory);
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
free(ctx);
|
|
}
|
|
|
|
static int nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc = 0;
|
|
struct intel_log_pages_ctx *ctx;
|
|
|
|
ctx = calloc(1, sizeof(*ctx));
|
|
if (!ctx) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
ctx->ctrlr = ctrlr;
|
|
|
|
rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY,
|
|
SPDK_NVME_GLOBAL_NS_TAG, &ctx->log_page_directory,
|
|
sizeof(struct spdk_nvme_intel_log_page_directory),
|
|
0, nvme_ctrlr_set_intel_support_log_pages_done, ctx);
|
|
if (rc != 0) {
|
|
free(ctx);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_alloc_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint32_t ana_log_page_size;
|
|
|
|
ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + ctrlr->cdata.nanagrpid *
|
|
sizeof(struct spdk_nvme_ana_group_descriptor) + ctrlr->active_ns_count *
|
|
sizeof(uint32_t);
|
|
|
|
/* Number of active namespaces may have changed.
|
|
* Check if ANA log page fits into existing buffer.
|
|
*/
|
|
if (ana_log_page_size > ctrlr->ana_log_page_size) {
|
|
void *new_buffer;
|
|
|
|
if (ctrlr->ana_log_page) {
|
|
new_buffer = realloc(ctrlr->ana_log_page, ana_log_page_size);
|
|
} else {
|
|
new_buffer = calloc(1, ana_log_page_size);
|
|
}
|
|
|
|
if (!new_buffer) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "could not allocate ANA log page buffer, size %u\n",
|
|
ana_log_page_size);
|
|
return -ENXIO;
|
|
}
|
|
|
|
ctrlr->ana_log_page = new_buffer;
|
|
if (ctrlr->copied_ana_desc) {
|
|
new_buffer = realloc(ctrlr->copied_ana_desc, ana_log_page_size);
|
|
} else {
|
|
new_buffer = calloc(1, ana_log_page_size);
|
|
}
|
|
|
|
if (!new_buffer) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "could not allocate a buffer to parse ANA descriptor, size %u\n",
|
|
ana_log_page_size);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ctrlr->copied_ana_desc = new_buffer;
|
|
ctrlr->ana_log_page_size = ana_log_page_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_update_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_completion_poll_status *status;
|
|
int rc;
|
|
|
|
rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (status == NULL) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
|
|
SPDK_NVME_GLOBAL_NS_TAG, ctrlr->ana_log_page,
|
|
ctrlr->ana_log_page_size, 0,
|
|
nvme_completion_poll_cb, status);
|
|
if (rc != 0) {
|
|
free(status);
|
|
return rc;
|
|
}
|
|
|
|
if (nvme_wait_for_completion_robust_lock_timeout(ctrlr->adminq, status, &ctrlr->ctrlr_lock,
|
|
ctrlr->opts.admin_timeout_ms * 1000)) {
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return -EIO;
|
|
}
|
|
|
|
free(status);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_init_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
rc = nvme_ctrlr_alloc_ana_log_page(ctrlr);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
return nvme_ctrlr_update_ana_log_page(ctrlr);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_update_ns_ana_states(const struct spdk_nvme_ana_group_descriptor *desc,
|
|
void *cb_arg)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = cb_arg;
|
|
struct spdk_nvme_ns *ns;
|
|
uint32_t i, nsid;
|
|
|
|
for (i = 0; i < desc->num_of_nsid; i++) {
|
|
nsid = desc->nsid[i];
|
|
if (nsid == 0 || nsid > ctrlr->cdata.nn) {
|
|
continue;
|
|
}
|
|
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
|
|
assert(ns != NULL);
|
|
|
|
ns->ana_group_id = desc->ana_group_id;
|
|
ns->ana_state = desc->ana_state;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_parse_ana_log_page(struct spdk_nvme_ctrlr *ctrlr,
|
|
spdk_nvme_parse_ana_log_page_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct spdk_nvme_ana_group_descriptor *copied_desc;
|
|
uint8_t *orig_desc;
|
|
uint32_t i, desc_size, copy_len;
|
|
int rc = 0;
|
|
|
|
if (ctrlr->ana_log_page == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
copied_desc = ctrlr->copied_ana_desc;
|
|
|
|
orig_desc = (uint8_t *)ctrlr->ana_log_page + sizeof(struct spdk_nvme_ana_page);
|
|
copy_len = ctrlr->ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
|
|
|
|
for (i = 0; i < ctrlr->ana_log_page->num_ana_group_desc; i++) {
|
|
memcpy(copied_desc, orig_desc, copy_len);
|
|
|
|
rc = cb_fn(copied_desc, cb_arg);
|
|
if (rc != 0) {
|
|
break;
|
|
}
|
|
|
|
desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
|
|
copied_desc->num_of_nsid * sizeof(uint32_t);
|
|
orig_desc += desc_size;
|
|
copy_len -= desc_size;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc = 0;
|
|
|
|
memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
|
|
/* Mandatory pages */
|
|
ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true;
|
|
ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true;
|
|
ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true;
|
|
if (ctrlr->cdata.lpa.celp) {
|
|
ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true;
|
|
}
|
|
|
|
if (ctrlr->cdata.cmic.ana_reporting) {
|
|
ctrlr->log_page_supported[SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS] = true;
|
|
if (!ctrlr->opts.disable_read_ana_log_page) {
|
|
rc = nvme_ctrlr_init_ana_log_page(ctrlr);
|
|
if (rc == 0) {
|
|
nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
|
|
ctrlr);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL && !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
|
|
} else {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint32_t cdw11;
|
|
struct nvme_completion_poll_status *status;
|
|
|
|
if (ctrlr->opts.arbitration_burst == 0) {
|
|
return;
|
|
}
|
|
|
|
if (ctrlr->opts.arbitration_burst > 7) {
|
|
NVME_CTRLR_WARNLOG(ctrlr, "Valid arbitration burst values is from 0-7\n");
|
|
return;
|
|
}
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
|
|
return;
|
|
}
|
|
|
|
cdw11 = ctrlr->opts.arbitration_burst;
|
|
|
|
if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) {
|
|
cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8;
|
|
cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16;
|
|
cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24;
|
|
}
|
|
|
|
if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION,
|
|
cdw11, 0, NULL, 0,
|
|
nvme_completion_poll_cb, status) < 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Set arbitration feature failed\n");
|
|
free(status);
|
|
return;
|
|
}
|
|
|
|
if (nvme_wait_for_completion_timeout(ctrlr->adminq, status,
|
|
ctrlr->opts.admin_timeout_ms * 1000)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Timeout to set arbitration feature\n");
|
|
}
|
|
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
|
|
/* Mandatory features */
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true;
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
|
|
/* Optional features */
|
|
if (ctrlr->cdata.vwc.present) {
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
|
|
}
|
|
if (ctrlr->cdata.apsta.supported) {
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
|
|
}
|
|
if (ctrlr->cdata.hmpre) {
|
|
ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true;
|
|
}
|
|
if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) {
|
|
nvme_ctrlr_set_intel_supported_features(ctrlr);
|
|
}
|
|
|
|
nvme_ctrlr_set_arbitration_feature(ctrlr);
|
|
}
|
|
|
|
bool
|
|
spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->is_failed;
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove)
|
|
{
|
|
/*
|
|
* Set the flag here and leave the work failure of qpairs to
|
|
* spdk_nvme_qpair_process_completions().
|
|
*/
|
|
if (hot_remove) {
|
|
ctrlr->is_removed = true;
|
|
}
|
|
|
|
if (ctrlr->is_failed) {
|
|
NVME_CTRLR_NOTICELOG(ctrlr, "already in failed state\n");
|
|
return;
|
|
}
|
|
|
|
ctrlr->is_failed = true;
|
|
nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
|
|
NVME_CTRLR_ERRLOG(ctrlr, "in failed state.\n");
|
|
}
|
|
|
|
/**
|
|
* This public API function will try to take the controller lock.
|
|
* Any private functions being called from a thread already holding
|
|
* the ctrlr lock should call nvme_ctrlr_fail directly.
|
|
*/
|
|
void
|
|
spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
nvme_ctrlr_fail(ctrlr, false);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_shutdown_set_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_ctrlr_detach_ctx *ctx = _ctx;
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
|
|
ctx->shutdown_complete = true;
|
|
return;
|
|
}
|
|
|
|
if (ctrlr->opts.no_shn_notification) {
|
|
ctx->shutdown_complete = true;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The NVMe specification defines RTD3E to be the time between
|
|
* setting SHN = 1 until the controller will set SHST = 10b.
|
|
* If the device doesn't report RTD3 entry latency, or if it
|
|
* reports RTD3 entry latency less than 10 seconds, pick
|
|
* 10 seconds as a reasonable amount of time to
|
|
* wait before proceeding.
|
|
*/
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e);
|
|
ctx->shutdown_timeout_ms = SPDK_CEIL_DIV(ctrlr->cdata.rtd3e, 1000);
|
|
ctx->shutdown_timeout_ms = spdk_max(ctx->shutdown_timeout_ms, 10000);
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown timeout = %" PRIu32 " ms\n", ctx->shutdown_timeout_ms);
|
|
|
|
ctx->shutdown_start_tsc = spdk_get_ticks();
|
|
ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_shutdown_get_cc_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_ctrlr_detach_ctx *ctx = _ctx;
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
|
|
union spdk_nvme_cc_register cc;
|
|
int rc;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
|
|
ctx->shutdown_complete = true;
|
|
return;
|
|
}
|
|
|
|
assert(value <= UINT32_MAX);
|
|
cc.raw = (uint32_t)value;
|
|
|
|
if (ctrlr->opts.no_shn_notification) {
|
|
NVME_CTRLR_INFOLOG(ctrlr, "Disable SSD without shutdown notification\n");
|
|
if (cc.bits.en == 0) {
|
|
ctx->shutdown_complete = true;
|
|
return;
|
|
}
|
|
|
|
cc.bits.en = 0;
|
|
} else {
|
|
cc.bits.shn = SPDK_NVME_SHN_NORMAL;
|
|
}
|
|
|
|
rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_shutdown_set_cc_done, ctx);
|
|
if (rc != 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to write CC.SHN\n");
|
|
ctx->shutdown_complete = true;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_shutdown_async(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct nvme_ctrlr_detach_ctx *ctx)
|
|
{
|
|
int rc;
|
|
|
|
if (ctrlr->is_removed) {
|
|
ctx->shutdown_complete = true;
|
|
return;
|
|
}
|
|
|
|
ctx->state = NVME_CTRLR_DETACH_SET_CC;
|
|
rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_shutdown_get_cc_done, ctx);
|
|
if (rc != 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
|
|
ctx->shutdown_complete = true;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_shutdown_get_csts_done(void *_ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_ctrlr_detach_ctx *ctx = _ctx;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctx->ctrlr, "Failed to read the CSTS register\n");
|
|
ctx->shutdown_complete = true;
|
|
return;
|
|
}
|
|
|
|
assert(value <= UINT32_MAX);
|
|
ctx->csts.raw = (uint32_t)value;
|
|
ctx->state = NVME_CTRLR_DETACH_GET_CSTS_DONE;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_shutdown_poll_async(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct nvme_ctrlr_detach_ctx *ctx)
|
|
{
|
|
union spdk_nvme_csts_register csts;
|
|
uint32_t ms_waited;
|
|
|
|
switch (ctx->state) {
|
|
case NVME_CTRLR_DETACH_SET_CC:
|
|
case NVME_CTRLR_DETACH_GET_CSTS:
|
|
/* We're still waiting for the register operation to complete */
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
return -EAGAIN;
|
|
|
|
case NVME_CTRLR_DETACH_CHECK_CSTS:
|
|
ctx->state = NVME_CTRLR_DETACH_GET_CSTS;
|
|
if (nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_shutdown_get_csts_done, ctx)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
|
|
return -EIO;
|
|
}
|
|
return -EAGAIN;
|
|
|
|
case NVME_CTRLR_DETACH_GET_CSTS_DONE:
|
|
ctx->state = NVME_CTRLR_DETACH_CHECK_CSTS;
|
|
break;
|
|
|
|
default:
|
|
assert(0 && "Should never happen");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ms_waited = (spdk_get_ticks() - ctx->shutdown_start_tsc) * 1000 / spdk_get_ticks_hz();
|
|
csts.raw = ctx->csts.raw;
|
|
|
|
if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "shutdown complete in %u milliseconds\n", ms_waited);
|
|
return 0;
|
|
}
|
|
|
|
if (ms_waited < ctx->shutdown_timeout_ms) {
|
|
return -EAGAIN;
|
|
}
|
|
|
|
NVME_CTRLR_ERRLOG(ctrlr, "did not shutdown within %u milliseconds\n",
|
|
ctx->shutdown_timeout_ms);
|
|
if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "likely due to shutdown handling in the VMWare emulated NVMe SSD\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline uint64_t
|
|
nvme_ctrlr_get_ready_timeout(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->cap.bits.to * 500;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_cc_en_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to set the CC register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
|
|
nvme_ctrlr_get_ready_timeout(ctrlr));
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_cc_register cc;
|
|
int rc;
|
|
|
|
rc = nvme_transport_ctrlr_enable(ctrlr);
|
|
if (rc != 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "transport ctrlr_enable failed\n");
|
|
return rc;
|
|
}
|
|
|
|
cc.raw = ctrlr->process_init_cc.raw;
|
|
if (cc.bits.en != 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "called with CC.EN = 1\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cc.bits.en = 1;
|
|
cc.bits.css = 0;
|
|
cc.bits.shn = 0;
|
|
cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
|
|
cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
|
|
|
|
/* Page size is 2 ^ (12 + mps). */
|
|
cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12;
|
|
|
|
/*
|
|
* Since NVMe 1.0, a controller should have at least one bit set in CAP.CSS.
|
|
* A controller that does not have any bit set in CAP.CSS is not spec compliant.
|
|
* Try to support such a controller regardless.
|
|
*/
|
|
if (ctrlr->cap.bits.css == 0) {
|
|
NVME_CTRLR_INFOLOG(ctrlr, "Drive reports no command sets supported. Assuming NVM is supported.\n");
|
|
ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM;
|
|
}
|
|
|
|
/*
|
|
* If the user did not explicitly request a command set, or supplied a value larger than
|
|
* what can be saved in CC.CSS, use the most reasonable default.
|
|
*/
|
|
if (ctrlr->opts.command_set >= CHAR_BIT) {
|
|
if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS) {
|
|
ctrlr->opts.command_set = SPDK_NVME_CC_CSS_IOCS;
|
|
} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NVM) {
|
|
ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
|
|
} else if (ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_NOIO) {
|
|
ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NOIO;
|
|
} else {
|
|
/* Invalid supported bits detected, falling back to NVM. */
|
|
ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
|
|
}
|
|
}
|
|
|
|
/* Verify that the selected command set is supported by the controller. */
|
|
if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Requested I/O command set %u but supported mask is 0x%x\n",
|
|
ctrlr->opts.command_set, ctrlr->cap.bits.css);
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Falling back to NVM. Assuming NVM is supported.\n");
|
|
ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM;
|
|
}
|
|
|
|
cc.bits.css = ctrlr->opts.command_set;
|
|
|
|
switch (ctrlr->opts.arb_mechanism) {
|
|
case SPDK_NVME_CC_AMS_RR:
|
|
break;
|
|
case SPDK_NVME_CC_AMS_WRR:
|
|
if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) {
|
|
break;
|
|
}
|
|
return -EINVAL;
|
|
case SPDK_NVME_CC_AMS_VS:
|
|
if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) {
|
|
break;
|
|
}
|
|
return -EINVAL;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
cc.bits.ams = ctrlr->opts.arb_mechanism;
|
|
ctrlr->process_init_cc.raw = cc.raw;
|
|
|
|
if (nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_set_cc_en_done, ctrlr)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const char *
|
|
nvme_ctrlr_state_string(enum nvme_ctrlr_state state)
|
|
{
|
|
switch (state) {
|
|
case NVME_CTRLR_STATE_INIT_DELAY:
|
|
return "delay init";
|
|
case NVME_CTRLR_STATE_CONNECT_ADMINQ:
|
|
return "connect adminq";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
|
|
return "wait for connect adminq";
|
|
case NVME_CTRLR_STATE_READ_VS:
|
|
return "read vs";
|
|
case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
|
|
return "read vs wait for vs";
|
|
case NVME_CTRLR_STATE_READ_CAP:
|
|
return "read cap";
|
|
case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
|
|
return "read cap wait for cap";
|
|
case NVME_CTRLR_STATE_CHECK_EN:
|
|
return "check en";
|
|
case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
|
|
return "check en wait for cc";
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
|
|
return "disable and wait for CSTS.RDY = 1";
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
|
|
return "disable and wait for CSTS.RDY = 1 reg";
|
|
case NVME_CTRLR_STATE_SET_EN_0:
|
|
return "set CC.EN = 0";
|
|
case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
|
|
return "set CC.EN = 0 wait for cc";
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
|
|
return "disable and wait for CSTS.RDY = 0";
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
|
|
return "disable and wait for CSTS.RDY = 0 reg";
|
|
case NVME_CTRLR_STATE_ENABLE:
|
|
return "enable controller by writing CC.EN = 1";
|
|
case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
|
|
return "enable controller by writing CC.EN = 1 reg";
|
|
case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
|
|
return "wait for CSTS.RDY = 1";
|
|
case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
|
|
return "wait for CSTS.RDY = 1 reg";
|
|
case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
|
|
return "reset admin queue";
|
|
case NVME_CTRLR_STATE_IDENTIFY:
|
|
return "identify controller";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
|
|
return "wait for identify controller";
|
|
case NVME_CTRLR_STATE_CONFIGURE_AER:
|
|
return "configure AER";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
|
|
return "wait for configure aer";
|
|
case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
|
|
return "set keep alive timeout";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
|
|
return "wait for set keep alive timeout";
|
|
case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
|
|
return "identify controller iocs specific";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
|
|
return "wait for identify controller iocs specific";
|
|
case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
|
|
return "get zns cmd and effects log page";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
|
|
return "wait for get zns cmd and effects log page";
|
|
case NVME_CTRLR_STATE_SET_NUM_QUEUES:
|
|
return "set number of queues";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
|
|
return "wait for set number of queues";
|
|
case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
|
|
return "identify active ns";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
|
|
return "wait for identify active ns";
|
|
case NVME_CTRLR_STATE_IDENTIFY_NS:
|
|
return "identify ns";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
|
|
return "wait for identify ns";
|
|
case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
|
|
return "identify namespace id descriptors";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
|
|
return "wait for identify namespace id descriptors";
|
|
case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
|
|
return "identify ns iocs specific";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
|
|
return "wait for identify ns iocs specific";
|
|
case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
|
|
return "set supported log pages";
|
|
case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
|
|
return "set supported INTEL log pages";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
|
|
return "wait for supported INTEL log pages";
|
|
case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
|
|
return "set supported features";
|
|
case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
|
|
return "set doorbell buffer config";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
|
|
return "wait for doorbell buffer config";
|
|
case NVME_CTRLR_STATE_SET_HOST_ID:
|
|
return "set host ID";
|
|
case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
|
|
return "wait for set host ID";
|
|
case NVME_CTRLR_STATE_READY:
|
|
return "ready";
|
|
case NVME_CTRLR_STATE_ERROR:
|
|
return "error";
|
|
}
|
|
return "unknown";
|
|
};
|
|
|
|
static void
|
|
_nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
|
|
uint64_t timeout_in_ms, bool quiet)
|
|
{
|
|
uint64_t ticks_per_ms, timeout_in_ticks, now_ticks;
|
|
|
|
ctrlr->state = state;
|
|
if (timeout_in_ms == NVME_TIMEOUT_KEEP_EXISTING) {
|
|
if (!quiet) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (keeping existing timeout)\n",
|
|
nvme_ctrlr_state_string(ctrlr->state));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (timeout_in_ms == NVME_TIMEOUT_INFINITE) {
|
|
goto inf;
|
|
}
|
|
|
|
ticks_per_ms = spdk_get_ticks_hz() / 1000;
|
|
if (timeout_in_ms > UINT64_MAX / ticks_per_ms) {
|
|
NVME_CTRLR_ERRLOG(ctrlr,
|
|
"Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
|
|
goto inf;
|
|
}
|
|
|
|
now_ticks = spdk_get_ticks();
|
|
timeout_in_ticks = timeout_in_ms * ticks_per_ms;
|
|
if (timeout_in_ticks > UINT64_MAX - now_ticks) {
|
|
NVME_CTRLR_ERRLOG(ctrlr,
|
|
"Specified timeout would cause integer overflow. Defaulting to no timeout.\n");
|
|
goto inf;
|
|
}
|
|
|
|
ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks;
|
|
if (!quiet) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (timeout %" PRIu64 " ms)\n",
|
|
nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms);
|
|
}
|
|
return;
|
|
inf:
|
|
if (!quiet) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "setting state to %s (no timeout)\n",
|
|
nvme_ctrlr_state_string(ctrlr->state));
|
|
}
|
|
ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
|
|
uint64_t timeout_in_ms)
|
|
{
|
|
_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, false);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_state_quiet(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state,
|
|
uint64_t timeout_in_ms)
|
|
{
|
|
_nvme_ctrlr_set_state(ctrlr, state, timeout_in_ms, true);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_free_zns_specific_data(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
spdk_free(ctrlr->cdata_zns);
|
|
ctrlr->cdata_zns = NULL;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_free_iocs_specific_data(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
nvme_ctrlr_free_zns_specific_data(ctrlr);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (ctrlr->shadow_doorbell) {
|
|
spdk_free(ctrlr->shadow_doorbell);
|
|
ctrlr->shadow_doorbell = NULL;
|
|
}
|
|
|
|
if (ctrlr->eventidx) {
|
|
spdk_free(ctrlr->eventidx);
|
|
ctrlr->eventidx = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_WARNLOG(ctrlr, "Doorbell buffer config failed\n");
|
|
} else {
|
|
NVME_CTRLR_INFOLOG(ctrlr, "Doorbell buffer config enabled\n");
|
|
}
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc = 0;
|
|
uint64_t prp1, prp2, len;
|
|
|
|
if (!ctrlr->cdata.oacs.doorbell_buffer_config) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
/* only 1 page size for doorbell buffer */
|
|
ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
|
|
NULL, SPDK_ENV_LCORE_ID_ANY,
|
|
SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
|
|
if (ctrlr->shadow_doorbell == NULL) {
|
|
rc = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
len = ctrlr->page_size;
|
|
prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len);
|
|
if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
|
|
rc = -EFAULT;
|
|
goto error;
|
|
}
|
|
|
|
ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size,
|
|
NULL, SPDK_ENV_LCORE_ID_ANY,
|
|
SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE);
|
|
if (ctrlr->eventidx == NULL) {
|
|
rc = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
len = ctrlr->page_size;
|
|
prp2 = spdk_vtophys(ctrlr->eventidx, &len);
|
|
if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) {
|
|
rc = -EFAULT;
|
|
goto error;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
|
|
rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2,
|
|
nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr);
|
|
if (rc != 0) {
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
nvme_ctrlr_free_doorbell_buffer(ctrlr);
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_request *req, *tmp;
|
|
struct spdk_nvme_cpl cpl = {};
|
|
|
|
cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
|
|
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
|
|
|
|
STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) {
|
|
STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq);
|
|
|
|
nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl);
|
|
nvme_free_request(req);
|
|
}
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_disconnect(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_qpair *qpair;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
ctrlr->prepare_for_reset = false;
|
|
|
|
if (ctrlr->is_resetting || ctrlr->is_removed) {
|
|
/*
|
|
* Controller is already resetting or has been removed. Return
|
|
* immediately since there is no need to kick off another
|
|
* reset in these cases.
|
|
*/
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return ctrlr->is_resetting ? -EBUSY : -ENXIO;
|
|
}
|
|
|
|
ctrlr->is_resetting = true;
|
|
ctrlr->is_failed = false;
|
|
|
|
NVME_CTRLR_NOTICELOG(ctrlr, "resetting controller\n");
|
|
|
|
/* Disable keep-alive, it'll be re-enabled as part of the init process */
|
|
ctrlr->keep_alive_interval_ticks = 0;
|
|
|
|
/* Abort all of the queued abort requests */
|
|
nvme_ctrlr_abort_queued_aborts(ctrlr);
|
|
|
|
nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
|
|
|
|
/* Disable all queues before disabling the controller hardware. */
|
|
TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
|
|
qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
|
|
}
|
|
|
|
ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
|
|
nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq);
|
|
|
|
/* Doorbell buffer config is invalid during reset */
|
|
nvme_ctrlr_free_doorbell_buffer(ctrlr);
|
|
|
|
/* I/O Command Set Specific Identify Controller data is invalidated during reset */
|
|
nvme_ctrlr_free_iocs_specific_data(ctrlr);
|
|
|
|
spdk_bit_array_free(&ctrlr->free_io_qids);
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
spdk_nvme_ctrlr_reconnect_async(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
/* Set the state back to INIT to cause a full hardware reset. */
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
|
|
|
|
/* Return without releasing ctrlr_lock. ctrlr_lock will be released when
|
|
* spdk_nvme_ctrlr_reset_poll_async() returns 0.
|
|
*/
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_reset_pre(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
rc = spdk_nvme_ctrlr_disconnect(ctrlr);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
spdk_nvme_ctrlr_reconnect_async(ctrlr);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This function will be called when the controller is being reinitialized.
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
int
|
|
spdk_nvme_ctrlr_reconnect_poll_async(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_qpair *qpair;
|
|
int rc = 0, rc_tmp = 0;
|
|
bool async;
|
|
|
|
if (nvme_ctrlr_process_init(ctrlr) != 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "controller reinitialization failed\n");
|
|
rc = -1;
|
|
}
|
|
if (ctrlr->state != NVME_CTRLR_STATE_READY && rc != -1) {
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* For non-fabrics controllers, the memory locations of the transport qpair
|
|
* don't change when the controller is reset. They simply need to be
|
|
* re-enabled with admin commands to the controller. For fabric
|
|
* controllers we need to disconnect and reconnect the qpair on its
|
|
* own thread outside of the context of the reset.
|
|
*/
|
|
if (rc == 0 && !spdk_nvme_ctrlr_is_fabrics(ctrlr)) {
|
|
/* Reinitialize qpairs */
|
|
TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) {
|
|
assert(spdk_bit_array_get(ctrlr->free_io_qids, qpair->id));
|
|
spdk_bit_array_clear(ctrlr->free_io_qids, qpair->id);
|
|
|
|
/* Force a synchronous connect. We can't currently handle an asynchronous
|
|
* operation here. */
|
|
async = qpair->async;
|
|
qpair->async = false;
|
|
rc_tmp = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair);
|
|
qpair->async = async;
|
|
|
|
if (rc_tmp != 0) {
|
|
rc = rc_tmp;
|
|
qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rc) {
|
|
nvme_ctrlr_fail(ctrlr, false);
|
|
}
|
|
ctrlr->is_resetting = false;
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
if (!ctrlr->cdata.oaes.ns_attribute_notices) {
|
|
/*
|
|
* If controller doesn't support ns_attribute_notices and
|
|
* namespace attributes change (e.g. number of namespaces)
|
|
* we need to update system handling device reset.
|
|
*/
|
|
nvme_io_msg_ctrlr_update(ctrlr);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_reset_ctx_init(struct spdk_nvme_ctrlr_reset_ctx *ctrlr_reset_ctx,
|
|
struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
ctrlr_reset_ctx->ctrlr = ctrlr;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_reset_poll_async(struct spdk_nvme_ctrlr_reset_ctx *ctrlr_reset_ctx)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ctrlr_reset_ctx->ctrlr;
|
|
|
|
return spdk_nvme_ctrlr_reconnect_poll_async(ctrlr);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_reset_poll_async(struct spdk_nvme_ctrlr_reset_ctx *ctrlr_reset_ctx)
|
|
{
|
|
int rc;
|
|
if (!ctrlr_reset_ctx) {
|
|
return -EINVAL;
|
|
}
|
|
rc = nvme_ctrlr_reset_poll_async(ctrlr_reset_ctx);
|
|
if (rc == -EAGAIN) {
|
|
return rc;
|
|
}
|
|
|
|
free(ctrlr_reset_ctx);
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_reset_async(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_ctrlr_reset_ctx **reset_ctx)
|
|
{
|
|
struct spdk_nvme_ctrlr_reset_ctx *ctrlr_reset_ctx;
|
|
int rc;
|
|
|
|
ctrlr_reset_ctx = calloc(1, sizeof(*ctrlr_reset_ctx));
|
|
if (!ctrlr_reset_ctx) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rc = nvme_ctrlr_reset_pre(ctrlr);
|
|
if (rc != 0) {
|
|
free(ctrlr_reset_ctx);
|
|
} else {
|
|
nvme_ctrlr_reset_ctx_init(ctrlr_reset_ctx, ctrlr);
|
|
*reset_ctx = ctrlr_reset_ctx;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_reset_ctx reset_ctx = {};
|
|
int rc;
|
|
|
|
rc = nvme_ctrlr_reset_pre(ctrlr);
|
|
if (rc != 0) {
|
|
if (rc == -EBUSY) {
|
|
rc = 0;
|
|
}
|
|
return rc;
|
|
}
|
|
nvme_ctrlr_reset_ctx_init(&reset_ctx, ctrlr);
|
|
|
|
while (true) {
|
|
rc = nvme_ctrlr_reset_poll_async(&reset_ctx);
|
|
if (rc != -EAGAIN) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
spdk_nvme_ctrlr_prepare_for_reset(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
ctrlr->prepare_for_reset = true;
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_reset_subsystem(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_cap_register cap;
|
|
int rc = 0;
|
|
|
|
cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
|
|
if (cap.bits.nssrs == 0) {
|
|
NVME_CTRLR_WARNLOG(ctrlr, "subsystem reset is not supported\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
NVME_CTRLR_NOTICELOG(ctrlr, "resetting subsystem\n");
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
ctrlr->is_resetting = true;
|
|
rc = nvme_ctrlr_set_nssr(ctrlr, SPDK_NVME_NSSR_VALUE);
|
|
ctrlr->is_resetting = false;
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
/*
|
|
* No more cleanup at this point like in the ctrlr reset. A subsystem reset will cause
|
|
* a hot remove for PCIe transport. The hot remove handling does all the necessary ctrlr cleanup.
|
|
*/
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid)
|
|
{
|
|
int rc = 0;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
if (ctrlr->is_failed == false) {
|
|
rc = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
if (trid->trtype != ctrlr->trid.trtype) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) {
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ctrlr->trid = *trid;
|
|
|
|
out:
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
spdk_nvme_ctrlr_set_remove_cb(struct spdk_nvme_ctrlr *ctrlr,
|
|
spdk_nvme_remove_cb remove_cb, void *remove_ctx)
|
|
{
|
|
if (!spdk_process_is_primary()) {
|
|
return;
|
|
}
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
ctrlr->remove_cb = remove_cb;
|
|
ctrlr->cb_ctx = remove_ctx;
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "nvme_identify_controller failed!\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Use MDTS to ensure our default max_xfer_size doesn't exceed what the
|
|
* controller supports.
|
|
*/
|
|
ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr);
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_xfer_size %u\n", ctrlr->max_xfer_size);
|
|
if (ctrlr->cdata.mdts > 0) {
|
|
ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size,
|
|
ctrlr->min_page_size * (1 << ctrlr->cdata.mdts));
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size);
|
|
}
|
|
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid);
|
|
if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
ctrlr->cntlid = ctrlr->cdata.cntlid;
|
|
} else {
|
|
/*
|
|
* Fabrics controllers should already have CNTLID from the Connect command.
|
|
*
|
|
* If CNTLID from Connect doesn't match CNTLID in the Identify Controller data,
|
|
* trust the one from Connect.
|
|
*/
|
|
if (ctrlr->cntlid != ctrlr->cdata.cntlid) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n",
|
|
ctrlr->cdata.cntlid, ctrlr->cntlid);
|
|
}
|
|
}
|
|
|
|
if (ctrlr->cdata.sgls.supported) {
|
|
assert(ctrlr->cdata.sgls.supported != 0x3);
|
|
ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED;
|
|
if (ctrlr->cdata.sgls.supported == 0x2) {
|
|
ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT;
|
|
}
|
|
/*
|
|
* Use MSDBD to ensure our max_sges doesn't exceed what the
|
|
* controller supports.
|
|
*/
|
|
ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr);
|
|
if (ctrlr->cdata.nvmf_specific.msdbd != 0) {
|
|
ctrlr->max_sges = spdk_min(ctrlr->cdata.nvmf_specific.msdbd, ctrlr->max_sges);
|
|
} else {
|
|
/* A value 0 indicates no limit. */
|
|
}
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "transport max_sges %u\n", ctrlr->max_sges);
|
|
}
|
|
|
|
if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) {
|
|
ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED;
|
|
}
|
|
|
|
if (ctrlr->cdata.oacs.directives) {
|
|
ctrlr->flags |= SPDK_NVME_CTRLR_DIRECTIVES_SUPPORTED;
|
|
}
|
|
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "fuses compare and write: %d\n",
|
|
ctrlr->cdata.fuses.compare_and_write);
|
|
if (ctrlr->cdata.fuses.compare_and_write) {
|
|
ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
|
|
rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, 0,
|
|
&ctrlr->cdata, sizeof(ctrlr->cdata),
|
|
nvme_ctrlr_identify_done, ctrlr);
|
|
if (rc != 0) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_get_zns_cmd_and_effects_log_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_cmds_and_effect_log_page *log_page;
|
|
struct spdk_nvme_ctrlr *ctrlr = arg;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_get_zns_cmd_and_effects_log failed!\n");
|
|
spdk_free(ctrlr->tmp_ptr);
|
|
ctrlr->tmp_ptr = NULL;
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
log_page = ctrlr->tmp_ptr;
|
|
|
|
if (log_page->io_cmds_supported[SPDK_NVME_OPC_ZONE_APPEND].csupp) {
|
|
ctrlr->flags |= SPDK_NVME_CTRLR_ZONE_APPEND_SUPPORTED;
|
|
}
|
|
spdk_free(ctrlr->tmp_ptr);
|
|
ctrlr->tmp_ptr = NULL;
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, ctrlr->opts.admin_timeout_ms);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_get_zns_cmd_and_effects_log(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
assert(!ctrlr->tmp_ptr);
|
|
ctrlr->tmp_ptr = spdk_zmalloc(sizeof(struct spdk_nvme_cmds_and_effect_log_page), 64, NULL,
|
|
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
|
|
if (!ctrlr->tmp_ptr) {
|
|
rc = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
|
|
rc = spdk_nvme_ctrlr_cmd_get_log_page_ext(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
|
|
0, ctrlr->tmp_ptr, sizeof(struct spdk_nvme_cmds_and_effect_log_page),
|
|
0, 0, 0, SPDK_NVME_CSI_ZNS << 24,
|
|
nvme_ctrlr_get_zns_cmd_and_effects_log_done, ctrlr);
|
|
if (rc != 0) {
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
spdk_free(ctrlr->tmp_ptr);
|
|
ctrlr->tmp_ptr = NULL;
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_identify_zns_specific_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
/* no need to print an error, the controller simply does not support ZNS */
|
|
nvme_ctrlr_free_zns_specific_data(ctrlr);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return;
|
|
}
|
|
|
|
/* A zero zasl value means use mdts */
|
|
if (ctrlr->cdata_zns->zasl) {
|
|
uint32_t max_append = ctrlr->min_page_size * (1 << ctrlr->cdata_zns->zasl);
|
|
ctrlr->max_zone_append_size = spdk_min(ctrlr->max_xfer_size, max_append);
|
|
} else {
|
|
ctrlr->max_zone_append_size = ctrlr->max_xfer_size;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
}
|
|
|
|
/**
|
|
* This function will try to fetch the I/O Command Specific Controller data structure for
|
|
* each I/O Command Set supported by SPDK.
|
|
*
|
|
* If an I/O Command Set is not supported by the controller, "Invalid Field in Command"
|
|
* will be returned. Since we are fetching in a exploratively way, getting an error back
|
|
* from the controller should not be treated as fatal.
|
|
*
|
|
* I/O Command Sets not supported by SPDK will be skipped (e.g. Key Value Command Set).
|
|
*
|
|
* I/O Command Sets without a IOCS specific data structure (i.e. a zero-filled IOCS specific
|
|
* data structure) will be skipped (e.g. NVM Command Set, Key Value Command Set).
|
|
*/
|
|
static int
|
|
nvme_ctrlr_identify_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Since SPDK currently only needs to fetch a single Command Set, keep the code here,
|
|
* instead of creating multiple NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC substates,
|
|
* which would require additional functions and complexity for no good reason.
|
|
*/
|
|
assert(!ctrlr->cdata_zns);
|
|
ctrlr->cdata_zns = spdk_zmalloc(sizeof(*ctrlr->cdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
|
|
SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA);
|
|
if (!ctrlr->cdata_zns) {
|
|
rc = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
|
|
rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR_IOCS, 0, 0, SPDK_NVME_CSI_ZNS,
|
|
ctrlr->cdata_zns, sizeof(*ctrlr->cdata_zns),
|
|
nvme_ctrlr_identify_zns_specific_done, ctrlr);
|
|
if (rc != 0) {
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
nvme_ctrlr_free_zns_specific_data(ctrlr);
|
|
return rc;
|
|
}
|
|
|
|
enum nvme_active_ns_state {
|
|
NVME_ACTIVE_NS_STATE_IDLE,
|
|
NVME_ACTIVE_NS_STATE_PROCESSING,
|
|
NVME_ACTIVE_NS_STATE_DONE,
|
|
NVME_ACTIVE_NS_STATE_ERROR
|
|
};
|
|
|
|
typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *);
|
|
|
|
struct nvme_active_ns_ctx {
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
uint32_t page_count;
|
|
uint32_t next_nsid;
|
|
uint32_t *new_ns_list;
|
|
nvme_active_ns_ctx_deleter deleter;
|
|
|
|
enum nvme_active_ns_state state;
|
|
};
|
|
|
|
static struct nvme_active_ns_ctx *
|
|
nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter)
|
|
{
|
|
struct nvme_active_ns_ctx *ctx;
|
|
uint32_t *new_ns_list = NULL;
|
|
|
|
ctx = calloc(1, sizeof(*ctx));
|
|
if (!ctx) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate nvme_active_ns_ctx!\n");
|
|
return NULL;
|
|
}
|
|
|
|
new_ns_list = spdk_zmalloc(sizeof(struct spdk_nvme_ns_list), ctrlr->page_size,
|
|
NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_SHARE);
|
|
if (!new_ns_list) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate active_ns_list!\n");
|
|
free(ctx);
|
|
return NULL;
|
|
}
|
|
|
|
ctx->page_count = 1;
|
|
ctx->new_ns_list = new_ns_list;
|
|
ctx->ctrlr = ctrlr;
|
|
ctx->deleter = deleter;
|
|
|
|
return ctx;
|
|
}
|
|
|
|
static void
|
|
nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx)
|
|
{
|
|
spdk_free(ctx->new_ns_list);
|
|
free(ctx);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_destruct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
|
|
{
|
|
struct spdk_nvme_ns *ns;
|
|
|
|
assert(ctrlr != NULL);
|
|
|
|
if (nsid < 1 || nsid > ctrlr->num_ns) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
ns = &ctrlr->ns[nsid - 1];
|
|
nvme_ns_destruct(ns);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_construct_namespace(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
|
|
{
|
|
struct spdk_nvme_ns *ns;
|
|
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
|
|
|
|
if (ns == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return nvme_ns_construct(ns, nsid, ctrlr);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t **new_ns_list,
|
|
size_t max_entries)
|
|
{
|
|
uint32_t active_ns_count = 0;
|
|
size_t i;
|
|
|
|
for (i = 0; i < max_entries; i++) {
|
|
if ((*new_ns_list)[active_ns_count] == 0) {
|
|
break;
|
|
}
|
|
|
|
active_ns_count++;
|
|
}
|
|
|
|
spdk_free(ctrlr->active_ns_list);
|
|
ctrlr->active_ns_list = *new_ns_list;
|
|
ctrlr->active_ns_count = active_ns_count;
|
|
*new_ns_list = NULL;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_active_ns_ctx *ctx = arg;
|
|
uint32_t *new_ns_list = NULL;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
|
|
goto out;
|
|
}
|
|
|
|
ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page_count - 1];
|
|
if (ctx->next_nsid == 0) {
|
|
ctx->state = NVME_ACTIVE_NS_STATE_DONE;
|
|
goto out;
|
|
}
|
|
|
|
ctx->page_count++;
|
|
new_ns_list = spdk_realloc(ctx->new_ns_list,
|
|
ctx->page_count * sizeof(struct spdk_nvme_ns_list),
|
|
ctx->ctrlr->page_size);
|
|
if (!new_ns_list) {
|
|
SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
|
|
ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
|
|
goto out;
|
|
}
|
|
|
|
ctx->new_ns_list = new_ns_list;
|
|
nvme_ctrlr_identify_active_ns_async(ctx);
|
|
return;
|
|
|
|
out:
|
|
if (ctx->deleter) {
|
|
ctx->deleter(ctx);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
|
|
uint32_t i;
|
|
int rc;
|
|
|
|
if (ctrlr->cdata.nn == 0) {
|
|
ctx->state = NVME_ACTIVE_NS_STATE_DONE;
|
|
goto out;
|
|
}
|
|
|
|
assert(ctx->new_ns_list != NULL);
|
|
|
|
/*
|
|
* If controller doesn't support active ns list CNS 0x02 dummy up
|
|
* an active ns list, i.e. all namespaces report as active
|
|
*/
|
|
if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) {
|
|
uint32_t *new_ns_list;
|
|
|
|
/*
|
|
* Active NS list must always end with zero element.
|
|
* So, we allocate for cdata.nn+1.
|
|
*/
|
|
ctx->page_count = spdk_divide_round_up(ctrlr->cdata.nn + 1,
|
|
sizeof(struct spdk_nvme_ns_list) / sizeof(new_ns_list[0]));
|
|
new_ns_list = spdk_realloc(ctx->new_ns_list,
|
|
ctx->page_count * sizeof(struct spdk_nvme_ns_list),
|
|
ctx->ctrlr->page_size);
|
|
if (!new_ns_list) {
|
|
SPDK_ERRLOG("Failed to reallocate active_ns_list!\n");
|
|
ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
|
|
goto out;
|
|
}
|
|
|
|
ctx->new_ns_list = new_ns_list;
|
|
ctx->new_ns_list[ctrlr->cdata.nn] = 0;
|
|
for (i = 0; i < ctrlr->cdata.nn; i++) {
|
|
ctx->new_ns_list[i] = i + 1;
|
|
}
|
|
|
|
ctx->state = NVME_ACTIVE_NS_STATE_DONE;
|
|
goto out;
|
|
}
|
|
|
|
ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING;
|
|
rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, 0,
|
|
&ctx->new_ns_list[1024 * (ctx->page_count - 1)], sizeof(struct spdk_nvme_ns_list),
|
|
nvme_ctrlr_identify_active_ns_async_done, ctx);
|
|
if (rc != 0) {
|
|
ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
|
|
goto out;
|
|
}
|
|
|
|
return;
|
|
|
|
out:
|
|
if (ctx->deleter) {
|
|
ctx->deleter(ctx);
|
|
}
|
|
}
|
|
|
|
static int nvme_ctrlr_construct_namespaces(struct spdk_nvme_ctrlr *ctrlr);
|
|
|
|
static void
|
|
_nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr;
|
|
|
|
if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
|
|
nvme_active_ns_ctx_destroy(ctx);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
|
|
|
|
rc = nvme_ctrlr_construct_namespaces(ctrlr);
|
|
if (rc) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Unable to construct namespace array!\n");
|
|
nvme_active_ns_ctx_destroy(ctx);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
nvme_ctrlr_identify_active_ns_swap(ctrlr, &ctx->new_ns_list, ctx->page_count * 1024);
|
|
nvme_active_ns_ctx_destroy(ctx);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms);
|
|
}
|
|
|
|
static void
|
|
_nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_active_ns_ctx *ctx;
|
|
|
|
ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter);
|
|
if (!ctx) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
nvme_ctrlr_identify_active_ns_async(ctx);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_active_ns_ctx *ctx;
|
|
int rc;
|
|
|
|
ctx = nvme_active_ns_ctx_create(ctrlr, NULL);
|
|
if (!ctx) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
nvme_ctrlr_identify_active_ns_async(ctx);
|
|
while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) {
|
|
rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
if (rc < 0) {
|
|
ctx->state = NVME_ACTIVE_NS_STATE_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) {
|
|
nvme_active_ns_ctx_destroy(ctx);
|
|
return -ENXIO;
|
|
}
|
|
|
|
assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE);
|
|
nvme_ctrlr_identify_active_ns_swap(ctrlr, &ctx->new_ns_list, ctx->page_count * 1024);
|
|
nvme_active_ns_ctx_destroy(ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
|
|
struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
|
|
uint32_t nsid;
|
|
int rc;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
nvme_ns_set_identify_data(ns);
|
|
|
|
/* move on to the next active NS */
|
|
nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
|
|
if (ns == NULL) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return;
|
|
}
|
|
ns->ctrlr = ctrlr;
|
|
ns->id = nsid;
|
|
|
|
rc = nvme_ctrlr_identify_ns_async(ns);
|
|
if (rc) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
|
|
struct spdk_nvme_ns_data *nsdata;
|
|
|
|
nsdata = &ns->nsdata;
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, 0,
|
|
nsdata, sizeof(*nsdata),
|
|
nvme_ctrlr_identify_ns_async_done, ns);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint32_t nsid;
|
|
struct spdk_nvme_ns *ns;
|
|
int rc;
|
|
|
|
nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
|
|
if (ns == NULL) {
|
|
/* No active NS, move on to the next state */
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
ns->ctrlr = ctrlr;
|
|
ns->id = nsid;
|
|
|
|
rc = nvme_ctrlr_identify_ns_async(ns);
|
|
if (rc) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_identify_namespaces_iocs_specific_next(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
|
|
{
|
|
uint32_t nsid;
|
|
struct spdk_nvme_ns *ns;
|
|
int rc;
|
|
|
|
if (!prev_nsid) {
|
|
nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
|
|
} else {
|
|
/* move on to the next active NS */
|
|
nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, prev_nsid);
|
|
}
|
|
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
|
|
if (ns == NULL) {
|
|
/* No first/next active NS, move on to the next state */
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
/* loop until we find a ns which has (supported) iocs specific data */
|
|
while (!nvme_ns_has_supported_iocs_specific_data(ns)) {
|
|
nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
|
|
if (ns == NULL) {
|
|
/* no namespace with (supported) iocs specific data found */
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
rc = nvme_ctrlr_identify_ns_iocs_specific_async(ns);
|
|
if (rc) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_identify_ns_zns_specific_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
|
|
struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
nvme_ns_free_zns_specific_data(ns);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, ns->id);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_identify_ns_iocs_specific_async(struct spdk_nvme_ns *ns)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
|
|
int rc;
|
|
|
|
switch (ns->csi) {
|
|
case SPDK_NVME_CSI_ZNS:
|
|
break;
|
|
default:
|
|
/*
|
|
* This switch must handle all cases for which
|
|
* nvme_ns_has_supported_iocs_specific_data() returns true,
|
|
* other cases should never happen.
|
|
*/
|
|
assert(0);
|
|
}
|
|
|
|
assert(!ns->nsdata_zns);
|
|
ns->nsdata_zns = spdk_zmalloc(sizeof(*ns->nsdata_zns), 64, NULL, SPDK_ENV_SOCKET_ID_ANY,
|
|
SPDK_MALLOC_SHARE);
|
|
if (!ns->nsdata_zns) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
rc = nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_IOCS, 0, ns->id, ns->csi,
|
|
ns->nsdata_zns, sizeof(*ns->nsdata_zns),
|
|
nvme_ctrlr_identify_ns_zns_specific_async_done, ns);
|
|
if (rc) {
|
|
nvme_ns_free_zns_specific_data(ns);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_identify_namespaces_iocs_specific(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (!nvme_ctrlr_multi_iocs_enabled(ctrlr)) {
|
|
/* Multi IOCS not supported/enabled, move on to the next state */
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
return nvme_ctrlr_identify_namespaces_iocs_specific_next(ctrlr, 0);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg;
|
|
struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
|
|
uint32_t nsid;
|
|
int rc;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
/*
|
|
* Many controllers claim to be compatible with NVMe 1.3, however,
|
|
* they do not implement NS ID Desc List. Therefore, instead of setting
|
|
* the state to NVME_CTRLR_STATE_ERROR, silently ignore the completion
|
|
* error and move on to the next state.
|
|
*
|
|
* The proper way is to create a new quirk for controllers that violate
|
|
* the NVMe 1.3 spec by not supporting NS ID Desc List.
|
|
* (Re-using the NVME_QUIRK_IDENTIFY_CNS quirk is not possible, since
|
|
* it is too generic and was added in order to handle controllers that
|
|
* violate the NVMe 1.1 spec by not supporting ACTIVE LIST).
|
|
*/
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return;
|
|
}
|
|
|
|
nvme_ns_set_id_desc_list_data(ns);
|
|
|
|
/* move on to the next active NS */
|
|
nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id);
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
|
|
if (ns == NULL) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return;
|
|
}
|
|
|
|
rc = nvme_ctrlr_identify_id_desc_async(ns);
|
|
if (rc) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr;
|
|
|
|
memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list));
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST,
|
|
0, ns->id, 0, ns->id_desc_list, sizeof(ns->id_desc_list),
|
|
nvme_ctrlr_identify_id_desc_async_done, ns);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint32_t nsid;
|
|
struct spdk_nvme_ns *ns;
|
|
int rc;
|
|
|
|
if ((ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) &&
|
|
!(ctrlr->cap.bits.css & SPDK_NVME_CAP_CSS_IOCS)) ||
|
|
(ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n");
|
|
/* NS ID Desc List not supported, move on to the next state */
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
|
|
ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
|
|
if (ns == NULL) {
|
|
/* No active NS, move on to the next state */
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
rc = nvme_ctrlr_identify_id_desc_async(ns);
|
|
if (rc) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA ||
|
|
ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP ||
|
|
ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_FC) {
|
|
if (ctrlr->cdata.nvmf_specific.ioccsz < 4) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Incorrect IOCCSZ %u, the minimum value should be 4\n",
|
|
ctrlr->cdata.nvmf_specific.ioccsz);
|
|
ctrlr->cdata.nvmf_specific.ioccsz = 4;
|
|
assert(0);
|
|
}
|
|
ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd);
|
|
ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
uint32_t cq_allocated, sq_allocated, min_allocated, i;
|
|
struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Number of Queues failed!\n");
|
|
ctrlr->opts.num_io_queues = 0;
|
|
} else {
|
|
/*
|
|
* Data in cdw0 is 0-based.
|
|
* Lower 16-bits indicate number of submission queues allocated.
|
|
* Upper 16-bits indicate number of completion queues allocated.
|
|
*/
|
|
sq_allocated = (cpl->cdw0 & 0xFFFF) + 1;
|
|
cq_allocated = (cpl->cdw0 >> 16) + 1;
|
|
|
|
/*
|
|
* For 1:1 queue mapping, set number of allocated queues to be minimum of
|
|
* submission and completion queues.
|
|
*/
|
|
min_allocated = spdk_min(sq_allocated, cq_allocated);
|
|
|
|
/* Set number of queues to be minimum of requested and actually allocated. */
|
|
ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues);
|
|
}
|
|
|
|
ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1);
|
|
if (ctrlr->free_io_qids == NULL) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
/* Initialize list of free I/O queue IDs. QID 0 is the admin queue (implicitly allocated). */
|
|
for (i = 1; i <= ctrlr->opts.num_io_queues; i++) {
|
|
spdk_nvme_ctrlr_free_qid(ctrlr, i);
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) {
|
|
NVME_CTRLR_NOTICELOG(ctrlr, "Limiting requested num_io_queues %u to max %d\n",
|
|
ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES);
|
|
ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES;
|
|
} else if (ctrlr->opts.num_io_queues < 1) {
|
|
NVME_CTRLR_NOTICELOG(ctrlr, "Requested num_io_queues 0, increasing to 1\n");
|
|
ctrlr->opts.num_io_queues = 1;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
|
|
rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues,
|
|
nvme_ctrlr_set_num_queues_done, ctrlr);
|
|
if (rc != 0) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
uint32_t keep_alive_interval_us;
|
|
struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) &&
|
|
(cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Keep alive timeout Get Feature is not supported\n");
|
|
} else {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: SC %x SCT %x\n",
|
|
cpl->status.sc, cpl->status.sct);
|
|
ctrlr->opts.keep_alive_timeout_ms = 0;
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
} else {
|
|
if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Controller adjusted keep alive timeout to %u ms\n",
|
|
cpl->cdw0);
|
|
}
|
|
|
|
ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0;
|
|
}
|
|
|
|
if (ctrlr->opts.keep_alive_timeout_ms == 0) {
|
|
ctrlr->keep_alive_interval_ticks = 0;
|
|
} else {
|
|
keep_alive_interval_us = ctrlr->opts.keep_alive_timeout_ms * 1000 / 2;
|
|
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Sending keep alive every %u us\n", keep_alive_interval_us);
|
|
|
|
ctrlr->keep_alive_interval_ticks = (keep_alive_interval_us * spdk_get_ticks_hz()) /
|
|
UINT64_C(1000000);
|
|
|
|
/* Schedule the first Keep Alive to be sent as soon as possible. */
|
|
ctrlr->next_keep_alive_tick = spdk_get_ticks();
|
|
}
|
|
|
|
if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
|
|
} else {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
if (ctrlr->opts.keep_alive_timeout_ms == 0) {
|
|
if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
|
|
} else {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Note: Discovery controller identify data does not populate KAS according to spec. */
|
|
if (!spdk_nvme_ctrlr_is_discovery(ctrlr) && ctrlr->cdata.kas == 0) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Controller KAS is 0 - not enabling Keep Alive\n");
|
|
ctrlr->opts.keep_alive_timeout_ms = 0;
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
|
|
/* Retrieve actual keep alive timeout, since the controller may have adjusted it. */
|
|
rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0,
|
|
nvme_ctrlr_set_keep_alive_timeout_done, ctrlr);
|
|
if (rc != 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Keep alive timeout Get Feature failed: %d\n", rc);
|
|
ctrlr->opts.keep_alive_timeout_ms = 0;
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
/*
|
|
* Treat Set Features - Host ID failure as non-fatal, since the Host ID feature
|
|
* is optional.
|
|
*/
|
|
NVME_CTRLR_WARNLOG(ctrlr, "Set Features - Host ID failed: SC 0x%x SCT 0x%x\n",
|
|
cpl->status.sc, cpl->status.sct);
|
|
} else {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Set Features - Host ID was successful\n");
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint8_t *host_id;
|
|
uint32_t host_id_size;
|
|
int rc;
|
|
|
|
if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
|
|
/*
|
|
* NVMe-oF sends the host ID during Connect and doesn't allow
|
|
* Set Features - Host Identifier after Connect, so we don't need to do anything here.
|
|
*/
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "NVMe-oF transport - not sending Set Features - Host ID\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
|
|
return 0;
|
|
}
|
|
|
|
if (ctrlr->cdata.ctratt.host_id_exhid_supported) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Using 128-bit extended host identifier\n");
|
|
host_id = ctrlr->opts.extended_host_id;
|
|
host_id_size = sizeof(ctrlr->opts.extended_host_id);
|
|
} else {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Using 64-bit host identifier\n");
|
|
host_id = ctrlr->opts.host_id;
|
|
host_id_size = sizeof(ctrlr->opts.host_id);
|
|
}
|
|
|
|
/* If the user specified an all-zeroes host identifier, don't send the command. */
|
|
if (spdk_mem_all_zero(host_id, host_id_size)) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "User did not specify host ID - not sending Set Features - Host ID\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE);
|
|
return 0;
|
|
}
|
|
|
|
SPDK_LOGDUMP(nvme, "host_id", host_id, host_id_size);
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
|
|
rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr);
|
|
if (rc != 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Set Features - Host ID failed: %d\n", rc);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_destruct_namespaces(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (ctrlr->ns) {
|
|
uint32_t i, num_ns = ctrlr->num_ns;
|
|
|
|
for (i = 1; i <= num_ns; i++) {
|
|
nvme_ctrlr_destruct_namespace(ctrlr, i);
|
|
}
|
|
|
|
spdk_free(ctrlr->ns);
|
|
ctrlr->ns = NULL;
|
|
ctrlr->num_ns = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint32_t i, nn = ctrlr->cdata.nn;
|
|
struct spdk_nvme_ns_data *nsdata;
|
|
bool ns_is_active;
|
|
|
|
for (i = 0; i < nn; i++) {
|
|
uint32_t nsid = i + 1;
|
|
struct spdk_nvme_ns *ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid);
|
|
|
|
assert(ns != NULL);
|
|
nsdata = &ns->nsdata;
|
|
ns_is_active = spdk_nvme_ctrlr_is_active_ns(ctrlr, nsid);
|
|
|
|
if (nsdata->ncap && ns_is_active) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was updated\n", nsid);
|
|
if (nvme_ns_update(ns) != 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to update active NS %u\n", nsid);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if ((nsdata->ncap == 0) && ns_is_active) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was added\n", nsid);
|
|
if (nvme_ctrlr_construct_namespace(ctrlr, nsid) != 0) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (nsdata->ncap && !ns_is_active) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Namespace %u was removed\n", nsid);
|
|
nvme_ctrlr_destruct_namespace(ctrlr, nsid);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_construct_namespaces(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc = 0;
|
|
uint32_t i, nn = ctrlr->cdata.nn;
|
|
|
|
/* ctrlr->num_ns may be 0 (startup) or a different number of namespaces (reset),
|
|
* so check if we need to reallocate.
|
|
*/
|
|
if (nn != ctrlr->num_ns) {
|
|
nvme_ctrlr_destruct_namespaces(ctrlr);
|
|
|
|
if (nn == 0) {
|
|
NVME_CTRLR_WARNLOG(ctrlr, "controller has 0 namespaces\n");
|
|
return 0;
|
|
}
|
|
|
|
ctrlr->ns = spdk_zmalloc(nn * sizeof(struct spdk_nvme_ns), 64, NULL,
|
|
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
|
|
if (ctrlr->ns == NULL) {
|
|
rc = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
ctrlr->num_ns = nn;
|
|
} else {
|
|
/*
|
|
* The controller could have been reset with the same number of namespaces.
|
|
* If so, we still need to free the iocs specific data, to get a clean slate.
|
|
*/
|
|
for (i = 0; i < ctrlr->num_ns; i++) {
|
|
nvme_ns_free_iocs_specific_data(&ctrlr->ns[i]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
nvme_ctrlr_destruct_namespaces(ctrlr);
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to construct namespaces, err %d\n", rc);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_clear_changed_ns_log(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_completion_poll_status *status;
|
|
int rc = -ENOMEM;
|
|
char *buffer = NULL;
|
|
uint32_t nsid;
|
|
size_t buf_size = (SPDK_NVME_MAX_CHANGED_NAMESPACES * sizeof(uint32_t));
|
|
|
|
buffer = spdk_dma_zmalloc(buf_size, 4096, NULL);
|
|
if (!buffer) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate buffer for getting "
|
|
"changed ns log.\n");
|
|
return rc;
|
|
}
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
|
|
goto free_buffer;
|
|
}
|
|
|
|
rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr,
|
|
SPDK_NVME_LOG_CHANGED_NS_LIST,
|
|
SPDK_NVME_GLOBAL_NS_TAG,
|
|
buffer, buf_size, 0,
|
|
nvme_completion_poll_cb, status);
|
|
|
|
if (rc) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_get_log_page() failed: rc=%d\n", rc);
|
|
free(status);
|
|
goto free_buffer;
|
|
}
|
|
|
|
rc = nvme_wait_for_completion_timeout(ctrlr->adminq, status,
|
|
ctrlr->opts.admin_timeout_ms * 1000);
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
|
|
if (rc) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "wait for spdk_nvme_ctrlr_cmd_get_log_page failed: rc=%d\n", rc);
|
|
goto free_buffer;
|
|
}
|
|
|
|
/* only check the case of overflow. */
|
|
nsid = from_le32(buffer);
|
|
if (nsid == 0xffffffffu) {
|
|
NVME_CTRLR_WARNLOG(ctrlr, "changed ns log overflowed.\n");
|
|
}
|
|
|
|
free_buffer:
|
|
spdk_dma_free(buffer);
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_process_async_event(struct spdk_nvme_ctrlr *ctrlr,
|
|
const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
union spdk_nvme_async_event_completion event;
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
int rc;
|
|
|
|
event.raw = cpl->cdw0;
|
|
|
|
if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
|
|
(event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) {
|
|
nvme_ctrlr_clear_changed_ns_log(ctrlr);
|
|
|
|
rc = nvme_ctrlr_identify_active_ns(ctrlr);
|
|
if (rc) {
|
|
return;
|
|
}
|
|
nvme_ctrlr_update_namespaces(ctrlr);
|
|
nvme_io_msg_ctrlr_update(ctrlr);
|
|
}
|
|
|
|
if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) &&
|
|
(event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_ANA_CHANGE)) {
|
|
if (!ctrlr->opts.disable_read_ana_log_page) {
|
|
rc = nvme_ctrlr_update_ana_log_page(ctrlr);
|
|
if (rc) {
|
|
return;
|
|
}
|
|
nvme_ctrlr_parse_ana_log_page(ctrlr, nvme_ctrlr_update_ns_ana_states,
|
|
ctrlr);
|
|
}
|
|
}
|
|
|
|
active_proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
if (active_proc && active_proc->aer_cb_fn) {
|
|
active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_queue_async_event(struct spdk_nvme_ctrlr *ctrlr,
|
|
const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr_aer_completion_list *nvme_event;
|
|
struct spdk_nvme_ctrlr_process *proc;
|
|
|
|
/* Add async event to each process objects event list */
|
|
TAILQ_FOREACH(proc, &ctrlr->active_procs, tailq) {
|
|
/* Must be shared memory so other processes can access */
|
|
nvme_event = spdk_zmalloc(sizeof(*nvme_event), 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
|
|
if (!nvme_event) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Alloc nvme event failed, ignore the event\n");
|
|
return;
|
|
}
|
|
nvme_event->cpl = *cpl;
|
|
|
|
STAILQ_INSERT_TAIL(&proc->async_events, nvme_event, link);
|
|
}
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_complete_queued_async_events(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_aer_completion_list *nvme_event, *nvme_event_tmp;
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
|
|
active_proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
|
|
STAILQ_FOREACH_SAFE(nvme_event, &active_proc->async_events, link, nvme_event_tmp) {
|
|
STAILQ_REMOVE(&active_proc->async_events, nvme_event,
|
|
spdk_nvme_ctrlr_aer_completion_list, link);
|
|
nvme_ctrlr_process_async_event(ctrlr, &nvme_event->cpl);
|
|
spdk_free(nvme_event);
|
|
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_async_event_request *aer = arg;
|
|
struct spdk_nvme_ctrlr *ctrlr = aer->ctrlr;
|
|
|
|
if (cpl->status.sct == SPDK_NVME_SCT_GENERIC &&
|
|
cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) {
|
|
/*
|
|
* This is simulated when controller is being shut down, to
|
|
* effectively abort outstanding asynchronous event requests
|
|
* and make sure all memory is freed. Do not repost the
|
|
* request in this case.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
|
|
cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) {
|
|
/*
|
|
* SPDK will only send as many AERs as the device says it supports,
|
|
* so this status code indicates an out-of-spec device. Do not repost
|
|
* the request in this case.
|
|
*/
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Controller appears out-of-spec for asynchronous event request\n"
|
|
"handling. Do not repost this AER.\n");
|
|
return;
|
|
}
|
|
|
|
/* Add the events to the list */
|
|
nvme_ctrlr_queue_async_event(ctrlr, cpl);
|
|
|
|
/* If the ctrlr was removed or in the destruct state, we should not send aer again */
|
|
if (ctrlr->is_removed || ctrlr->is_destructed) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Repost another asynchronous event request to replace the one
|
|
* that just completed.
|
|
*/
|
|
if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
|
|
/*
|
|
* We can't do anything to recover from a failure here,
|
|
* so just print a warning message and leave the AER unsubmitted.
|
|
*/
|
|
NVME_CTRLR_ERRLOG(ctrlr, "resubmitting AER failed!\n");
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct nvme_async_event_request *aer)
|
|
{
|
|
struct nvme_request *req;
|
|
|
|
aer->ctrlr = ctrlr;
|
|
req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer);
|
|
aer->req = req;
|
|
if (req == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST;
|
|
return nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_async_event_request *aer;
|
|
int rc;
|
|
uint32_t i;
|
|
struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_NOTICELOG(ctrlr, "nvme_ctrlr_configure_aer failed!\n");
|
|
ctrlr->num_aers = 0;
|
|
} else {
|
|
/* aerl is a zero-based value, so we need to add 1 here. */
|
|
ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
|
|
}
|
|
|
|
for (i = 0; i < ctrlr->num_aers; i++) {
|
|
aer = &ctrlr->aer[i];
|
|
rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
|
|
if (rc) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
}
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, ctrlr->opts.admin_timeout_ms);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_feat_async_event_configuration config;
|
|
int rc;
|
|
|
|
config.raw = 0;
|
|
|
|
if (spdk_nvme_ctrlr_is_discovery(ctrlr)) {
|
|
config.bits.discovery_log_change_notice = 1;
|
|
} else {
|
|
config.bits.crit_warn.bits.available_spare = 1;
|
|
config.bits.crit_warn.bits.temperature = 1;
|
|
config.bits.crit_warn.bits.device_reliability = 1;
|
|
config.bits.crit_warn.bits.read_only = 1;
|
|
config.bits.crit_warn.bits.volatile_memory_backup = 1;
|
|
|
|
if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) {
|
|
if (ctrlr->cdata.oaes.ns_attribute_notices) {
|
|
config.bits.ns_attr_notice = 1;
|
|
}
|
|
if (ctrlr->cdata.oaes.fw_activation_notices) {
|
|
config.bits.fw_activation_notice = 1;
|
|
}
|
|
if (ctrlr->cdata.oaes.ana_change_notices) {
|
|
config.bits.ana_change_notice = 1;
|
|
}
|
|
}
|
|
if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) {
|
|
config.bits.telemetry_log_notice = 1;
|
|
}
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
|
|
rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config,
|
|
nvme_ctrlr_configure_aer_done,
|
|
ctrlr);
|
|
if (rc != 0) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct spdk_nvme_ctrlr_process *
|
|
nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
|
|
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
|
|
if (active_proc->pid == pid) {
|
|
return active_proc;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct spdk_nvme_ctrlr_process *
|
|
nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return nvme_ctrlr_get_process(ctrlr, getpid());
|
|
}
|
|
|
|
/**
|
|
* This function will be called when a process is using the controller.
|
|
* 1. For the primary process, it is called when constructing the controller.
|
|
* 2. For the secondary process, it is called at probing the controller.
|
|
* Note: will check whether the process is already added for the same process.
|
|
*/
|
|
int
|
|
nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *ctrlr_proc;
|
|
pid_t pid = getpid();
|
|
|
|
/* Check whether the process is already added or not */
|
|
if (nvme_ctrlr_get_process(ctrlr, pid)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize the per process properties for this ctrlr */
|
|
ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process),
|
|
64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
|
|
if (ctrlr_proc == NULL) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "failed to allocate memory to track the process props\n");
|
|
|
|
return -1;
|
|
}
|
|
|
|
ctrlr_proc->is_primary = spdk_process_is_primary();
|
|
ctrlr_proc->pid = pid;
|
|
STAILQ_INIT(&ctrlr_proc->active_reqs);
|
|
ctrlr_proc->devhandle = devhandle;
|
|
ctrlr_proc->ref = 0;
|
|
TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs);
|
|
STAILQ_INIT(&ctrlr_proc->async_events);
|
|
|
|
TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This function will be called when the process detaches the controller.
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_ctrlr_process *proc)
|
|
{
|
|
struct spdk_nvme_qpair *qpair, *tmp_qpair;
|
|
|
|
assert(STAILQ_EMPTY(&proc->active_reqs));
|
|
|
|
TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
|
|
spdk_nvme_ctrlr_free_io_qpair(qpair);
|
|
}
|
|
|
|
TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq);
|
|
|
|
if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
spdk_pci_device_detach(proc->devhandle);
|
|
}
|
|
|
|
spdk_free(proc);
|
|
}
|
|
|
|
/**
|
|
* This function will be called when the process exited unexpectedly
|
|
* in order to free any incomplete nvme request, allocated IO qpairs
|
|
* and allocated memory.
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static void
|
|
nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc)
|
|
{
|
|
struct nvme_request *req, *tmp_req;
|
|
struct spdk_nvme_qpair *qpair, *tmp_qpair;
|
|
struct spdk_nvme_ctrlr_aer_completion_list *event;
|
|
|
|
STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
|
|
STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
|
|
|
|
assert(req->pid == proc->pid);
|
|
|
|
nvme_free_request(req);
|
|
}
|
|
|
|
/* Remove async event from each process objects event list */
|
|
while (!STAILQ_EMPTY(&proc->async_events)) {
|
|
event = STAILQ_FIRST(&proc->async_events);
|
|
STAILQ_REMOVE_HEAD(&proc->async_events, link);
|
|
spdk_free(event);
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) {
|
|
TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq);
|
|
|
|
/*
|
|
* The process may have been killed while some qpairs were in their
|
|
* completion context. Clear that flag here to allow these IO
|
|
* qpairs to be deleted.
|
|
*/
|
|
qpair->in_completion_context = 0;
|
|
|
|
qpair->no_deletion_notification_needed = 1;
|
|
|
|
spdk_nvme_ctrlr_free_io_qpair(qpair);
|
|
}
|
|
|
|
spdk_free(proc);
|
|
}
|
|
|
|
/**
|
|
* This function will be called when destructing the controller.
|
|
* 1. There is no more admin request on this controller.
|
|
* 2. Clean up any left resource allocation when its associated process is gone.
|
|
*/
|
|
void
|
|
nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc, *tmp;
|
|
|
|
/* Free all the processes' properties and make sure no pending admin IOs */
|
|
TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
|
|
TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
|
|
|
|
assert(STAILQ_EMPTY(&active_proc->active_reqs));
|
|
|
|
spdk_free(active_proc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function will be called when any other process attaches or
|
|
* detaches the controller in order to cleanup those unexpectedly
|
|
* terminated processes.
|
|
* Note: the ctrlr_lock must be held when calling this function.
|
|
*/
|
|
static int
|
|
nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc, *tmp;
|
|
int active_proc_count = 0;
|
|
|
|
TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) {
|
|
if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "process %d terminated unexpected\n", active_proc->pid);
|
|
|
|
TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq);
|
|
|
|
nvme_ctrlr_cleanup_process(active_proc);
|
|
} else {
|
|
active_proc_count++;
|
|
}
|
|
}
|
|
|
|
return active_proc_count;
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
nvme_ctrlr_remove_inactive_proc(ctrlr);
|
|
|
|
active_proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
if (active_proc) {
|
|
active_proc->ref++;
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
int proc_count;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr);
|
|
|
|
active_proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
if (active_proc) {
|
|
active_proc->ref--;
|
|
assert(active_proc->ref >= 0);
|
|
|
|
/*
|
|
* The last active process will be removed at the end of
|
|
* the destruction of the controller.
|
|
*/
|
|
if (active_proc->ref == 0 && proc_count != 1) {
|
|
nvme_ctrlr_remove_process(ctrlr, active_proc);
|
|
}
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
int ref = 0;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
nvme_ctrlr_remove_inactive_proc(ctrlr);
|
|
|
|
TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) {
|
|
ref += active_proc->ref;
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return ref;
|
|
}
|
|
|
|
/**
|
|
* Get the PCI device handle which is only visible to its associated process.
|
|
*/
|
|
struct spdk_pci_device *
|
|
nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
struct spdk_pci_device *devhandle = NULL;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
active_proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
if (active_proc) {
|
|
devhandle = active_proc->devhandle;
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return devhandle;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_process_init_vs_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the VS register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
assert(value <= UINT32_MAX);
|
|
ctrlr->vs.raw = (uint32_t)value;
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_process_init_cap_done(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CAP register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
ctrlr->cap.raw = value;
|
|
nvme_ctrlr_init_cap(ctrlr);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_process_init_check_en(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx;
|
|
enum nvme_ctrlr_state state;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
assert(value <= UINT32_MAX);
|
|
ctrlr->process_init_cc.raw = (uint32_t)value;
|
|
|
|
if (ctrlr->process_init_cc.bits.en) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1\n");
|
|
state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1;
|
|
} else {
|
|
state = NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0;
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, state, nvme_ctrlr_get_ready_timeout(ctrlr));
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_process_init_set_en_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to write the CC register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Wait 2.5 seconds before accessing PCI registers.
|
|
* Not using sleep() to avoid blocking other controller's initialization.
|
|
*/
|
|
if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Applying quirk: delay 2.5 seconds before reading registers\n");
|
|
ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000);
|
|
}
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
|
|
nvme_ctrlr_get_ready_timeout(ctrlr));
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_process_init_set_en_0_read_cc(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx;
|
|
union spdk_nvme_cc_register cc;
|
|
int rc;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CC register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
return;
|
|
}
|
|
|
|
assert(value <= UINT32_MAX);
|
|
cc.raw = (uint32_t)value;
|
|
cc.bits.en = 0;
|
|
ctrlr->process_init_cc.raw = cc.raw;
|
|
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC,
|
|
nvme_ctrlr_get_ready_timeout(ctrlr));
|
|
|
|
rc = nvme_ctrlr_set_cc_async(ctrlr, cc.raw, nvme_ctrlr_process_init_set_en_0, ctrlr);
|
|
if (rc != 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "set_cc() failed\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_process_init_wait_for_ready_1(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx;
|
|
union spdk_nvme_csts_register csts;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
/* While a device is resetting, it may be unable to service MMIO reads
|
|
* temporarily. Allow for this case.
|
|
*/
|
|
if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
|
|
NVME_TIMEOUT_KEEP_EXISTING);
|
|
} else {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
assert(value <= UINT32_MAX);
|
|
csts.raw = (uint32_t)value;
|
|
if (csts.bits.rdy == 1) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0,
|
|
nvme_ctrlr_get_ready_timeout(ctrlr));
|
|
} else {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n");
|
|
nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1,
|
|
NVME_TIMEOUT_KEEP_EXISTING);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_process_init_wait_for_ready_0(void *ctx, uint64_t value, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx;
|
|
union spdk_nvme_csts_register csts;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
/* While a device is resetting, it may be unable to service MMIO reads
|
|
* temporarily. Allow for this case.
|
|
*/
|
|
if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
|
|
NVME_TIMEOUT_KEEP_EXISTING);
|
|
} else {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
assert(value <= UINT32_MAX);
|
|
csts.raw = (uint32_t)value;
|
|
if (csts.bits.rdy == 0) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 0 && CSTS.RDY = 0\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE,
|
|
nvme_ctrlr_get_ready_timeout(ctrlr));
|
|
/*
|
|
* Delay 100us before setting CC.EN = 1. Some NVMe SSDs miss CC.EN getting
|
|
* set to 1 if it is too soon after CSTS.RDY is reported as 0.
|
|
*/
|
|
spdk_delay_us(100);
|
|
} else {
|
|
nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0,
|
|
NVME_TIMEOUT_KEEP_EXISTING);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_process_init_enable_wait_for_ready_1(void *ctx, uint64_t value,
|
|
const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = ctx;
|
|
union spdk_nvme_csts_register csts;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
/* While a device is resetting, it may be unable to service MMIO reads
|
|
* temporarily. Allow for this case.
|
|
*/
|
|
if (!ctrlr->is_failed && ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Failed to read the CSTS register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
|
|
NVME_TIMEOUT_KEEP_EXISTING);
|
|
} else {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to read the CSTS register\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
assert(value <= UINT32_MAX);
|
|
csts.raw = value;
|
|
if (csts.bits.rdy == 1) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n");
|
|
/*
|
|
* The controller has been enabled.
|
|
* Perform the rest of initialization serially.
|
|
*/
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
} else {
|
|
nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1,
|
|
NVME_TIMEOUT_KEEP_EXISTING);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function will be called repeatedly during initialization until the controller is ready.
|
|
*/
|
|
int
|
|
nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint32_t ready_timeout_in_ms;
|
|
uint64_t ticks;
|
|
int rc = 0;
|
|
|
|
ticks = spdk_get_ticks();
|
|
|
|
/*
|
|
* May need to avoid accessing any register on the target controller
|
|
* for a while. Return early without touching the FSM.
|
|
* Check sleep_timeout_tsc > 0 for unit test.
|
|
*/
|
|
if ((ctrlr->sleep_timeout_tsc > 0) &&
|
|
(ticks <= ctrlr->sleep_timeout_tsc)) {
|
|
return 0;
|
|
}
|
|
ctrlr->sleep_timeout_tsc = 0;
|
|
|
|
ready_timeout_in_ms = nvme_ctrlr_get_ready_timeout(ctrlr);
|
|
|
|
/*
|
|
* Check if the current initialization step is done or has timed out.
|
|
*/
|
|
switch (ctrlr->state) {
|
|
case NVME_CTRLR_STATE_INIT_DELAY:
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms);
|
|
if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) {
|
|
/*
|
|
* Controller may need some delay before it's enabled.
|
|
*
|
|
* This is a workaround for an issue where the PCIe-attached NVMe controller
|
|
* is not ready after VFIO reset. We delay the initialization rather than the
|
|
* enabling itself, because this is required only for the very first enabling
|
|
* - directly after a VFIO reset.
|
|
*/
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Adding 2 second delay before initializing the controller\n");
|
|
ctrlr->sleep_timeout_tsc = ticks + (2000 * spdk_get_ticks_hz() / 1000);
|
|
}
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_CONNECT_ADMINQ: /* synonymous with NVME_CTRLR_STATE_INIT */
|
|
rc = nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq);
|
|
if (rc == 0) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ,
|
|
NVME_TIMEOUT_INFINITE);
|
|
} else {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_WAIT_FOR_CONNECT_ADMINQ:
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
|
|
switch (nvme_qpair_get_state(ctrlr->adminq)) {
|
|
case NVME_QPAIR_CONNECTING:
|
|
break;
|
|
case NVME_QPAIR_CONNECTED:
|
|
nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
|
|
/* Fall through */
|
|
case NVME_QPAIR_ENABLED:
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS,
|
|
NVME_TIMEOUT_INFINITE);
|
|
/* Abort any queued requests that were sent while the adminq was connecting
|
|
* to avoid stalling the init process during a reset, as requests don't get
|
|
* resubmitted while the controller is resetting and subsequent commands
|
|
* would get queued too.
|
|
*/
|
|
nvme_qpair_abort_queued_reqs(ctrlr->adminq, 0);
|
|
break;
|
|
default:
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE);
|
|
break;
|
|
}
|
|
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_READ_VS:
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS, NVME_TIMEOUT_INFINITE);
|
|
rc = nvme_ctrlr_get_vs_async(ctrlr, nvme_ctrlr_process_init_vs_done, ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_READ_CAP:
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP, NVME_TIMEOUT_INFINITE);
|
|
rc = nvme_ctrlr_get_cap_async(ctrlr, nvme_ctrlr_process_init_cap_done, ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_CHECK_EN:
|
|
/* Begin the hardware initialization by making sure the controller is disabled. */
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC, ready_timeout_in_ms);
|
|
rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_check_en, ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1:
|
|
/*
|
|
* Controller is currently enabled. We need to disable it to cause a reset.
|
|
*
|
|
* If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready.
|
|
* Wait for the ready bit to be 1 before disabling the controller.
|
|
*/
|
|
nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
|
|
NVME_TIMEOUT_KEEP_EXISTING);
|
|
rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_1, ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_SET_EN_0:
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 0\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC, ready_timeout_in_ms);
|
|
rc = nvme_ctrlr_get_cc_async(ctrlr, nvme_ctrlr_process_init_set_en_0_read_cc, ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0:
|
|
nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS,
|
|
NVME_TIMEOUT_KEEP_EXISTING);
|
|
rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_wait_for_ready_0, ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_ENABLE:
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Setting CC.EN = 1\n");
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC, ready_timeout_in_ms);
|
|
rc = nvme_ctrlr_enable(ctrlr);
|
|
return rc;
|
|
|
|
case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1:
|
|
nvme_ctrlr_set_state_quiet(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS,
|
|
NVME_TIMEOUT_KEEP_EXISTING);
|
|
rc = nvme_ctrlr_get_csts_async(ctrlr, nvme_ctrlr_process_init_enable_wait_for_ready_1,
|
|
ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE:
|
|
nvme_transport_qpair_reset(ctrlr->adminq);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, NVME_TIMEOUT_INFINITE);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_IDENTIFY:
|
|
rc = nvme_ctrlr_identify(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_CONFIGURE_AER:
|
|
rc = nvme_ctrlr_configure_aer(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT:
|
|
rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_IDENTIFY_IOCS_SPECIFIC:
|
|
rc = nvme_ctrlr_identify_iocs_specific(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_GET_ZNS_CMD_EFFECTS_LOG:
|
|
rc = nvme_ctrlr_get_zns_cmd_and_effects_log(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_SET_NUM_QUEUES:
|
|
nvme_ctrlr_update_nvmf_ioccsz(ctrlr);
|
|
rc = nvme_ctrlr_set_num_queues(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS:
|
|
_nvme_ctrlr_identify_active_ns(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_IDENTIFY_NS:
|
|
rc = nvme_ctrlr_identify_namespaces(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS:
|
|
rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_IDENTIFY_NS_IOCS_SPECIFIC:
|
|
rc = nvme_ctrlr_identify_namespaces_iocs_specific(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES:
|
|
rc = nvme_ctrlr_set_supported_log_pages(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_SET_SUPPORTED_INTEL_LOG_PAGES:
|
|
rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES:
|
|
nvme_ctrlr_set_supported_features(ctrlr);
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG,
|
|
ctrlr->opts.admin_timeout_ms);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_SET_DB_BUF_CFG:
|
|
rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_SET_HOST_ID:
|
|
rc = nvme_ctrlr_set_host_id(ctrlr);
|
|
break;
|
|
|
|
case NVME_CTRLR_STATE_READY:
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Ctrlr already in ready state\n");
|
|
return 0;
|
|
|
|
case NVME_CTRLR_STATE_ERROR:
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Ctrlr is in error state\n");
|
|
return -1;
|
|
|
|
case NVME_CTRLR_STATE_READ_VS_WAIT_FOR_VS:
|
|
case NVME_CTRLR_STATE_READ_CAP_WAIT_FOR_CAP:
|
|
case NVME_CTRLR_STATE_CHECK_EN_WAIT_FOR_CC:
|
|
case NVME_CTRLR_STATE_SET_EN_0_WAIT_FOR_CC:
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
|
|
case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0_WAIT_FOR_CSTS:
|
|
case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_CC:
|
|
case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1_WAIT_FOR_CSTS:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_IOCS_SPECIFIC:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_GET_ZNS_CMD_EFFECTS_LOG:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS_IOCS_SPECIFIC:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_SUPPORTED_INTEL_LOG_PAGES:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG:
|
|
case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID:
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
return -1;
|
|
}
|
|
|
|
/* Note: we use the ticks captured when we entered this function.
|
|
* This covers environments where the SPDK process gets swapped out after
|
|
* we tried to advance the state but before we check the timeout here.
|
|
* It is not normal for this to happen, but harmless to handle it in this
|
|
* way.
|
|
*/
|
|
if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE &&
|
|
ticks > ctrlr->state_timeout_tsc) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Initialization timed out in state %d (%s)\n",
|
|
ctrlr->state, nvme_ctrlr_state_string(ctrlr->state));
|
|
return -1;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx)
|
|
{
|
|
pthread_mutexattr_t attr;
|
|
int rc = 0;
|
|
|
|
if (pthread_mutexattr_init(&attr)) {
|
|
return -1;
|
|
}
|
|
if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) ||
|
|
#ifndef __FreeBSD__
|
|
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
|
|
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
|
|
#endif
|
|
pthread_mutex_init(mtx, &attr)) {
|
|
rc = -1;
|
|
}
|
|
pthread_mutexattr_destroy(&attr);
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE);
|
|
} else {
|
|
nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE);
|
|
}
|
|
|
|
if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "admin_queue_size %u exceeds max defined by NVMe spec, use max value\n",
|
|
ctrlr->opts.admin_queue_size);
|
|
ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES;
|
|
}
|
|
|
|
if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) {
|
|
NVME_CTRLR_ERRLOG(ctrlr,
|
|
"admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n",
|
|
ctrlr->opts.admin_queue_size);
|
|
ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES;
|
|
}
|
|
|
|
ctrlr->flags = 0;
|
|
ctrlr->free_io_qids = NULL;
|
|
ctrlr->is_resetting = false;
|
|
ctrlr->is_failed = false;
|
|
ctrlr->is_destructed = false;
|
|
|
|
TAILQ_INIT(&ctrlr->active_io_qpairs);
|
|
STAILQ_INIT(&ctrlr->queued_aborts);
|
|
ctrlr->outstanding_aborts = 0;
|
|
|
|
ctrlr->ana_log_page = NULL;
|
|
ctrlr->ana_log_page_size = 0;
|
|
|
|
rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
TAILQ_INIT(&ctrlr->active_procs);
|
|
STAILQ_INIT(&ctrlr->register_operations);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
|
|
ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED;
|
|
}
|
|
|
|
ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin);
|
|
|
|
/* For now, always select page_size == min_page_size. */
|
|
ctrlr->page_size = ctrlr->min_page_size;
|
|
|
|
ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES);
|
|
ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES);
|
|
if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
|
|
ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
|
|
/* If the user specifically set an IO queue size different than the
|
|
* default, use that value. Otherwise overwrite with the quirked value.
|
|
* This allows this quirk to be overridden when necessary.
|
|
* However, cap.mqes still needs to be respected.
|
|
*/
|
|
ctrlr->opts.io_queue_size = DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK;
|
|
}
|
|
ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u);
|
|
|
|
ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size);
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
pthread_mutex_destroy(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_destruct_async(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct nvme_ctrlr_detach_ctx *ctx)
|
|
{
|
|
struct spdk_nvme_qpair *qpair, *tmp;
|
|
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Prepare to destruct SSD\n");
|
|
|
|
ctrlr->is_destructed = true;
|
|
|
|
spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
|
|
nvme_ctrlr_abort_queued_aborts(ctrlr);
|
|
nvme_transport_admin_qpair_abort_aers(ctrlr->adminq);
|
|
|
|
TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) {
|
|
spdk_nvme_ctrlr_free_io_qpair(qpair);
|
|
}
|
|
|
|
nvme_ctrlr_free_doorbell_buffer(ctrlr);
|
|
nvme_ctrlr_free_iocs_specific_data(ctrlr);
|
|
|
|
nvme_ctrlr_shutdown_async(ctrlr, ctx);
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_destruct_poll_async(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct nvme_ctrlr_detach_ctx *ctx)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (!ctx->shutdown_complete) {
|
|
rc = nvme_ctrlr_shutdown_poll_async(ctrlr, ctx);
|
|
if (rc == -EAGAIN) {
|
|
return -EAGAIN;
|
|
}
|
|
/* Destruct ctrlr forcefully for any other error. */
|
|
}
|
|
|
|
if (ctx->cb_fn) {
|
|
ctx->cb_fn(ctrlr);
|
|
}
|
|
|
|
nvme_ctrlr_destruct_namespaces(ctrlr);
|
|
spdk_free(ctrlr->active_ns_list);
|
|
ctrlr->active_ns_list = NULL;
|
|
ctrlr->active_ns_count = 0;
|
|
|
|
spdk_bit_array_free(&ctrlr->free_io_qids);
|
|
|
|
free(ctrlr->ana_log_page);
|
|
free(ctrlr->copied_ana_desc);
|
|
ctrlr->ana_log_page = NULL;
|
|
ctrlr->copied_ana_desc = NULL;
|
|
ctrlr->ana_log_page_size = 0;
|
|
|
|
nvme_transport_ctrlr_destruct(ctrlr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_ctrlr_detach_ctx ctx = { .ctrlr = ctrlr };
|
|
int rc;
|
|
|
|
nvme_ctrlr_destruct_async(ctrlr, &ctx);
|
|
|
|
while (1) {
|
|
rc = nvme_ctrlr_destruct_poll_async(ctrlr, &ctx);
|
|
if (rc != -EAGAIN) {
|
|
break;
|
|
}
|
|
nvme_delay(1000);
|
|
}
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct nvme_request *req)
|
|
{
|
|
return nvme_qpair_submit_request(ctrlr->adminq, req);
|
|
}
|
|
|
|
static void
|
|
nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
/* Do nothing */
|
|
}
|
|
|
|
/*
|
|
* Check if we need to send a Keep Alive command.
|
|
* Caller must hold ctrlr->ctrlr_lock.
|
|
*/
|
|
static int
|
|
nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint64_t now;
|
|
struct nvme_request *req;
|
|
struct spdk_nvme_cmd *cmd;
|
|
int rc = 0;
|
|
|
|
now = spdk_get_ticks();
|
|
if (now < ctrlr->next_keep_alive_tick) {
|
|
return rc;
|
|
}
|
|
|
|
req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL);
|
|
if (req == NULL) {
|
|
return rc;
|
|
}
|
|
|
|
cmd = &req->cmd;
|
|
cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE;
|
|
|
|
rc = nvme_ctrlr_submit_admin_request(ctrlr, req);
|
|
if (rc != 0) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Submitting Keep Alive failed\n");
|
|
rc = -ENXIO;
|
|
}
|
|
|
|
ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks;
|
|
return rc;
|
|
}
|
|
|
|
int32_t
|
|
spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int32_t num_completions;
|
|
int32_t rc;
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
if (ctrlr->keep_alive_interval_ticks) {
|
|
rc = nvme_ctrlr_keep_alive(ctrlr);
|
|
if (rc) {
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
rc = nvme_io_msg_process(ctrlr);
|
|
if (rc < 0) {
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return rc;
|
|
}
|
|
num_completions = rc;
|
|
|
|
rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0);
|
|
|
|
/* Each process has an async list, complete the ones for this process object */
|
|
active_proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
if (active_proc) {
|
|
nvme_ctrlr_complete_queued_async_events(ctrlr);
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
if (rc < 0) {
|
|
num_completions = rc;
|
|
} else {
|
|
num_completions += rc;
|
|
}
|
|
|
|
return num_completions;
|
|
}
|
|
|
|
const struct spdk_nvme_ctrlr_data *
|
|
spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return &ctrlr->cdata;
|
|
}
|
|
|
|
union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_csts_register csts;
|
|
|
|
if (nvme_ctrlr_get_csts(ctrlr, &csts)) {
|
|
csts.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
|
|
}
|
|
return csts;
|
|
}
|
|
|
|
union spdk_nvme_cc_register spdk_nvme_ctrlr_get_regs_cc(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_cc_register cc;
|
|
|
|
if (nvme_ctrlr_get_cc(ctrlr, &cc)) {
|
|
cc.raw = SPDK_NVME_INVALID_REGISTER_VALUE;
|
|
}
|
|
return cc;
|
|
}
|
|
|
|
union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->cap;
|
|
}
|
|
|
|
union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->vs;
|
|
}
|
|
|
|
union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_cmbsz_register cmbsz;
|
|
|
|
if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) {
|
|
cmbsz.raw = 0;
|
|
}
|
|
|
|
return cmbsz;
|
|
}
|
|
|
|
union spdk_nvme_pmrcap_register spdk_nvme_ctrlr_get_regs_pmrcap(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_pmrcap_register pmrcap;
|
|
|
|
if (nvme_ctrlr_get_pmrcap(ctrlr, &pmrcap)) {
|
|
pmrcap.raw = 0;
|
|
}
|
|
|
|
return pmrcap;
|
|
}
|
|
|
|
union spdk_nvme_bpinfo_register spdk_nvme_ctrlr_get_regs_bpinfo(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
union spdk_nvme_bpinfo_register bpinfo;
|
|
|
|
if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
|
|
bpinfo.raw = 0;
|
|
}
|
|
|
|
return bpinfo;
|
|
}
|
|
|
|
uint64_t
|
|
spdk_nvme_ctrlr_get_pmrsz(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->pmr_size;
|
|
}
|
|
|
|
uint32_t
|
|
spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->num_ns;
|
|
}
|
|
|
|
static int32_t
|
|
nvme_ctrlr_active_ns_idx(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
|
|
{
|
|
int32_t result = -1;
|
|
|
|
if (ctrlr->active_ns_list == NULL ||
|
|
ctrlr->active_ns_count == 0 ||
|
|
nsid == 0 ||
|
|
nsid > ctrlr->cdata.nn) {
|
|
return result;
|
|
}
|
|
|
|
int32_t lower = 0;
|
|
int32_t upper = ctrlr->active_ns_count - 1;
|
|
int32_t mid;
|
|
|
|
while (lower <= upper) {
|
|
mid = lower + (upper - lower) / 2;
|
|
if (ctrlr->active_ns_list[mid] == nsid) {
|
|
result = mid;
|
|
break;
|
|
} else {
|
|
if (ctrlr->active_ns_list[mid] != 0 && ctrlr->active_ns_list[mid] < nsid) {
|
|
lower = mid + 1;
|
|
} else {
|
|
upper = mid - 1;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool
|
|
spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
|
|
{
|
|
return nvme_ctrlr_active_ns_idx(ctrlr, nsid) != -1;
|
|
}
|
|
|
|
uint32_t
|
|
spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->active_ns_list ? ctrlr->active_ns_list[0] : 0;
|
|
}
|
|
|
|
uint32_t
|
|
spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid)
|
|
{
|
|
int32_t nsid_idx = nvme_ctrlr_active_ns_idx(ctrlr, prev_nsid);
|
|
if (nsid_idx >= 0 && (uint32_t)(nsid_idx + 1) < ctrlr->active_ns_count) {
|
|
return ctrlr->active_ns_list[nsid_idx + 1];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct spdk_nvme_ns *
|
|
spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
|
|
{
|
|
if (nsid < 1 || nsid > ctrlr->num_ns) {
|
|
return NULL;
|
|
}
|
|
|
|
return &ctrlr->ns[nsid - 1];
|
|
}
|
|
|
|
struct spdk_pci_device *
|
|
spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (ctrlr == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
|
|
return NULL;
|
|
}
|
|
|
|
return nvme_ctrlr_proc_get_devhandle(ctrlr);
|
|
}
|
|
|
|
uint32_t
|
|
spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->max_xfer_size;
|
|
}
|
|
|
|
void
|
|
spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr,
|
|
spdk_nvme_aer_cb aer_cb_fn,
|
|
void *aer_cb_arg)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
active_proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
if (active_proc) {
|
|
active_proc->aer_cb_fn = aer_cb_fn;
|
|
active_proc->aer_cb_arg = aer_cb_arg;
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
void
|
|
spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr,
|
|
uint64_t timeout_io_us, uint64_t timeout_admin_us,
|
|
spdk_nvme_timeout_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct spdk_nvme_ctrlr_process *active_proc;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
active_proc = nvme_ctrlr_get_current_process(ctrlr);
|
|
if (active_proc) {
|
|
active_proc->timeout_io_ticks = timeout_io_us * spdk_get_ticks_hz() / 1000000ULL;
|
|
active_proc->timeout_admin_ticks = timeout_admin_us * spdk_get_ticks_hz() / 1000000ULL;
|
|
active_proc->timeout_cb_fn = cb_fn;
|
|
active_proc->timeout_cb_arg = cb_arg;
|
|
}
|
|
|
|
ctrlr->timeout_enabled = true;
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
bool
|
|
spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page)
|
|
{
|
|
/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
|
|
SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
|
|
return ctrlr->log_page_supported[log_page];
|
|
}
|
|
|
|
bool
|
|
spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code)
|
|
{
|
|
/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
|
|
SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
|
|
return ctrlr->feature_supported[feature_code];
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
|
|
struct spdk_nvme_ctrlr_list *payload)
|
|
{
|
|
struct nvme_completion_poll_status *status;
|
|
int res;
|
|
|
|
if (nsid == 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload,
|
|
nvme_completion_poll_cb, status);
|
|
if (res) {
|
|
free(status);
|
|
return res;
|
|
}
|
|
if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_attach_ns failed!\n");
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
free(status);
|
|
|
|
res = nvme_ctrlr_identify_active_ns(ctrlr);
|
|
if (res) {
|
|
return res;
|
|
}
|
|
|
|
return nvme_ctrlr_construct_namespace(ctrlr, nsid);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
|
|
struct spdk_nvme_ctrlr_list *payload)
|
|
{
|
|
struct nvme_completion_poll_status *status;
|
|
int res;
|
|
|
|
if (nsid == 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload,
|
|
nvme_completion_poll_cb, status);
|
|
if (res) {
|
|
free(status);
|
|
return res;
|
|
}
|
|
if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_detach_ns failed!\n");
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
free(status);
|
|
|
|
res = nvme_ctrlr_identify_active_ns(ctrlr);
|
|
if (res) {
|
|
return res;
|
|
}
|
|
|
|
return nvme_ctrlr_destruct_namespace(ctrlr, nsid);
|
|
}
|
|
|
|
uint32_t
|
|
spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload)
|
|
{
|
|
struct nvme_completion_poll_status *status;
|
|
int res;
|
|
uint32_t nsid;
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
|
|
return 0;
|
|
}
|
|
|
|
res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status);
|
|
if (res) {
|
|
free(status);
|
|
return 0;
|
|
}
|
|
if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_create_ns failed!\n");
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
nsid = status->cpl.cdw0;
|
|
free(status);
|
|
|
|
assert(nsid > 0);
|
|
|
|
/* Return the namespace ID that was created */
|
|
return nsid;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
|
|
{
|
|
struct nvme_completion_poll_status *status;
|
|
int res;
|
|
|
|
if (nsid == 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status);
|
|
if (res) {
|
|
free(status);
|
|
return res;
|
|
}
|
|
if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_delete_ns failed!\n");
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
free(status);
|
|
|
|
res = nvme_ctrlr_identify_active_ns(ctrlr);
|
|
if (res) {
|
|
return res;
|
|
}
|
|
|
|
return nvme_ctrlr_destruct_namespace(ctrlr, nsid);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid,
|
|
struct spdk_nvme_format *format)
|
|
{
|
|
struct nvme_completion_poll_status *status;
|
|
int res;
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb,
|
|
status);
|
|
if (res) {
|
|
free(status);
|
|
return res;
|
|
}
|
|
if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_format failed!\n");
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
free(status);
|
|
|
|
return spdk_nvme_ctrlr_reset(ctrlr);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size,
|
|
int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status)
|
|
{
|
|
struct spdk_nvme_fw_commit fw_commit;
|
|
struct nvme_completion_poll_status *status;
|
|
int res;
|
|
unsigned int size_remaining;
|
|
unsigned int offset;
|
|
unsigned int transfer;
|
|
void *p;
|
|
|
|
if (!completion_status) {
|
|
return -EINVAL;
|
|
}
|
|
memset(completion_status, 0, sizeof(struct spdk_nvme_status));
|
|
if (size % 4) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid size!\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG
|
|
* and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG
|
|
*/
|
|
if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) &&
|
|
(commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_update_firmware invalid command!\n");
|
|
return -1;
|
|
}
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Firmware download */
|
|
size_remaining = size;
|
|
offset = 0;
|
|
p = payload;
|
|
|
|
while (size_remaining > 0) {
|
|
transfer = spdk_min(size_remaining, ctrlr->min_page_size);
|
|
|
|
memset(status, 0, sizeof(*status));
|
|
res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p,
|
|
nvme_completion_poll_cb,
|
|
status);
|
|
if (res) {
|
|
free(status);
|
|
return res;
|
|
}
|
|
|
|
if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_fw_image_download failed!\n");
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
p += transfer;
|
|
offset += transfer;
|
|
size_remaining -= transfer;
|
|
}
|
|
|
|
/* Firmware commit */
|
|
memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
|
|
fw_commit.fs = slot;
|
|
fw_commit.ca = commit_action;
|
|
|
|
memset(status, 0, sizeof(*status));
|
|
res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb,
|
|
status);
|
|
if (res) {
|
|
free(status);
|
|
return res;
|
|
}
|
|
|
|
res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock);
|
|
|
|
memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status));
|
|
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
|
|
if (res) {
|
|
if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC ||
|
|
completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) {
|
|
if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC &&
|
|
completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) {
|
|
NVME_CTRLR_NOTICELOG(ctrlr,
|
|
"firmware activation requires conventional reset to be performed. !\n");
|
|
} else {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
|
|
return spdk_nvme_ctrlr_reset(ctrlr);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc, size;
|
|
union spdk_nvme_cmbsz_register cmbsz;
|
|
|
|
cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
|
|
|
|
if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4));
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
rc = nvme_transport_ctrlr_reserve_cmb(ctrlr);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
void *
|
|
spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
|
|
{
|
|
void *buf;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
buf = nvme_transport_ctrlr_map_cmb(ctrlr, size);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return buf;
|
|
}
|
|
|
|
void
|
|
spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
nvme_transport_ctrlr_unmap_cmb(ctrlr);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_enable_pmr(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
rc = nvme_transport_ctrlr_enable_pmr(ctrlr);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_disable_pmr(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
rc = nvme_transport_ctrlr_disable_pmr(ctrlr);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void *
|
|
spdk_nvme_ctrlr_map_pmr(struct spdk_nvme_ctrlr *ctrlr, size_t *size)
|
|
{
|
|
void *buf;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
buf = nvme_transport_ctrlr_map_pmr(ctrlr, size);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return buf;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_unmap_pmr(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
rc = nvme_transport_ctrlr_unmap_pmr(ctrlr);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int spdk_nvme_ctrlr_read_boot_partition_start(struct spdk_nvme_ctrlr *ctrlr, void *payload,
|
|
uint32_t bprsz, uint32_t bprof, uint32_t bpid)
|
|
{
|
|
union spdk_nvme_bprsel_register bprsel;
|
|
union spdk_nvme_bpinfo_register bpinfo;
|
|
uint64_t bpmbl, bpmb_size;
|
|
|
|
if (ctrlr->cap.bits.bps == 0) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (bpinfo.bits.brs == SPDK_NVME_BRS_READ_IN_PROGRESS) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read already initiated\n");
|
|
return -EALREADY;
|
|
}
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
bpmb_size = bprsz * 4096;
|
|
bpmbl = spdk_vtophys(payload, &bpmb_size);
|
|
if (bpmbl == SPDK_VTOPHYS_ERROR) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_vtophys of bpmbl failed\n");
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (bpmb_size != bprsz * 4096) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition buffer is not physically contiguous\n");
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (nvme_ctrlr_set_bpmbl(ctrlr, bpmbl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "set_bpmbl() failed\n");
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return -EIO;
|
|
}
|
|
|
|
bprsel.bits.bpid = bpid;
|
|
bprsel.bits.bprof = bprof;
|
|
bprsel.bits.bprsz = bprsz;
|
|
|
|
if (nvme_ctrlr_set_bprsel(ctrlr, &bprsel)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "set_bprsel() failed\n");
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return -EIO;
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return 0;
|
|
}
|
|
|
|
int spdk_nvme_ctrlr_read_boot_partition_poll(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
int rc = 0;
|
|
union spdk_nvme_bpinfo_register bpinfo;
|
|
|
|
if (nvme_ctrlr_get_bpinfo(ctrlr, &bpinfo)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "get bpinfo failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
switch (bpinfo.bits.brs) {
|
|
case SPDK_NVME_BRS_NO_READ:
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Boot Partition read not initiated\n");
|
|
rc = -EINVAL;
|
|
break;
|
|
case SPDK_NVME_BRS_READ_IN_PROGRESS:
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition read in progress\n");
|
|
rc = -EAGAIN;
|
|
break;
|
|
case SPDK_NVME_BRS_READ_ERROR:
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Error completing Boot Partition read\n");
|
|
rc = -EIO;
|
|
break;
|
|
case SPDK_NVME_BRS_READ_SUCCESS:
|
|
NVME_CTRLR_INFOLOG(ctrlr, "Boot Partition read completed successfully\n");
|
|
break;
|
|
default:
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition read status\n");
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
nvme_write_boot_partition_cb(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
int res;
|
|
struct spdk_nvme_ctrlr *ctrlr = arg;
|
|
struct spdk_nvme_fw_commit fw_commit;
|
|
struct spdk_nvme_cpl err_cpl =
|
|
{.status = {.sct = SPDK_NVME_SCT_GENERIC, .sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR }};
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Write Boot Partition failed\n");
|
|
ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
|
|
return;
|
|
}
|
|
|
|
if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADING) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Downloading at Offset %d Success\n", ctrlr->fw_offset);
|
|
ctrlr->fw_payload += ctrlr->fw_transfer_size;
|
|
ctrlr->fw_offset += ctrlr->fw_transfer_size;
|
|
ctrlr->fw_size_remaining -= ctrlr->fw_transfer_size;
|
|
ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
|
|
res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
|
|
ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
|
|
if (res) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_image_download failed!\n");
|
|
ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
|
|
return;
|
|
}
|
|
|
|
if (ctrlr->fw_transfer_size < ctrlr->min_page_size) {
|
|
ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADED;
|
|
}
|
|
} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_DOWNLOADED) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Download Success\n");
|
|
memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
|
|
fw_commit.bpid = ctrlr->bpid;
|
|
fw_commit.ca = SPDK_NVME_FW_COMMIT_REPLACE_BOOT_PARTITION;
|
|
res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
|
|
nvme_write_boot_partition_cb, ctrlr);
|
|
if (res) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
|
|
NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
|
|
ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
|
|
return;
|
|
}
|
|
|
|
ctrlr->bp_ws = SPDK_NVME_BP_WS_REPLACE;
|
|
} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_REPLACE) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Replacement Success\n");
|
|
memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit));
|
|
fw_commit.bpid = ctrlr->bpid;
|
|
fw_commit.ca = SPDK_NVME_FW_COMMIT_ACTIVATE_BOOT_PARTITION;
|
|
res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit,
|
|
nvme_write_boot_partition_cb, ctrlr);
|
|
if (res) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "nvme_ctrlr_cmd_fw_commit failed!\n");
|
|
NVME_CTRLR_ERRLOG(ctrlr, "commit action: %d\n", fw_commit.ca);
|
|
ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
|
|
return;
|
|
}
|
|
|
|
ctrlr->bp_ws = SPDK_NVME_BP_WS_ACTIVATE;
|
|
} else if (ctrlr->bp_ws == SPDK_NVME_BP_WS_ACTIVATE) {
|
|
NVME_CTRLR_DEBUGLOG(ctrlr, "Boot Partition Activation Success\n");
|
|
ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, cpl);
|
|
} else {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Invalid Boot Partition write state\n");
|
|
ctrlr->bp_write_cb_fn(ctrlr->bp_write_cb_arg, &err_cpl);
|
|
return;
|
|
}
|
|
}
|
|
|
|
int spdk_nvme_ctrlr_write_boot_partition(struct spdk_nvme_ctrlr *ctrlr,
|
|
void *payload, uint32_t size, uint32_t bpid,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
int res;
|
|
|
|
if (ctrlr->cap.bits.bps == 0) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
ctrlr->bp_ws = SPDK_NVME_BP_WS_DOWNLOADING;
|
|
ctrlr->bpid = bpid;
|
|
ctrlr->bp_write_cb_fn = cb_fn;
|
|
ctrlr->bp_write_cb_arg = cb_arg;
|
|
ctrlr->fw_offset = 0;
|
|
ctrlr->fw_size_remaining = size;
|
|
ctrlr->fw_payload = payload;
|
|
ctrlr->fw_transfer_size = spdk_min(ctrlr->fw_size_remaining, ctrlr->min_page_size);
|
|
|
|
res = nvme_ctrlr_cmd_fw_image_download(ctrlr, ctrlr->fw_transfer_size, ctrlr->fw_offset,
|
|
ctrlr->fw_payload, nvme_write_boot_partition_cb, ctrlr);
|
|
|
|
return res;
|
|
}
|
|
|
|
bool
|
|
spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
assert(ctrlr);
|
|
|
|
return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN,
|
|
strlen(SPDK_NVMF_DISCOVERY_NQN));
|
|
}
|
|
|
|
bool
|
|
spdk_nvme_ctrlr_is_fabrics(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
assert(ctrlr);
|
|
|
|
return spdk_nvme_trtype_is_fabrics(ctrlr->trid.trtype);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
|
|
uint16_t spsp, uint8_t nssf, void *payload, size_t size)
|
|
{
|
|
struct nvme_completion_poll_status *status;
|
|
int res;
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size,
|
|
nvme_completion_poll_cb, status);
|
|
if (res) {
|
|
free(status);
|
|
return res;
|
|
}
|
|
if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_receive failed!\n");
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
free(status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp,
|
|
uint16_t spsp, uint8_t nssf, void *payload, size_t size)
|
|
{
|
|
struct nvme_completion_poll_status *status;
|
|
int res;
|
|
|
|
status = calloc(1, sizeof(*status));
|
|
if (!status) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "Failed to allocate status tracker\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size,
|
|
nvme_completion_poll_cb,
|
|
status);
|
|
if (res) {
|
|
free(status);
|
|
return res;
|
|
}
|
|
if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "spdk_nvme_ctrlr_cmd_security_send failed!\n");
|
|
if (!status->timed_out) {
|
|
free(status);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
|
|
free(status);
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint64_t
|
|
spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->flags;
|
|
}
|
|
|
|
const struct spdk_nvme_transport_id *
|
|
spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return &ctrlr->trid;
|
|
}
|
|
|
|
int32_t
|
|
spdk_nvme_ctrlr_alloc_qid(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint32_t qid;
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1);
|
|
if (qid > ctrlr->opts.num_io_queues) {
|
|
NVME_CTRLR_ERRLOG(ctrlr, "No free I/O queue IDs\n");
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return -1;
|
|
}
|
|
|
|
spdk_bit_array_clear(ctrlr->free_io_qids, qid);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
return qid;
|
|
}
|
|
|
|
void
|
|
spdk_nvme_ctrlr_free_qid(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid)
|
|
{
|
|
assert(qid <= ctrlr->opts.num_io_queues);
|
|
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
|
|
if (spdk_likely(ctrlr->free_io_qids)) {
|
|
spdk_bit_array_set(ctrlr->free_io_qids, qid);
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_ctrlr_get_memory_domains(const struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_memory_domain **domains, int array_size)
|
|
{
|
|
return nvme_transport_ctrlr_get_memory_domains(ctrlr, domains, array_size);
|
|
}
|