numam-spdk/lib/nvme/nvme_rdma.c
Changpeng Liu d9e865a885 nvme: report SQ deletion code to outstanding admin requests
RDMA transport will report SPDK_NVME_SC_ABORTED_POWER_LOSS code
when fail the admin queue, however, SPDK_NVME_SC_ABORTED_SQ_DELETION
makes more sense here, because we know we are going to shutdown
the controller.

Fix issue #568.

Change-Id: I31da095ec92c06079511d89cc2743654ba2c001b
Signed-off-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-on: https://review.gerrithub.io/c/440132
Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
2019-01-17 21:04:43 +00:00

1746 lines
46 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe over RDMA transport
*/
#include "spdk/stdinc.h"
#include <infiniband/verbs.h>
#include <rdma/rdma_cma.h>
#include <rdma/rdma_verbs.h>
#include "spdk/assert.h"
#include "spdk/log.h"
#include "spdk/trace.h"
#include "spdk/event.h"
#include "spdk/queue.h"
#include "spdk/nvme.h"
#include "spdk/nvmf_spec.h"
#include "spdk/string.h"
#include "spdk/endian.h"
#include "spdk/likely.h"
#include "nvme_internal.h"
#define NVME_RDMA_TIME_OUT_IN_MS 2000
#define NVME_RDMA_RW_BUFFER_SIZE 131072
/*
* NVME RDMA qpair Resource Defaults
*/
#define NVME_RDMA_DEFAULT_TX_SGE 2
#define NVME_RDMA_DEFAULT_RX_SGE 1
/* Max number of NVMe-oF SGL descriptors supported by the host */
#define NVME_RDMA_MAX_SGL_DESCRIPTORS 16
struct spdk_nvmf_cmd {
struct spdk_nvme_cmd cmd;
struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
};
struct spdk_nvme_rdma_hooks g_nvme_hooks = {};
/* Mapping from virtual address to ibv_mr pointer for a protection domain */
struct spdk_nvme_rdma_mr_map {
struct ibv_pd *pd;
struct spdk_mem_map *map;
uint64_t ref;
LIST_ENTRY(spdk_nvme_rdma_mr_map) link;
};
/* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
struct nvme_rdma_ctrlr {
struct spdk_nvme_ctrlr ctrlr;
struct ibv_pd *pd;
};
/* NVMe RDMA qpair extensions for spdk_nvme_qpair */
struct nvme_rdma_qpair {
struct spdk_nvme_qpair qpair;
struct rdma_cm_id *cm_id;
struct ibv_cq *cq;
struct spdk_nvme_rdma_req *rdma_reqs;
uint32_t max_send_sge;
uint32_t max_recv_sge;
uint16_t num_entries;
/* Parallel arrays of response buffers + response SGLs of size num_entries */
struct ibv_sge *rsp_sgls;
struct spdk_nvme_cpl *rsps;
struct ibv_recv_wr *rsp_recv_wrs;
/* Memory region describing all rsps for this qpair */
struct ibv_mr *rsp_mr;
/*
* Array of num_entries NVMe commands registered as RDMA message buffers.
* Indexed by rdma_req->id.
*/
struct spdk_nvmf_cmd *cmds;
/* Memory region describing all cmds for this qpair */
struct ibv_mr *cmd_mr;
struct spdk_nvme_rdma_mr_map *mr_map;
TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs;
TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs;
/* Placed at the end of the struct since it is not used frequently */
struct rdma_event_channel *cm_channel;
};
struct spdk_nvme_rdma_req {
int id;
struct ibv_send_wr send_wr;
struct nvme_request *req;
struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
TAILQ_ENTRY(spdk_nvme_rdma_req) link;
};
static const char *rdma_cm_event_str[] = {
"RDMA_CM_EVENT_ADDR_RESOLVED",
"RDMA_CM_EVENT_ADDR_ERROR",
"RDMA_CM_EVENT_ROUTE_RESOLVED",
"RDMA_CM_EVENT_ROUTE_ERROR",
"RDMA_CM_EVENT_CONNECT_REQUEST",
"RDMA_CM_EVENT_CONNECT_RESPONSE",
"RDMA_CM_EVENT_CONNECT_ERROR",
"RDMA_CM_EVENT_UNREACHABLE",
"RDMA_CM_EVENT_REJECTED",
"RDMA_CM_EVENT_ESTABLISHED",
"RDMA_CM_EVENT_DISCONNECTED",
"RDMA_CM_EVENT_DEVICE_REMOVAL",
"RDMA_CM_EVENT_MULTICAST_JOIN",
"RDMA_CM_EVENT_MULTICAST_ERROR",
"RDMA_CM_EVENT_ADDR_CHANGE",
"RDMA_CM_EVENT_TIMEWAIT_EXIT"
};
static LIST_HEAD(, spdk_nvme_rdma_mr_map) g_rdma_mr_maps = LIST_HEAD_INITIALIZER(&g_rdma_mr_maps);
static pthread_mutex_t g_rdma_mr_maps_mutex = PTHREAD_MUTEX_INITIALIZER;
static int nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair);
static inline struct nvme_rdma_qpair *
nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
{
assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
}
static inline struct nvme_rdma_ctrlr *
nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
}
static struct spdk_nvme_rdma_req *
nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_rdma_req *rdma_req;
rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
if (rdma_req) {
TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
}
return rdma_req;
}
static void
nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
{
TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
}
static void
nvme_rdma_req_complete(struct nvme_request *req,
struct spdk_nvme_cpl *rsp)
{
nvme_complete_request(req, rsp);
nvme_free_request(req);
}
static const char *
nvme_rdma_cm_event_str_get(uint32_t event)
{
if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
return rdma_cm_event_str[event];
} else {
return "Undefined";
}
}
static struct rdma_cm_event *
nvme_rdma_get_event(struct rdma_event_channel *channel,
enum rdma_cm_event_type evt)
{
struct rdma_cm_event *event;
int rc;
rc = rdma_get_cm_event(channel, &event);
if (rc < 0) {
SPDK_ERRLOG("Failed to get event from CM event channel. Error %d (%s)\n",
errno, spdk_strerror(errno));
return NULL;
}
if (event->event != evt) {
SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
nvme_rdma_cm_event_str_get(evt),
nvme_rdma_cm_event_str_get(event->event), event->event, event->status);
rdma_ack_cm_event(event);
return NULL;
}
return event;
}
static int
nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
{
int rc;
struct ibv_qp_init_attr attr;
struct ibv_device_attr dev_attr;
struct nvme_rdma_ctrlr *rctrlr;
rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr);
if (rc != 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
return -1;
}
rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0);
if (!rqpair->cq) {
SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
return -1;
}
rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
if (g_nvme_hooks.get_ibv_pd) {
rctrlr->pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs);
} else {
rctrlr->pd = NULL;
}
memset(&attr, 0, sizeof(struct ibv_qp_init_attr));
attr.qp_type = IBV_QPT_RC;
attr.send_cq = rqpair->cq;
attr.recv_cq = rqpair->cq;
attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */
attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */
attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge);
attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge);
rc = rdma_create_qp(rqpair->cm_id, rctrlr->pd, &attr);
if (rc) {
SPDK_ERRLOG("rdma_create_qp failed\n");
return -1;
}
/* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */
rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge);
rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge);
rctrlr->pd = rqpair->cm_id->qp->pd;
rqpair->cm_id->context = &rqpair->qpair;
return 0;
}
#define nvme_rdma_trace_ibv_sge(sg_list) \
if (sg_list) { \
SPDK_DEBUGLOG(SPDK_LOG_NVME, "local addr %p length 0x%x lkey 0x%x\n", \
(void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
}
static int
nvme_rdma_post_recv(struct nvme_rdma_qpair *rqpair, uint16_t rsp_idx)
{
struct ibv_recv_wr *wr, *bad_wr = NULL;
int rc;
wr = &rqpair->rsp_recv_wrs[rsp_idx];
nvme_rdma_trace_ibv_sge(wr->sg_list);
rc = ibv_post_recv(rqpair->cm_id->qp, wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Failure posting rdma recv, rc = 0x%x\n", rc);
}
return rc;
}
static void
nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair)
{
if (rqpair->rsp_mr && rdma_dereg_mr(rqpair->rsp_mr)) {
SPDK_ERRLOG("Unable to de-register rsp_mr\n");
}
rqpair->rsp_mr = NULL;
free(rqpair->rsps);
rqpair->rsps = NULL;
free(rqpair->rsp_sgls);
rqpair->rsp_sgls = NULL;
free(rqpair->rsp_recv_wrs);
rqpair->rsp_recv_wrs = NULL;
}
static int
nvme_rdma_alloc_rsps(struct nvme_rdma_qpair *rqpair)
{
uint16_t i;
rqpair->rsp_mr = NULL;
rqpair->rsps = NULL;
rqpair->rsp_recv_wrs = NULL;
rqpair->rsp_sgls = calloc(rqpair->num_entries, sizeof(*rqpair->rsp_sgls));
if (!rqpair->rsp_sgls) {
SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
goto fail;
}
rqpair->rsp_recv_wrs = calloc(rqpair->num_entries,
sizeof(*rqpair->rsp_recv_wrs));
if (!rqpair->rsp_recv_wrs) {
SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
goto fail;
}
rqpair->rsps = calloc(rqpair->num_entries, sizeof(*rqpair->rsps));
if (!rqpair->rsps) {
SPDK_ERRLOG("can not allocate rdma rsps\n");
goto fail;
}
rqpair->rsp_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->rsps,
rqpair->num_entries * sizeof(*rqpair->rsps));
if (rqpair->rsp_mr == NULL) {
SPDK_ERRLOG("Unable to register rsp_mr\n");
goto fail;
}
for (i = 0; i < rqpair->num_entries; i++) {
struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i];
rsp_sgl->addr = (uint64_t)&rqpair->rsps[i];
rsp_sgl->length = sizeof(rqpair->rsps[i]);
rsp_sgl->lkey = rqpair->rsp_mr->lkey;
rqpair->rsp_recv_wrs[i].wr_id = i;
rqpair->rsp_recv_wrs[i].next = NULL;
rqpair->rsp_recv_wrs[i].sg_list = rsp_sgl;
rqpair->rsp_recv_wrs[i].num_sge = 1;
if (nvme_rdma_post_recv(rqpair, i)) {
SPDK_ERRLOG("Unable to post connection rx desc\n");
goto fail;
}
}
return 0;
fail:
nvme_rdma_free_rsps(rqpair);
return -ENOMEM;
}
static void
nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
{
if (!rqpair->rdma_reqs) {
return;
}
if (rqpair->cmd_mr && rdma_dereg_mr(rqpair->cmd_mr)) {
SPDK_ERRLOG("Unable to de-register cmd_mr\n");
}
rqpair->cmd_mr = NULL;
free(rqpair->cmds);
rqpair->cmds = NULL;
free(rqpair->rdma_reqs);
rqpair->rdma_reqs = NULL;
}
static int
nvme_rdma_alloc_reqs(struct nvme_rdma_qpair *rqpair)
{
int i;
rqpair->rdma_reqs = calloc(rqpair->num_entries, sizeof(struct spdk_nvme_rdma_req));
if (rqpair->rdma_reqs == NULL) {
SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
goto fail;
}
rqpair->cmds = calloc(rqpair->num_entries, sizeof(*rqpair->cmds));
if (!rqpair->cmds) {
SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
goto fail;
}
rqpair->cmd_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->cmds,
rqpair->num_entries * sizeof(*rqpair->cmds));
if (!rqpair->cmd_mr) {
SPDK_ERRLOG("Unable to register cmd_mr\n");
goto fail;
}
TAILQ_INIT(&rqpair->free_reqs);
TAILQ_INIT(&rqpair->outstanding_reqs);
for (i = 0; i < rqpair->num_entries; i++) {
struct spdk_nvme_rdma_req *rdma_req;
struct spdk_nvmf_cmd *cmd;
rdma_req = &rqpair->rdma_reqs[i];
cmd = &rqpair->cmds[i];
rdma_req->id = i;
/* The first RDMA sgl element will always point
* at this data structure. Depending on whether
* an NVMe-oF SGL is required, the length of
* this element may change. */
rdma_req->send_sgl[0].addr = (uint64_t)cmd;
rdma_req->send_sgl[0].lkey = rqpair->cmd_mr->lkey;
rdma_req->send_wr.wr_id = (uint64_t)rdma_req;
rdma_req->send_wr.next = NULL;
rdma_req->send_wr.opcode = IBV_WR_SEND;
rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
rdma_req->send_wr.sg_list = rdma_req->send_sgl;
rdma_req->send_wr.imm_data = 0;
TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
}
return 0;
fail:
nvme_rdma_free_reqs(rqpair);
return -ENOMEM;
}
static int
nvme_rdma_recv(struct nvme_rdma_qpair *rqpair, uint64_t rsp_idx)
{
struct spdk_nvme_qpair *qpair = &rqpair->qpair;
struct spdk_nvme_rdma_req *rdma_req;
struct spdk_nvme_cpl *rsp;
struct nvme_request *req;
assert(rsp_idx < rqpair->num_entries);
rsp = &rqpair->rsps[rsp_idx];
rdma_req = &rqpair->rdma_reqs[rsp->cid];
req = rdma_req->req;
nvme_rdma_req_complete(req, rsp);
nvme_rdma_req_put(rqpair, rdma_req);
if (nvme_rdma_post_recv(rqpair, rsp_idx)) {
SPDK_ERRLOG("Unable to re-post rx descriptor\n");
return -1;
}
if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) {
req = STAILQ_FIRST(&qpair->queued_req);
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
nvme_qpair_submit_request(qpair, req);
}
return 0;
}
static int
nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
struct sockaddr *src_addr,
struct sockaddr *dst_addr,
struct rdma_event_channel *cm_channel)
{
int ret;
struct rdma_cm_event *event;
ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
NVME_RDMA_TIME_OUT_IN_MS);
if (ret) {
SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
return ret;
}
event = nvme_rdma_get_event(cm_channel, RDMA_CM_EVENT_ADDR_RESOLVED);
if (event == NULL) {
SPDK_ERRLOG("RDMA address resolution error\n");
return -1;
}
rdma_ack_cm_event(event);
ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
if (ret) {
SPDK_ERRLOG("rdma_resolve_route\n");
return ret;
}
event = nvme_rdma_get_event(cm_channel, RDMA_CM_EVENT_ROUTE_RESOLVED);
if (event == NULL) {
SPDK_ERRLOG("RDMA route resolution error\n");
return -1;
}
rdma_ack_cm_event(event);
return 0;
}
static int
nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
{
struct rdma_conn_param param = {};
struct spdk_nvmf_rdma_request_private_data request_data = {};
struct spdk_nvmf_rdma_accept_private_data *accept_data;
struct ibv_device_attr attr;
int ret;
struct rdma_cm_event *event;
struct spdk_nvme_ctrlr *ctrlr;
ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
if (ret != 0) {
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
return ret;
}
param.responder_resources = spdk_min(rqpair->num_entries, attr.max_qp_rd_atom);
ctrlr = rqpair->qpair.ctrlr;
if (!ctrlr) {
return -1;
}
request_data.qid = rqpair->qpair.id;
request_data.hrqsize = rqpair->num_entries;
request_data.hsqsize = rqpair->num_entries - 1;
request_data.cntlid = ctrlr->cntlid;
param.private_data = &request_data;
param.private_data_len = sizeof(request_data);
param.retry_count = 7;
param.rnr_retry_count = 7;
ret = rdma_connect(rqpair->cm_id, &param);
if (ret) {
SPDK_ERRLOG("nvme rdma connect error\n");
return ret;
}
event = nvme_rdma_get_event(rqpair->cm_channel, RDMA_CM_EVENT_ESTABLISHED);
if (event == NULL) {
SPDK_ERRLOG("RDMA connect error\n");
return -1;
}
accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
if (accept_data == NULL) {
rdma_ack_cm_event(event);
SPDK_ERRLOG("NVMe-oF target did not return accept data\n");
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "Requested queue depth %d. Actually got queue depth %d.\n",
rqpair->num_entries, accept_data->crqsize);
rqpair->num_entries = spdk_min(rqpair->num_entries, accept_data->crqsize);
rdma_ack_cm_event(event);
return 0;
}
static int
nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
{
struct addrinfo *res;
struct addrinfo hints;
int ret;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = 0;
ret = getaddrinfo(addr, service, &hints, &res);
if (ret) {
SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
return ret;
}
if (res->ai_addrlen > sizeof(*sa)) {
SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
ret = EINVAL;
} else {
memcpy(sa, res->ai_addr, res->ai_addrlen);
}
freeaddrinfo(res);
return ret;
}
static int
nvme_rdma_mr_map_notify(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action,
void *vaddr, size_t size)
{
struct ibv_pd *pd = cb_ctx;
struct ibv_mr *mr;
int rc;
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
if (!g_nvme_hooks.get_rkey) {
mr = ibv_reg_mr(pd, vaddr, size,
IBV_ACCESS_LOCAL_WRITE |
IBV_ACCESS_REMOTE_READ |
IBV_ACCESS_REMOTE_WRITE);
if (mr == NULL) {
SPDK_ERRLOG("ibv_reg_mr() failed\n");
return -EFAULT;
} else {
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
}
} else {
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size,
g_nvme_hooks.get_rkey(pd, vaddr, size));
}
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
if (!g_nvme_hooks.get_rkey) {
mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
if (mr) {
ibv_dereg_mr(mr);
}
}
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
break;
default:
SPDK_UNREACHABLE();
}
return rc;
}
static int
nvme_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2)
{
/* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */
return addr_1 == addr_2;
}
static int
nvme_rdma_register_mem(struct nvme_rdma_qpair *rqpair)
{
struct ibv_pd *pd = rqpair->cm_id->qp->pd;
struct spdk_nvme_rdma_mr_map *mr_map;
const struct spdk_mem_map_ops nvme_rdma_map_ops = {
.notify_cb = nvme_rdma_mr_map_notify,
.are_contiguous = nvme_rdma_check_contiguous_entries
};
pthread_mutex_lock(&g_rdma_mr_maps_mutex);
/* Look up existing mem map registration for this pd */
LIST_FOREACH(mr_map, &g_rdma_mr_maps, link) {
if (mr_map->pd == pd) {
mr_map->ref++;
rqpair->mr_map = mr_map;
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return 0;
}
}
mr_map = calloc(1, sizeof(*mr_map));
if (mr_map == NULL) {
SPDK_ERRLOG("calloc() failed\n");
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return -1;
}
mr_map->ref = 1;
mr_map->pd = pd;
mr_map->map = spdk_mem_map_alloc((uint64_t)NULL, &nvme_rdma_map_ops, pd);
if (mr_map->map == NULL) {
SPDK_ERRLOG("spdk_mem_map_alloc() failed\n");
free(mr_map);
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return -1;
}
rqpair->mr_map = mr_map;
LIST_INSERT_HEAD(&g_rdma_mr_maps, mr_map, link);
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
return 0;
}
static void
nvme_rdma_unregister_mem(struct nvme_rdma_qpair *rqpair)
{
struct spdk_nvme_rdma_mr_map *mr_map;
mr_map = rqpair->mr_map;
rqpair->mr_map = NULL;
if (mr_map == NULL) {
return;
}
pthread_mutex_lock(&g_rdma_mr_maps_mutex);
assert(mr_map->ref > 0);
mr_map->ref--;
if (mr_map->ref == 0) {
LIST_REMOVE(mr_map, link);
spdk_mem_map_free(&mr_map->map);
free(mr_map);
}
pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
}
static int
nvme_rdma_qpair_connect(struct nvme_rdma_qpair *rqpair)
{
struct sockaddr_storage dst_addr;
struct sockaddr_storage src_addr;
bool src_addr_specified;
int rc;
struct spdk_nvme_ctrlr *ctrlr;
int family;
rqpair->cm_channel = rdma_create_event_channel();
if (rqpair->cm_channel == NULL) {
SPDK_ERRLOG("rdma_create_event_channel() failed\n");
return -1;
}
ctrlr = rqpair->qpair.ctrlr;
switch (ctrlr->trid.adrfam) {
case SPDK_NVMF_ADRFAM_IPV4:
family = AF_INET;
break;
case SPDK_NVMF_ADRFAM_IPV6:
family = AF_INET6;
break;
default:
SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
memset(&dst_addr, 0, sizeof(dst_addr));
SPDK_DEBUGLOG(SPDK_LOG_NVME, "trsvcid is %s\n", ctrlr->trid.trsvcid);
rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
if (rc != 0) {
SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n");
return -1;
}
if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
memset(&src_addr, 0, sizeof(src_addr));
rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid);
if (rc != 0) {
SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n");
return -1;
}
src_addr_specified = true;
} else {
src_addr_specified = false;
}
rc = rdma_create_id(rqpair->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
if (rc < 0) {
SPDK_ERRLOG("rdma_create_id() failed\n");
return -1;
}
rc = nvme_rdma_resolve_addr(rqpair,
src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
(struct sockaddr *)&dst_addr, rqpair->cm_channel);
if (rc < 0) {
SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
return -1;
}
rc = nvme_rdma_qpair_init(rqpair);
if (rc < 0) {
SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
return -1;
}
rc = nvme_rdma_connect(rqpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to connect the rqpair\n");
return -1;
}
rc = nvme_rdma_alloc_reqs(rqpair);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
if (rc) {
SPDK_ERRLOG("Unable to allocate rqpair RDMA requests\n");
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA requests allocated\n");
rc = nvme_rdma_alloc_rsps(rqpair);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
if (rc < 0) {
SPDK_ERRLOG("Unable to allocate rqpair RDMA responses\n");
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA responses allocated\n");
rc = nvme_rdma_register_mem(rqpair);
if (rc < 0) {
SPDK_ERRLOG("Unable to register memory for RDMA\n");
return -1;
}
rc = nvme_fabric_qpair_connect(&rqpair->qpair, rqpair->num_entries);
if (rc < 0) {
SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
return -1;
}
return 0;
}
/*
* Build SGL describing empty payload.
*/
static int
nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
/* The RDMA SGL needs one element describing the NVMe command. */
rdma_req->send_wr.num_sge = 1;
req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
req->cmd.dptr.sgl1.keyed.length = 0;
req->cmd.dptr.sgl1.keyed.key = 0;
req->cmd.dptr.sgl1.address = 0;
return 0;
}
/*
* Build inline SGL describing contiguous payload buffer.
*/
static int
nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
struct ibv_mr *mr;
void *payload;
uint64_t requested_size;
payload = req->payload.contig_or_cb_arg + req->payload_offset;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
requested_size = req->payload_size;
mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map,
(uint64_t)payload, &requested_size);
if (mr == NULL || requested_size < req->payload_size) {
if (mr) {
SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n");
}
return -EINVAL;
}
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
rdma_req->send_sgl[1].addr = (uint64_t)payload;
rdma_req->send_sgl[1].length = (uint32_t)req->payload_size;
rdma_req->send_sgl[1].lkey = mr->lkey;
/* The RDMA SGL contains two elements. The first describes
* the NVMe command and the second describes the data
* payload. */
rdma_req->send_wr.num_sge = 2;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
/* Inline only supported for icdoff == 0 currently. This function will
* not get called for controllers with other values. */
req->cmd.dptr.sgl1.address = (uint64_t)0;
return 0;
}
/*
* Build SGL describing contiguous payload buffer.
*/
static int
nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
void *payload = req->payload.contig_or_cb_arg + req->payload_offset;
struct ibv_mr *mr;
uint64_t requested_size;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
requested_size = req->payload_size;
if (!g_nvme_hooks.get_rkey) {
mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)payload,
&requested_size);
if (mr == NULL) {
return -1;
}
req->cmd.dptr.sgl1.keyed.key = mr->rkey;
} else {
req->cmd.dptr.sgl1.keyed.key = spdk_mem_map_translate(rqpair->mr_map->map,
(uint64_t)payload,
&requested_size);
}
if (requested_size < req->payload_size) {
SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n");
return -1;
}
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
/* The RDMA SGL needs one element describing the NVMe command. */
rdma_req->send_wr.num_sge = 1;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
req->cmd.dptr.sgl1.keyed.length = req->payload_size;
req->cmd.dptr.sgl1.address = (uint64_t)payload;
return 0;
}
/*
* Build SGL describing scattered payload buffer.
*/
static int
nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
struct ibv_mr *mr = NULL;
void *virt_addr;
uint64_t remaining_size, mr_length;
uint32_t sge_length;
int rc, max_num_sgl, num_sgl_desc;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
assert(req->payload.next_sge_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
max_num_sgl = req->qpair->ctrlr->max_sges;
remaining_size = req->payload_size;
num_sgl_desc = 0;
do {
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &sge_length);
if (rc) {
return -1;
}
sge_length = spdk_min(remaining_size, sge_length);
mr_length = sge_length;
if (!g_nvme_hooks.get_rkey) {
mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map,
(uint64_t)virt_addr,
&mr_length);
if (mr == NULL) {
return -1;
}
cmd->sgl[num_sgl_desc].keyed.key = mr->rkey;
} else {
cmd->sgl[num_sgl_desc].keyed.key = spdk_mem_map_translate(rqpair->mr_map->map,
(uint64_t)virt_addr,
&mr_length);
}
if (mr_length < sge_length) {
SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n");
return -1;
}
cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
cmd->sgl[num_sgl_desc].keyed.length = sge_length;
cmd->sgl[num_sgl_desc].address = (uint64_t)virt_addr;
remaining_size -= sge_length;
num_sgl_desc++;
} while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
/* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
if (remaining_size > 0) {
return -1;
}
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
/* The RDMA SGL needs one element describing some portion
* of the spdk_nvmf_cmd structure. */
rdma_req->send_wr.num_sge = 1;
/*
* If only one SGL descriptor is required, it can be embedded directly in the command
* as a data block descriptor.
*/
if (num_sgl_desc == 1) {
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type;
req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype;
req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length;
req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key;
req->cmd.dptr.sgl1.address = cmd->sgl[0].address;
} else {
/*
* Otherwise, The SGL descriptor embedded in the command must point to the list of
* SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
*/
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + sizeof(struct
spdk_nvme_sgl_descriptor) * num_sgl_desc;
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
req->cmd.dptr.sgl1.unkeyed.length = num_sgl_desc * sizeof(struct spdk_nvme_sgl_descriptor);
req->cmd.dptr.sgl1.address = (uint64_t)0;
}
return 0;
}
/*
* Build inline SGL describing sgl payload buffer.
*/
static int
nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
struct spdk_nvme_rdma_req *rdma_req)
{
struct nvme_request *req = rdma_req->req;
struct ibv_mr *mr;
uint32_t length;
uint64_t requested_size;
uint32_t remaining_payload;
void *virt_addr;
int rc, i;
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
assert(req->payload.next_sge_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
remaining_payload = req->payload_size;
rdma_req->send_wr.num_sge = 1;
do {
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
if (rc) {
return -1;
}
assert(length <= remaining_payload);
requested_size = length;
mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)virt_addr,
&requested_size);
if (mr == NULL || requested_size < length) {
for (i = 1; i < rdma_req->send_wr.num_sge; i++) {
rdma_req->send_sgl[i].addr = 0;
rdma_req->send_sgl[i].length = 0;
rdma_req->send_sgl[i].lkey = 0;
}
if (mr) {
SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n");
}
return -1;
}
rdma_req->send_sgl[rdma_req->send_wr.num_sge].addr = (uint64_t)virt_addr;
rdma_req->send_sgl[rdma_req->send_wr.num_sge].length = length;
rdma_req->send_sgl[rdma_req->send_wr.num_sge].lkey = mr->lkey;
rdma_req->send_wr.num_sge++;
remaining_payload -= length;
} while (remaining_payload && rdma_req->send_wr.num_sge < (int64_t)rqpair->max_send_sge);
if (remaining_payload) {
SPDK_ERRLOG("Unable to prepare request. Too many SGL elements\n");
return -1;
}
/* The first element of this SGL is pointing at an
* spdk_nvmf_cmd object. For this particular command,
* we only need the first 64 bytes corresponding to
* the NVMe command. */
rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
/* Inline only supported for icdoff == 0 currently. This function will
* not get called for controllers with other values. */
req->cmd.dptr.sgl1.address = (uint64_t)0;
return 0;
}
static inline unsigned int
nvme_rdma_icdsz_bytes(struct spdk_nvme_ctrlr *ctrlr)
{
return (ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd));
}
static int
nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
struct spdk_nvme_rdma_req *rdma_req)
{
struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
int rc;
rdma_req->req = req;
req->cmd.cid = rdma_req->id;
if (req->payload_size == 0) {
rc = nvme_rdma_build_null_request(rdma_req);
} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) {
/*
* Check if icdoff is non zero, to avoid interop conflicts with
* targets with non-zero icdoff. Both SPDK and the Linux kernel
* targets use icdoff = 0. For targets with non-zero icdoff, we
* will currently just not use inline data for now.
*/
if (req->cmd.opc == SPDK_NVME_OPC_WRITE &&
req->payload_size <= nvme_rdma_icdsz_bytes(ctrlr) &&
(ctrlr->cdata.nvmf_specific.icdoff == 0)) {
rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
} else {
rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
}
} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) {
if (req->cmd.opc == SPDK_NVME_OPC_WRITE &&
req->payload_size <= nvme_rdma_icdsz_bytes(ctrlr) &&
ctrlr->cdata.nvmf_specific.icdoff == 0) {
rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
} else {
rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
}
} else {
rc = -1;
}
if (rc) {
return rc;
}
memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
return 0;
}
static struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
uint16_t qid, uint32_t qsize,
enum spdk_nvme_qprio qprio,
uint32_t num_requests)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_qpair *qpair;
int rc;
rqpair = calloc(1, sizeof(struct nvme_rdma_qpair));
if (!rqpair) {
SPDK_ERRLOG("failed to get create rqpair\n");
return NULL;
}
rqpair->num_entries = qsize;
qpair = &rqpair->qpair;
rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests);
if (rc != 0) {
return NULL;
}
rc = nvme_rdma_qpair_connect(rqpair);
if (rc < 0) {
nvme_rdma_qpair_destroy(qpair);
return NULL;
}
return qpair;
}
static int
nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
struct nvme_rdma_qpair *rqpair;
if (!qpair) {
return -1;
}
nvme_rdma_qpair_fail(qpair);
nvme_qpair_deinit(qpair);
rqpair = nvme_rdma_qpair(qpair);
nvme_rdma_unregister_mem(rqpair);
nvme_rdma_free_reqs(rqpair);
nvme_rdma_free_rsps(rqpair);
if (rqpair->cm_id) {
if (rqpair->cm_id->qp) {
rdma_destroy_qp(rqpair->cm_id);
}
rdma_destroy_id(rqpair->cm_id);
}
if (rqpair->cq) {
ibv_destroy_cq(rqpair->cq);
}
if (rqpair->cm_channel) {
rdma_destroy_event_channel(rqpair->cm_channel);
}
free(rqpair);
return 0;
}
struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
const struct spdk_nvme_io_qpair_opts *opts)
{
return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
opts->io_queue_requests);
}
int
nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
/* do nothing here */
return 0;
}
/* This function must only be called while holding g_spdk_nvme_driver->lock */
int
nvme_rdma_ctrlr_scan(const struct spdk_nvme_transport_id *discovery_trid,
void *cb_ctx,
spdk_nvme_probe_cb probe_cb,
spdk_nvme_remove_cb remove_cb,
bool direct_connect)
{
struct spdk_nvme_ctrlr_opts discovery_opts;
struct spdk_nvme_ctrlr *discovery_ctrlr;
union spdk_nvme_cc_register cc;
int rc;
struct nvme_completion_poll_status status;
if (strcmp(discovery_trid->subnqn, SPDK_NVMF_DISCOVERY_NQN) != 0) {
/* It is not a discovery_ctrlr info and try to directly connect it */
rc = nvme_ctrlr_probe(discovery_trid, NULL, probe_cb, cb_ctx);
return rc;
}
spdk_nvme_ctrlr_get_default_ctrlr_opts(&discovery_opts, sizeof(discovery_opts));
/* For discovery_ctrlr set the timeout to 0 */
discovery_opts.keep_alive_timeout_ms = 0;
discovery_ctrlr = nvme_rdma_ctrlr_construct(discovery_trid, &discovery_opts, NULL);
if (discovery_ctrlr == NULL) {
return -1;
}
/* TODO: this should be using the normal NVMe controller initialization process */
cc.raw = 0;
cc.bits.en = 1;
cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
rc = nvme_transport_ctrlr_set_reg_4(discovery_ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
cc.raw);
if (rc < 0) {
SPDK_ERRLOG("Failed to set cc\n");
nvme_ctrlr_destruct(discovery_ctrlr);
return -1;
}
/* get the cdata info */
rc = nvme_ctrlr_cmd_identify(discovery_ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0,
&discovery_ctrlr->cdata, sizeof(discovery_ctrlr->cdata),
nvme_completion_poll_cb, &status);
if (rc != 0) {
SPDK_ERRLOG("Failed to identify cdata\n");
return rc;
}
if (spdk_nvme_wait_for_completion(discovery_ctrlr->adminq, &status)) {
SPDK_ERRLOG("nvme_identify_controller failed!\n");
return -ENXIO;
}
/* Direct attach through spdk_nvme_connect() API */
if (direct_connect == true) {
/* Set the ready state to skip the normal init process */
discovery_ctrlr->state = NVME_CTRLR_STATE_READY;
nvme_ctrlr_connected(discovery_ctrlr);
nvme_ctrlr_add_process(discovery_ctrlr, 0);
return 0;
}
rc = nvme_fabric_ctrlr_discover(discovery_ctrlr, cb_ctx, probe_cb);
nvme_ctrlr_destruct(discovery_ctrlr);
return rc;
}
struct spdk_nvme_ctrlr *nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
struct nvme_rdma_ctrlr *rctrlr;
union spdk_nvme_cap_register cap;
union spdk_nvme_vs_register vs;
int rc;
rctrlr = calloc(1, sizeof(struct nvme_rdma_ctrlr));
if (rctrlr == NULL) {
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
rctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
rctrlr->ctrlr.opts = *opts;
memcpy(&rctrlr->ctrlr.trid, trid, sizeof(rctrlr->ctrlr.trid));
rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
if (rc != 0) {
free(rctrlr);
return NULL;
}
rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES, 0, SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES);
if (!rctrlr->ctrlr.adminq) {
SPDK_ERRLOG("failed to create admin qpair\n");
nvme_rdma_ctrlr_destruct(&rctrlr->ctrlr);
return NULL;
}
if (nvme_ctrlr_get_cap(&rctrlr->ctrlr, &cap)) {
SPDK_ERRLOG("get_cap() failed\n");
nvme_ctrlr_destruct(&rctrlr->ctrlr);
return NULL;
}
if (nvme_ctrlr_get_vs(&rctrlr->ctrlr, &vs)) {
SPDK_ERRLOG("get_vs() failed\n");
nvme_ctrlr_destruct(&rctrlr->ctrlr);
return NULL;
}
if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
nvme_ctrlr_destruct(&rctrlr->ctrlr);
return NULL;
}
nvme_ctrlr_init_cap(&rctrlr->ctrlr, &cap, &vs);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "successfully initialized the nvmf ctrlr\n");
return &rctrlr->ctrlr;
}
int
nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
if (ctrlr->adminq) {
nvme_rdma_qpair_destroy(ctrlr->adminq);
}
nvme_ctrlr_destruct_finish(ctrlr);
free(rctrlr);
return 0;
}
int
nvme_rdma_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
return nvme_fabric_ctrlr_set_reg_4(ctrlr, offset, value);
}
int
nvme_rdma_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
return nvme_fabric_ctrlr_set_reg_8(ctrlr, offset, value);
}
int
nvme_rdma_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
return nvme_fabric_ctrlr_get_reg_4(ctrlr, offset, value);
}
int
nvme_rdma_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
return nvme_fabric_ctrlr_get_reg_8(ctrlr, offset, value);
}
int
nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req)
{
struct nvme_rdma_qpair *rqpair;
struct spdk_nvme_rdma_req *rdma_req;
struct ibv_send_wr *wr, *bad_wr = NULL;
int rc;
rqpair = nvme_rdma_qpair(qpair);
assert(rqpair != NULL);
assert(req != NULL);
rdma_req = nvme_rdma_req_get(rqpair);
if (!rdma_req) {
/*
* No rdma_req is available. Queue the request to be processed later.
*/
STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
return 0;
}
if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
nvme_rdma_req_put(rqpair, rdma_req);
return -1;
}
req->timed_out = false;
if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) {
req->submit_tick = spdk_get_ticks();
} else {
req->submit_tick = 0;
}
wr = &rdma_req->send_wr;
nvme_rdma_trace_ibv_sge(wr->sg_list);
rc = ibv_post_send(rqpair->cm_id->qp, wr, &bad_wr);
if (rc) {
SPDK_ERRLOG("Failure posting rdma send for NVMf completion: %d (%s)\n", rc, spdk_strerror(rc));
}
return rc;
}
int
nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
return nvme_rdma_qpair_destroy(qpair);
}
int
nvme_rdma_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
return nvme_rdma_qpair_connect(nvme_rdma_qpair(qpair));
}
int
nvme_rdma_qpair_enable(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
int
nvme_rdma_qpair_disable(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
int
nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
{
/* Currently, doing nothing here */
return 0;
}
int
nvme_rdma_qpair_fail(struct spdk_nvme_qpair *qpair)
{
/*
* If the qpair is really failed, the connection is broken
* and we need to flush back all I/O
*/
struct spdk_nvme_rdma_req *rdma_req, *tmp;
struct nvme_request *req;
struct spdk_nvme_cpl cpl;
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
assert(rdma_req->req != NULL);
req = rdma_req->req;
nvme_rdma_req_complete(req, &cpl);
nvme_rdma_req_put(rqpair, rdma_req);
}
return 0;
}
static void
nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
{
uint64_t t02;
struct spdk_nvme_rdma_req *rdma_req, *tmp;
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct spdk_nvme_ctrlr_process *active_proc;
/* Don't check timeouts during controller initialization. */
if (ctrlr->state != NVME_CTRLR_STATE_READY) {
return;
}
if (nvme_qpair_is_admin_queue(qpair)) {
active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
} else {
active_proc = qpair->active_proc;
}
/* Only check timeouts if the current process has a timeout callback. */
if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
return;
}
t02 = spdk_get_ticks();
TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
assert(rdma_req->req != NULL);
if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
/*
* The requests are in order, so as soon as one has not timed out,
* stop iterating.
*/
break;
}
}
}
#define MAX_COMPLETIONS_PER_POLL 128
int
nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
uint32_t max_completions)
{
struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL];
int i, rc, batch_size;
uint32_t reaped;
struct ibv_cq *cq;
if (max_completions == 0) {
max_completions = rqpair->num_entries;
} else {
max_completions = spdk_min(max_completions, rqpair->num_entries);
}
cq = rqpair->cq;
reaped = 0;
do {
batch_size = spdk_min((max_completions - reaped),
MAX_COMPLETIONS_PER_POLL);
rc = ibv_poll_cq(cq, batch_size, wc);
if (rc < 0) {
SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
errno, spdk_strerror(errno));
return -1;
} else if (rc == 0) {
/* Ran out of completions */
break;
}
for (i = 0; i < rc; i++) {
if (wc[i].status) {
SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n",
qpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
return -1;
}
switch (wc[i].opcode) {
case IBV_WC_RECV:
SPDK_DEBUGLOG(SPDK_LOG_NVME, "CQ recv completion\n");
reaped++;
if (wc[i].byte_len < sizeof(struct spdk_nvme_cpl)) {
SPDK_ERRLOG("recv length %u less than expected response size\n", wc[i].byte_len);
return -1;
}
if (nvme_rdma_recv(rqpair, wc[i].wr_id)) {
SPDK_ERRLOG("nvme_rdma_recv processing failure\n");
return -1;
}
break;
case IBV_WC_SEND:
break;
default:
SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", wc[i].opcode);
return -1;
}
}
} while (reaped < max_completions);
if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) {
nvme_rdma_qpair_check_timeout(qpair);
}
return reaped;
}
uint32_t
nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
/* Todo, which should get from the NVMF target */
return NVME_RDMA_RW_BUFFER_SIZE;
}
uint16_t
nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
return spdk_min(ctrlr->cdata.nvmf_specific.msdbd, NVME_RDMA_MAX_SGL_DESCRIPTORS);
}
void *
nvme_rdma_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size)
{
return NULL;
}
int
nvme_rdma_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size)
{
return 0;
}
void
spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
{
g_nvme_hooks = *hooks;
}