numam-spdk/lib/nvme/nvme_ns_cmd.c
Daniel Verkamp d2e10e88ec nvme: move nvme_request_add_child to nvme_ns_cmd.c
This is the only place nvme_request_add_child() is used, so move it
nearby and make it static to allow the compiler to inline it.

Change-Id: If4a7e17fde0b0272e1d4432c1dcedbec27c25371
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
2015-09-28 14:04:11 -07:00

246 lines
7.0 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "nvme_internal.h"
/**
* \file
*
*/
static struct nvme_request *
_nvme_ns_cmd_rw(struct nvme_namespace *ns, void *payload, uint64_t lba,
uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg,
uint32_t opc);
static void
nvme_cb_complete_child(void *child_arg, const struct nvme_completion *cpl)
{
struct nvme_request *child = child_arg;
struct nvme_request *parent = child->parent;
parent->num_children--;
TAILQ_REMOVE(&parent->children, child, child_tailq);
if (nvme_completion_is_error(cpl)) {
memcpy(&parent->parent_status, cpl, sizeof(*cpl));
}
if (parent->num_children == 0) {
if (parent->cb_fn) {
parent->cb_fn(parent->cb_arg, &parent->parent_status);
}
nvme_free_request(parent);
}
}
static void
nvme_request_add_child(struct nvme_request *parent, struct nvme_request *child)
{
if (parent->num_children == 0) {
/*
* Defer initialization of the children TAILQ since it falls
* on a separate cacheline. This ensures we do not touch this
* cacheline except on request splitting cases, which are
* relatively rare.
*/
TAILQ_INIT(&parent->children);
memset(&parent->parent_status, 0, sizeof(struct nvme_completion));
}
parent->num_children++;
TAILQ_INSERT_TAIL(&parent->children, child, child_tailq);
child->parent = parent;
child->cb_fn = nvme_cb_complete_child;
child->cb_arg = child;
}
static struct nvme_request *
_nvme_ns_cmd_split_request(struct nvme_namespace *ns, void *payload,
uint64_t lba, uint32_t lba_count,
nvme_cb_fn_t cb_fn, void *cb_arg, uint32_t opc,
struct nvme_request *req,
uint32_t sectors_per_max_io, uint32_t sector_mask)
{
uint32_t sector_size = ns->sector_size;
uint32_t remaining_lba_count = lba_count;
struct nvme_request *child;
while (remaining_lba_count > 0) {
lba_count = sectors_per_max_io - (lba & sector_mask);
lba_count = nvme_min(remaining_lba_count, lba_count);
child = _nvme_ns_cmd_rw(ns, payload, lba, lba_count, cb_fn,
cb_arg, opc);
if (child == NULL) {
nvme_free_request(req);
return NULL;
}
nvme_request_add_child(req, child);
remaining_lba_count -= lba_count;
lba += lba_count;
payload = (void *)((uintptr_t)payload + (lba_count * sector_size));
}
return req;
}
static struct nvme_request *
_nvme_ns_cmd_rw(struct nvme_namespace *ns, void *payload, uint64_t lba,
uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg,
uint32_t opc)
{
struct nvme_request *req;
struct nvme_command *cmd;
uint64_t *tmp_lba;
uint32_t sector_size;
uint32_t sectors_per_max_io;
uint32_t sectors_per_stripe;
sector_size = ns->sector_size;
sectors_per_max_io = ns->sectors_per_max_io;
sectors_per_stripe = ns->sectors_per_stripe;
req = nvme_allocate_request(payload, lba_count * sector_size, cb_fn, cb_arg);
if (req == NULL) {
return NULL;
}
/*
* Intel DC P3*00 NVMe controllers benefit from driver-assisted striping.
* If this controller defines a stripe boundary and this I/O spans a stripe
* boundary, split the request into multiple requests and submit each
* separately to hardware.
*/
if (sectors_per_stripe > 0 &&
(((lba & (sectors_per_stripe - 1)) + lba_count) > sectors_per_stripe)) {
return _nvme_ns_cmd_split_request(ns, payload, lba, lba_count, cb_fn, cb_arg, opc,
req, sectors_per_stripe, sectors_per_stripe - 1);
} else if (lba_count > sectors_per_max_io) {
return _nvme_ns_cmd_split_request(ns, payload, lba, lba_count, cb_fn, cb_arg, opc,
req, sectors_per_max_io, 0);
} else {
cmd = &req->cmd;
cmd->opc = opc;
cmd->nsid = ns->id;
tmp_lba = (uint64_t *)&cmd->cdw10;
*tmp_lba = lba;
cmd->cdw12 = lba_count - 1;
}
return req;
}
int
nvme_ns_cmd_read(struct nvme_namespace *ns, void *payload, uint64_t lba,
uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
req = _nvme_ns_cmd_rw(ns, payload, lba, lba_count, cb_fn, cb_arg, NVME_OPC_READ);
if (req != NULL) {
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
} else {
return ENOMEM;
}
}
int
nvme_ns_cmd_write(struct nvme_namespace *ns, void *payload, uint64_t lba,
uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
req = _nvme_ns_cmd_rw(ns, payload, lba, lba_count, cb_fn, cb_arg, NVME_OPC_WRITE);
if (req != NULL) {
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
} else {
return ENOMEM;
}
}
int
nvme_ns_cmd_deallocate(struct nvme_namespace *ns, void *payload,
uint8_t num_ranges, nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct nvme_command *cmd;
if (num_ranges == 0) {
return EINVAL;
}
req = nvme_allocate_request(payload,
num_ranges * sizeof(struct nvme_dsm_range),
cb_fn, cb_arg);
if (req == NULL) {
return ENOMEM;
}
cmd = &req->cmd;
cmd->opc = NVME_OPC_DATASET_MANAGEMENT;
cmd->nsid = ns->id;
/* TODO: create a delete command data structure */
cmd->cdw10 = num_ranges - 1;
cmd->cdw11 = NVME_DSM_ATTR_DEALLOCATE;
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
}
int
nvme_ns_cmd_flush(struct nvme_namespace *ns, nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct nvme_command *cmd;
req = nvme_allocate_request(NULL, 0, cb_fn, cb_arg);
if (req == NULL) {
return ENOMEM;
}
cmd = &req->cmd;
cmd->opc = NVME_OPC_FLUSH;
cmd->nsid = ns->id;
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
}