numam-spdk/lib/nvme/nvme.c
GangCao 6bdcf5abe8 nvme: use nvme_robust_mutex related operations
Change-Id: I35416506dbafe5e9d21861e207e295e114bdb3db
Signed-off-by: GangCao <gang.cao@intel.com>
2016-12-07 13:46:03 -07:00

542 lines
15 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/nvmf_spec.h"
#include "nvme_internal.h"
#include "nvme_uevent.h"
#define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"
struct nvme_driver *g_spdk_nvme_driver;
int32_t spdk_nvme_retry_count;
static int hotplug_fd = -1;
struct spdk_nvme_ctrlr *
nvme_attach(enum spdk_nvme_transport_type trtype,
const struct spdk_nvme_ctrlr_opts *opts,
const struct spdk_nvme_probe_info *probe_info,
void *devhandle)
{
struct spdk_nvme_ctrlr *ctrlr;
ctrlr = nvme_transport_ctrlr_construct(trtype, opts, probe_info, devhandle);
return ctrlr;
}
int
spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
{
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
nvme_ctrlr_proc_put_ref(ctrlr);
if (nvme_ctrlr_get_ref_count(ctrlr) == 0) {
TAILQ_REMOVE(&g_spdk_nvme_driver->attached_ctrlrs, ctrlr, tailq);
nvme_ctrlr_destruct(ctrlr);
}
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return 0;
}
void
nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_completion_poll_status *status = arg;
/*
* Copy status into the argument passed by the caller, so that
* the caller can check the status to determine if the
* the request passed or failed.
*/
memcpy(&status->cpl, cpl, sizeof(*cpl));
status->done = true;
}
struct nvme_request *
nvme_allocate_request(const struct nvme_payload *payload, uint32_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req = NULL;
req = spdk_mempool_get(g_spdk_nvme_driver->request_mempool);
if (req == NULL) {
return req;
}
/*
* Only memset up to (but not including) the children
* TAILQ_ENTRY. children, and following members, are
* only used as part of I/O splitting so we avoid
* memsetting them until it is actually needed.
* They will be initialized in nvme_request_add_child()
* if the request is split.
*/
memset(req, 0, offsetof(struct nvme_request, children));
req->cb_fn = cb_fn;
req->cb_arg = cb_arg;
req->payload = *payload;
req->payload_size = payload_size;
req->pid = getpid();
return req;
}
struct nvme_request *
nvme_allocate_request_contig(void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
void *cb_arg)
{
struct nvme_payload payload;
payload.type = NVME_PAYLOAD_TYPE_CONTIG;
payload.u.contig = buffer;
payload.md = NULL;
return nvme_allocate_request(&payload, payload_size, cb_fn, cb_arg);
}
struct nvme_request *
nvme_allocate_request_null(spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
return nvme_allocate_request_contig(NULL, 0, cb_fn, cb_arg);
}
static void
nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_request *req = arg;
enum spdk_nvme_data_transfer xfer;
if (req->user_buffer && req->payload_size) {
/* Copy back to the user buffer and free the contig buffer */
assert(req->payload.type == NVME_PAYLOAD_TYPE_CONTIG);
xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
assert(req->pid == getpid());
memcpy(req->user_buffer, req->payload.u.contig, req->payload_size);
}
spdk_free(req->payload.u.contig);
}
/* Call the user's original callback now that the buffer has been copied */
req->user_cb_fn(req->user_cb_arg, cpl);
}
/**
* Allocate a request as well as a physically contiguous buffer to copy to/from the user's buffer.
*
* This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
* where the overhead of a copy is not a problem.
*/
struct nvme_request *
nvme_allocate_request_user_copy(void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
void *cb_arg, bool host_to_controller)
{
struct nvme_request *req;
void *contig_buffer = NULL;
uint64_t phys_addr;
if (buffer && payload_size) {
contig_buffer = spdk_zmalloc(payload_size, 4096, &phys_addr);
if (!contig_buffer) {
return NULL;
}
if (host_to_controller) {
memcpy(contig_buffer, buffer, payload_size);
}
}
req = nvme_allocate_request_contig(contig_buffer, payload_size, nvme_user_copy_cmd_complete, NULL);
if (!req) {
spdk_free(buffer);
return NULL;
}
req->user_cb_fn = cb_fn;
req->user_cb_arg = cb_arg;
req->user_buffer = buffer;
req->cb_arg = req;
return req;
}
void
nvme_free_request(struct nvme_request *req)
{
assert(req != NULL);
assert(req->num_children == 0);
spdk_mempool_put(g_spdk_nvme_driver->request_mempool, req);
}
int
nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
{
int rc = 0;
#ifdef __FreeBSD__
pthread_mutex_init(mtx, NULL);
#else
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr)) {
return -1;
}
if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
pthread_mutex_init(mtx, &attr)) {
rc = -1;
}
pthread_mutexattr_destroy(&attr);
#endif
return rc;
}
static int
nvme_driver_init(void)
{
int ret = 0;
/* Any socket ID */
int socket_id = -1;
/*
* Only one thread from one process will do this driver init work.
* The primary process will reserve the shared memory and do the
* initialization.
* The secondary process will lookup the existing reserved memory.
*/
if (spdk_process_is_primary()) {
/* The unique named memzone already reserved. */
if (g_spdk_nvme_driver != NULL) {
assert(g_spdk_nvme_driver->initialized == true);
return 0;
} else {
g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
sizeof(struct nvme_driver), socket_id, 0);
}
if (g_spdk_nvme_driver == NULL) {
SPDK_ERRLOG("primary process failed to reserve memory\n");
return -1;
}
} else {
g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);
/* The unique named memzone already reserved by the primary process. */
if (g_spdk_nvme_driver != NULL) {
/* Wait the nvme driver to get initialized. */
while (g_spdk_nvme_driver->initialized == false) {
nvme_delay(1000);
}
} else {
SPDK_ERRLOG("primary process is not started yet\n");
return -1;
}
return 0;
}
/*
* At this moment, only one thread from the primary process will do
* the g_spdk_nvme_driver initialization
*/
assert(spdk_process_is_primary());
ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
if (ret != 0) {
SPDK_ERRLOG("failed to initialize mutex\n");
spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
return ret;
}
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
g_spdk_nvme_driver->initialized = false;
TAILQ_INIT(&g_spdk_nvme_driver->init_ctrlrs);
TAILQ_INIT(&g_spdk_nvme_driver->attached_ctrlrs);
g_spdk_nvme_driver->request_mempool = spdk_mempool_create("nvme_request", 8192,
sizeof(struct nvme_request), 128);
if (g_spdk_nvme_driver->request_mempool == NULL) {
SPDK_ERRLOG("unable to allocate pool of requests\n");
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
pthread_mutex_destroy(&g_spdk_nvme_driver->lock);
spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
return -1;
}
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return ret;
}
int
nvme_probe_one(enum spdk_nvme_transport_type trtype, spdk_nvme_probe_cb probe_cb, void *cb_ctx,
struct spdk_nvme_probe_info *probe_info, void *devhandle)
{
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ctrlr_opts opts;
spdk_nvme_ctrlr_opts_set_defaults(&opts);
if (probe_cb(cb_ctx, probe_info, &opts)) {
ctrlr = nvme_attach(trtype, &opts, probe_info, devhandle);
if (ctrlr == NULL) {
SPDK_ERRLOG("nvme_attach() failed\n");
return -1;
}
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq);
}
return 0;
}
static int
nvme_init_controllers(void *cb_ctx, spdk_nvme_attach_cb attach_cb)
{
int rc = 0;
int start_rc;
struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
/* Initialize all new controllers in the init_ctrlrs list in parallel. */
while (!TAILQ_EMPTY(&g_spdk_nvme_driver->init_ctrlrs)) {
TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->init_ctrlrs, tailq, ctrlr_tmp) {
/* Drop the driver lock while calling nvme_ctrlr_process_init()
* since it needs to acquire the driver lock internally when calling
* nvme_ctrlr_start().
*
* TODO: Rethink the locking - maybe reset should take the lock so that start() and
* the functions it calls (in particular nvme_ctrlr_set_num_qpairs())
* can assume it is held.
*/
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
start_rc = nvme_ctrlr_process_init(ctrlr);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
if (start_rc) {
/* Controller failed to initialize. */
TAILQ_REMOVE(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq);
nvme_ctrlr_destruct(ctrlr);
rc = -1;
break;
}
if (ctrlr->state == NVME_CTRLR_STATE_READY) {
/*
* Controller has been initialized.
* Move it to the attached_ctrlrs list.
*/
TAILQ_REMOVE(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq);
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->attached_ctrlrs, ctrlr, tailq);
/*
* Increase the ref count before calling attach_cb() as the user may
* call nvme_detach() immediately.
*/
nvme_ctrlr_proc_get_ref(ctrlr);
/*
* Unlock while calling attach_cb() so the user can call other functions
* that may take the driver lock, like nvme_detach().
*/
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
attach_cb(cb_ctx, &ctrlr->probe_info, ctrlr, &ctrlr->opts);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
break;
}
}
}
g_spdk_nvme_driver->initialized = true;
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return rc;
}
static int
nvme_attach_one(void *cb_ctx, spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
struct spdk_pci_addr *pci_address)
{
nvme_transport_ctrlr_scan(SPDK_NVME_TRANSPORT_PCIE, probe_cb, cb_ctx, NULL, pci_address);
return nvme_init_controllers(cb_ctx, attach_cb);
}
static int
_spdk_nvme_probe(const struct spdk_nvme_discover_info *info, void *cb_ctx,
spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
spdk_nvme_remove_cb remove_cb)
{
int rc;
enum spdk_nvme_transport_type trtype;
struct spdk_nvme_ctrlr *ctrlr;
rc = nvme_driver_init();
if (rc != 0) {
return rc;
}
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
if (hotplug_fd < 0) {
hotplug_fd = spdk_uevent_connect();
if (hotplug_fd < 0) {
SPDK_ERRLOG("Failed to open uevent netlink socket\n");
}
}
if (!info) {
trtype = SPDK_NVME_TRANSPORT_PCIE;
} else {
if (!spdk_nvme_transport_available(info->trtype)) {
SPDK_ERRLOG("NVMe over Fabrics trtype %u not available\n", info->trtype);
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return -1;
}
trtype = (uint8_t)info->trtype;
}
nvme_transport_ctrlr_scan(trtype, probe_cb, cb_ctx, (void *)info, NULL);
if (!spdk_process_is_primary()) {
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->attached_ctrlrs, tailq) {
nvme_ctrlr_proc_get_ref(ctrlr);
/*
* Unlock while calling attach_cb() so the user can call other functions
* that may take the driver lock, like nvme_detach().
*/
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
attach_cb(cb_ctx, &ctrlr->probe_info, ctrlr, &ctrlr->opts);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
}
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
return 0;
}
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
/*
* Keep going even if one or more nvme_attach() calls failed,
* but maintain the value of rc to signal errors when we return.
*/
rc = nvme_init_controllers(cb_ctx, attach_cb);
return rc;
}
int spdk_nvme_discover(const struct spdk_nvme_discover_info *info, void *cb_ctx,
spdk_nvme_probe_cb probe_cb,
spdk_nvme_attach_cb attach_cb,
spdk_nvme_remove_cb remove_cb)
{
if (!info || !info->traddr || !info->trsvcid || !info->subnqn) {
return -1;
}
return _spdk_nvme_probe(info, cb_ctx, probe_cb, attach_cb, remove_cb);
}
static int
nvme_hotplug_monitor(void *cb_ctx, spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
spdk_nvme_remove_cb remove_cb)
{
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_uevent event;
while (spdk_get_uevent(hotplug_fd, &event) > 0) {
if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO) {
if (event.action == SPDK_NVME_UEVENT_ADD) {
SPDK_TRACELOG(SPDK_TRACE_NVME, "add nvme address: %04x:%02x:%02x.%u\n",
event.pci_addr.domain, event.pci_addr.bus, event.pci_addr.dev, event.pci_addr.func);
if (spdk_process_is_primary()) {
nvme_attach_one(cb_ctx, probe_cb, attach_cb, &event.pci_addr);
}
} else if (event.action == SPDK_NVME_UEVENT_REMOVE) {
bool in_list = false;
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->attached_ctrlrs, tailq) {
if (spdk_pci_addr_compare(&event.pci_addr, &ctrlr->probe_info.pci_addr) == 0) {
in_list = true;
break;
}
}
if (in_list == false) {
return 0;
}
SPDK_TRACELOG(SPDK_TRACE_NVME, "remove nvme address: %04x:%02x:%02x.%u\n",
event.pci_addr.domain, event.pci_addr.bus, event.pci_addr.dev, event.pci_addr.func);
nvme_ctrlr_fail(ctrlr, true);
/* get the user app to clean up and stop I/O */
if (remove_cb) {
remove_cb(cb_ctx, ctrlr);
}
}
}
}
return 0;
}
int
spdk_nvme_probe(void *cb_ctx, spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
spdk_nvme_remove_cb remove_cb)
{
if (hotplug_fd < 0) {
return _spdk_nvme_probe(NULL, cb_ctx, probe_cb, attach_cb, remove_cb);
} else {
return nvme_hotplug_monitor(cb_ctx, probe_cb, attach_cb, remove_cb);
}
}
SPDK_LOG_REGISTER_TRACE_FLAG("nvme", SPDK_TRACE_NVME)