numam-spdk/lib/blob/blobstore.c
Daniel Verkamp d92f0f75ca log: rename SPDK_TRACELOG to SPDK_DEBUGLOG
This matches the name to the behavior and prepares for addition of a new
log macro for "info" log level.

Change-Id: I94ccd49face4309d3368e399528776ab140748c4
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
Reviewed-on: https://review.gerrithub.io/375833
Tested-by: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
2017-08-29 13:25:58 -04:00

2584 lines
65 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/blob.h"
#include "spdk/env.h"
#include "spdk/queue.h"
#include "spdk/io_channel.h"
#include "spdk/bit_array.h"
#include "spdk/likely.h"
#include "spdk_internal/log.h"
#include "blobstore.h"
#include "request.h"
static inline size_t
divide_round_up(size_t num, size_t divisor)
{
return (num + divisor - 1) / divisor;
}
static void
_spdk_bs_claim_cluster(struct spdk_blob_store *bs, uint32_t cluster_num)
{
assert(cluster_num < spdk_bit_array_capacity(bs->used_clusters));
assert(spdk_bit_array_get(bs->used_clusters, cluster_num) == false);
assert(bs->num_free_clusters > 0);
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Claiming cluster %u\n", cluster_num);
spdk_bit_array_set(bs->used_clusters, cluster_num);
bs->num_free_clusters--;
}
static void
_spdk_bs_release_cluster(struct spdk_blob_store *bs, uint32_t cluster_num)
{
assert(cluster_num < spdk_bit_array_capacity(bs->used_clusters));
assert(spdk_bit_array_get(bs->used_clusters, cluster_num) == true);
assert(bs->num_free_clusters < bs->total_clusters);
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Releasing cluster %u\n", cluster_num);
spdk_bit_array_clear(bs->used_clusters, cluster_num);
bs->num_free_clusters++;
}
static struct spdk_blob *
_spdk_blob_alloc(struct spdk_blob_store *bs, spdk_blob_id id)
{
struct spdk_blob *blob;
blob = calloc(1, sizeof(*blob));
if (!blob) {
return NULL;
}
blob->id = id;
blob->bs = bs;
blob->state = SPDK_BLOB_STATE_DIRTY;
blob->active.num_pages = 1;
blob->active.pages = calloc(1, sizeof(*blob->active.pages));
if (!blob->active.pages) {
free(blob);
return NULL;
}
blob->active.pages[0] = _spdk_bs_blobid_to_page(id);
TAILQ_INIT(&blob->xattrs);
return blob;
}
static void
_spdk_blob_free(struct spdk_blob *blob)
{
struct spdk_xattr *xattr, *xattr_tmp;
assert(blob != NULL);
free(blob->active.clusters);
free(blob->clean.clusters);
free(blob->active.pages);
free(blob->clean.pages);
TAILQ_FOREACH_SAFE(xattr, &blob->xattrs, link, xattr_tmp) {
TAILQ_REMOVE(&blob->xattrs, xattr, link);
free(xattr->name);
free(xattr->value);
free(xattr);
}
free(blob);
}
static int
_spdk_blob_mark_clean(struct spdk_blob *blob)
{
uint64_t *clusters = NULL;
uint32_t *pages = NULL;
assert(blob != NULL);
assert(blob->state == SPDK_BLOB_STATE_LOADING ||
blob->state == SPDK_BLOB_STATE_SYNCING);
if (blob->active.num_clusters) {
assert(blob->active.clusters);
clusters = calloc(blob->active.num_clusters, sizeof(*blob->active.clusters));
if (!clusters) {
return -1;
}
memcpy(clusters, blob->active.clusters, blob->active.num_clusters * sizeof(*clusters));
}
if (blob->active.num_pages) {
assert(blob->active.pages);
pages = calloc(blob->active.num_pages, sizeof(*blob->active.pages));
if (!pages) {
free(clusters);
return -1;
}
memcpy(pages, blob->active.pages, blob->active.num_pages * sizeof(*pages));
}
free(blob->clean.clusters);
free(blob->clean.pages);
blob->clean.num_clusters = blob->active.num_clusters;
blob->clean.clusters = blob->active.clusters;
blob->clean.num_pages = blob->active.num_pages;
blob->clean.pages = blob->active.pages;
blob->active.clusters = clusters;
blob->active.pages = pages;
blob->state = SPDK_BLOB_STATE_CLEAN;
return 0;
}
static void
_spdk_blob_parse_page(const struct spdk_blob_md_page *page, struct spdk_blob *blob)
{
struct spdk_blob_md_descriptor *desc;
size_t cur_desc = 0;
void *tmp;
desc = (struct spdk_blob_md_descriptor *)page->descriptors;
while (cur_desc < sizeof(page->descriptors)) {
if (desc->type == SPDK_MD_DESCRIPTOR_TYPE_PADDING) {
if (desc->length == 0) {
/* If padding and length are 0, this terminates the page */
break;
}
} else if (desc->type == SPDK_MD_DESCRIPTOR_TYPE_EXTENT) {
struct spdk_blob_md_descriptor_extent *desc_extent;
unsigned int i, j;
unsigned int cluster_count = blob->active.num_clusters;
desc_extent = (struct spdk_blob_md_descriptor_extent *)desc;
assert(desc_extent->length > 0);
assert(desc_extent->length % sizeof(desc_extent->extents[0]) == 0);
for (i = 0; i < desc_extent->length / sizeof(desc_extent->extents[0]); i++) {
for (j = 0; j < desc_extent->extents[i].length; j++) {
assert(spdk_bit_array_get(blob->bs->used_clusters, desc_extent->extents[i].cluster_idx + j));
cluster_count++;
}
}
assert(cluster_count > 0);
tmp = realloc(blob->active.clusters, cluster_count * sizeof(uint64_t));
assert(tmp != NULL);
blob->active.clusters = tmp;
blob->active.cluster_array_size = cluster_count;
for (i = 0; i < desc_extent->length / sizeof(desc_extent->extents[0]); i++) {
for (j = 0; j < desc_extent->extents[i].length; j++) {
blob->active.clusters[blob->active.num_clusters++] = _spdk_bs_cluster_to_lba(blob->bs,
desc_extent->extents[i].cluster_idx + j);
}
}
} else if (desc->type == SPDK_MD_DESCRIPTOR_TYPE_XATTR) {
struct spdk_blob_md_descriptor_xattr *desc_xattr;
struct spdk_xattr *xattr;
desc_xattr = (struct spdk_blob_md_descriptor_xattr *)desc;
assert(desc_xattr->length == sizeof(desc_xattr->name_length) +
sizeof(desc_xattr->value_length) +
desc_xattr->name_length + desc_xattr->value_length);
xattr = calloc(1, sizeof(*xattr));
assert(xattr != NULL);
xattr->name = malloc(desc_xattr->name_length + 1);
assert(xattr->name);
strncpy(xattr->name, desc_xattr->name, desc_xattr->name_length);
xattr->name[desc_xattr->name_length] = '\0';
xattr->value = malloc(desc_xattr->value_length);
assert(xattr->value != NULL);
xattr->value_len = desc_xattr->value_length;
memcpy(xattr->value,
(void *)((uintptr_t)desc_xattr->name + desc_xattr->name_length),
desc_xattr->value_length);
TAILQ_INSERT_TAIL(&blob->xattrs, xattr, link);
} else {
/* Error */
break;
}
/* Advance to the next descriptor */
cur_desc += sizeof(*desc) + desc->length;
if (cur_desc + sizeof(*desc) > sizeof(page->descriptors)) {
break;
}
desc = (struct spdk_blob_md_descriptor *)((uintptr_t)page->descriptors + cur_desc);
}
}
static int
_spdk_blob_parse(const struct spdk_blob_md_page *pages, uint32_t page_count,
struct spdk_blob *blob)
{
const struct spdk_blob_md_page *page;
uint32_t i;
assert(page_count > 0);
assert(pages[0].sequence_num == 0);
assert(blob != NULL);
assert(blob->state == SPDK_BLOB_STATE_LOADING);
assert(blob->active.clusters == NULL);
assert(blob->id == pages[0].id);
assert(blob->state == SPDK_BLOB_STATE_LOADING);
for (i = 0; i < page_count; i++) {
page = &pages[i];
assert(page->id == blob->id);
assert(page->sequence_num == i);
_spdk_blob_parse_page(page, blob);
}
return 0;
}
static int
_spdk_blob_serialize_add_page(const struct spdk_blob *blob,
struct spdk_blob_md_page **pages,
uint32_t *page_count,
struct spdk_blob_md_page **last_page)
{
struct spdk_blob_md_page *page;
assert(pages != NULL);
assert(page_count != NULL);
if (*page_count == 0) {
assert(*pages == NULL);
*page_count = 1;
*pages = spdk_dma_malloc(SPDK_BS_PAGE_SIZE,
SPDK_BS_PAGE_SIZE,
NULL);
} else {
assert(*pages != NULL);
(*page_count)++;
*pages = spdk_dma_realloc(*pages,
SPDK_BS_PAGE_SIZE * (*page_count),
SPDK_BS_PAGE_SIZE,
NULL);
}
if (*pages == NULL) {
*page_count = 0;
*last_page = NULL;
return -ENOMEM;
}
page = &(*pages)[*page_count - 1];
memset(page, 0, sizeof(*page));
page->id = blob->id;
page->sequence_num = *page_count - 1;
page->next = SPDK_INVALID_MD_PAGE;
*last_page = page;
return 0;
}
/* Transform the in-memory representation 'xattr' into an on-disk xattr descriptor.
* Update required_sz on both success and failure.
*
*/
static int
_spdk_blob_serialize_xattr(const struct spdk_xattr *xattr,
uint8_t *buf, size_t buf_sz,
size_t *required_sz)
{
struct spdk_blob_md_descriptor_xattr *desc;
*required_sz = sizeof(struct spdk_blob_md_descriptor_xattr) +
strlen(xattr->name) +
xattr->value_len;
if (buf_sz < *required_sz) {
return -1;
}
desc = (struct spdk_blob_md_descriptor_xattr *)buf;
desc->type = SPDK_MD_DESCRIPTOR_TYPE_XATTR;
desc->length = sizeof(desc->name_length) +
sizeof(desc->value_length) +
strlen(xattr->name) +
xattr->value_len;
desc->name_length = strlen(xattr->name);
desc->value_length = xattr->value_len;
memcpy(desc->name, xattr->name, desc->name_length);
memcpy((void *)((uintptr_t)desc->name + desc->name_length),
xattr->value,
desc->value_length);
return 0;
}
static void
_spdk_blob_serialize_extent(const struct spdk_blob *blob,
uint64_t start_cluster, uint64_t *next_cluster,
uint8_t *buf, size_t buf_sz)
{
struct spdk_blob_md_descriptor_extent *desc;
size_t cur_sz;
uint64_t i, extent_idx;
uint32_t lba, lba_per_cluster, lba_count;
/* The buffer must have room for at least one extent */
cur_sz = sizeof(struct spdk_blob_md_descriptor) + sizeof(desc->extents[0]);
if (buf_sz < cur_sz) {
*next_cluster = start_cluster;
return;
}
desc = (struct spdk_blob_md_descriptor_extent *)buf;
desc->type = SPDK_MD_DESCRIPTOR_TYPE_EXTENT;
lba_per_cluster = _spdk_bs_cluster_to_lba(blob->bs, 1);
lba = blob->active.clusters[start_cluster];
lba_count = lba_per_cluster;
extent_idx = 0;
for (i = start_cluster + 1; i < blob->active.num_clusters; i++) {
if ((lba + lba_count) == blob->active.clusters[i]) {
lba_count += lba_per_cluster;
continue;
}
desc->extents[extent_idx].cluster_idx = lba / lba_per_cluster;
desc->extents[extent_idx].length = lba_count / lba_per_cluster;
extent_idx++;
cur_sz += sizeof(desc->extents[extent_idx]);
if (buf_sz < cur_sz) {
/* If we ran out of buffer space, return */
desc->length = sizeof(desc->extents[0]) * extent_idx;
*next_cluster = i;
return;
}
lba = blob->active.clusters[i];
lba_count = lba_per_cluster;
}
desc->extents[extent_idx].cluster_idx = lba / lba_per_cluster;
desc->extents[extent_idx].length = lba_count / lba_per_cluster;
extent_idx++;
desc->length = sizeof(desc->extents[0]) * extent_idx;
*next_cluster = blob->active.num_clusters;
return;
}
static int
_spdk_blob_serialize(const struct spdk_blob *blob, struct spdk_blob_md_page **pages,
uint32_t *page_count)
{
struct spdk_blob_md_page *cur_page;
const struct spdk_xattr *xattr;
int rc;
uint8_t *buf;
size_t remaining_sz;
uint64_t last_cluster;
assert(pages != NULL);
assert(page_count != NULL);
assert(blob != NULL);
assert(blob->state == SPDK_BLOB_STATE_SYNCING);
*pages = NULL;
*page_count = 0;
/* A blob always has at least 1 page, even if it has no descriptors */
rc = _spdk_blob_serialize_add_page(blob, pages, page_count, &cur_page);
if (rc < 0) {
return rc;
}
buf = (uint8_t *)cur_page->descriptors;
remaining_sz = sizeof(cur_page->descriptors);
/* Serialize xattrs */
TAILQ_FOREACH(xattr, &blob->xattrs, link) {
size_t required_sz = 0;
rc = _spdk_blob_serialize_xattr(xattr,
buf, remaining_sz,
&required_sz);
if (rc < 0) {
/* Need to add a new page to the chain */
rc = _spdk_blob_serialize_add_page(blob, pages, page_count,
&cur_page);
if (rc < 0) {
spdk_dma_free(*pages);
*pages = NULL;
*page_count = 0;
return rc;
}
buf = (uint8_t *)cur_page->descriptors;
remaining_sz = sizeof(cur_page->descriptors);
/* Try again */
required_sz = 0;
rc = _spdk_blob_serialize_xattr(xattr,
buf, remaining_sz,
&required_sz);
if (rc < 0) {
spdk_dma_free(*pages);
*pages = NULL;
*page_count = 0;
return -1;
}
}
remaining_sz -= required_sz;
buf += required_sz;
}
/* Serialize extents */
last_cluster = 0;
while (last_cluster < blob->active.num_clusters) {
_spdk_blob_serialize_extent(blob, last_cluster, &last_cluster,
buf, remaining_sz);
if (last_cluster == blob->active.num_clusters) {
break;
}
rc = _spdk_blob_serialize_add_page(blob, pages, page_count,
&cur_page);
if (rc < 0) {
return rc;
}
buf = (uint8_t *)cur_page->descriptors;
remaining_sz = sizeof(cur_page->descriptors);
}
return 0;
}
struct spdk_blob_load_ctx {
struct spdk_blob *blob;
struct spdk_blob_md_page *pages;
uint32_t num_pages;
spdk_bs_sequence_cpl cb_fn;
void *cb_arg;
};
static void
_spdk_blob_load_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob_load_ctx *ctx = cb_arg;
struct spdk_blob *blob = ctx->blob;
struct spdk_blob_md_page *page;
int rc;
page = &ctx->pages[ctx->num_pages - 1];
if (page->next != SPDK_INVALID_MD_PAGE) {
uint32_t next_page = page->next;
uint64_t next_lba = _spdk_bs_page_to_lba(blob->bs, blob->bs->md_start + next_page);
assert(next_lba < (blob->bs->md_start + blob->bs->md_len));
/* Read the next page */
ctx->num_pages++;
ctx->pages = spdk_dma_realloc(ctx->pages, (sizeof(*page) * ctx->num_pages),
sizeof(*page), NULL);
if (ctx->pages == NULL) {
ctx->cb_fn(seq, ctx->cb_arg, -ENOMEM);
free(ctx);
return;
}
spdk_bs_sequence_read(seq, &ctx->pages[ctx->num_pages - 1],
next_lba,
_spdk_bs_byte_to_lba(blob->bs, sizeof(*page)),
_spdk_blob_load_cpl, ctx);
return;
}
/* Parse the pages */
rc = _spdk_blob_parse(ctx->pages, ctx->num_pages, blob);
_spdk_blob_mark_clean(blob);
ctx->cb_fn(seq, ctx->cb_arg, rc);
/* Free the memory */
spdk_dma_free(ctx->pages);
free(ctx);
}
/* Load a blob from disk given a blobid */
static void
_spdk_blob_load(spdk_bs_sequence_t *seq, struct spdk_blob *blob,
spdk_bs_sequence_cpl cb_fn, void *cb_arg)
{
struct spdk_blob_load_ctx *ctx;
struct spdk_blob_store *bs;
uint32_t page_num;
uint64_t lba;
assert(blob != NULL);
assert(blob->state == SPDK_BLOB_STATE_CLEAN ||
blob->state == SPDK_BLOB_STATE_DIRTY);
bs = blob->bs;
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
cb_fn(seq, cb_arg, -ENOMEM);
return;
}
ctx->blob = blob;
ctx->pages = spdk_dma_realloc(ctx->pages, SPDK_BS_PAGE_SIZE,
SPDK_BS_PAGE_SIZE, NULL);
if (!ctx->pages) {
free(ctx);
cb_fn(seq, cb_arg, -ENOMEM);
return;
}
ctx->num_pages = 1;
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
page_num = _spdk_bs_blobid_to_page(blob->id);
lba = _spdk_bs_page_to_lba(blob->bs, bs->md_start + page_num);
blob->state = SPDK_BLOB_STATE_LOADING;
spdk_bs_sequence_read(seq, &ctx->pages[0], lba,
_spdk_bs_byte_to_lba(bs, SPDK_BS_PAGE_SIZE),
_spdk_blob_load_cpl, ctx);
}
struct spdk_blob_persist_ctx {
struct spdk_blob *blob;
struct spdk_blob_md_page *pages;
uint64_t idx;
spdk_bs_sequence_cpl cb_fn;
void *cb_arg;
};
static void
_spdk_blob_persist_complete(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob_persist_ctx *ctx = cb_arg;
struct spdk_blob *blob = ctx->blob;
if (bserrno == 0) {
_spdk_blob_mark_clean(blob);
}
/* Call user callback */
ctx->cb_fn(seq, ctx->cb_arg, bserrno);
/* Free the memory */
spdk_dma_free(ctx->pages);
free(ctx);
}
static void
_spdk_blob_persist_unmap_clusters_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob_persist_ctx *ctx = cb_arg;
struct spdk_blob *blob = ctx->blob;
struct spdk_blob_store *bs = blob->bs;
void *tmp;
size_t i;
/* Release all clusters that were truncated */
for (i = blob->active.num_clusters; i < blob->active.cluster_array_size; i++) {
uint32_t cluster_num = _spdk_bs_lba_to_cluster(bs, blob->active.clusters[i]);
_spdk_bs_release_cluster(bs, cluster_num);
}
if (blob->active.num_clusters == 0) {
free(blob->active.clusters);
blob->active.clusters = NULL;
blob->active.cluster_array_size = 0;
} else {
tmp = realloc(blob->active.clusters, sizeof(uint64_t) * blob->active.num_clusters);
assert(tmp != NULL);
blob->active.clusters = tmp;
blob->active.cluster_array_size = blob->active.num_clusters;
}
_spdk_blob_persist_complete(seq, ctx, bserrno);
}
static void
_spdk_blob_persist_unmap_clusters(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob_persist_ctx *ctx = cb_arg;
struct spdk_blob *blob = ctx->blob;
struct spdk_blob_store *bs = blob->bs;
spdk_bs_batch_t *batch;
size_t i;
uint64_t lba;
uint32_t lba_count;
/* Clusters don't move around in blobs. The list shrinks or grows
* at the end, but no changes ever occur in the middle of the list.
*/
batch = spdk_bs_sequence_to_batch(seq, _spdk_blob_persist_unmap_clusters_cpl, ctx);
/* Unmap all clusters that were truncated */
lba = 0;
lba_count = 0;
for (i = blob->active.num_clusters; i < blob->active.cluster_array_size; i++) {
uint64_t next_lba = blob->active.clusters[i];
uint32_t next_lba_count = _spdk_bs_cluster_to_lba(bs, 1);
if ((lba + lba_count) == next_lba) {
/* This cluster is contiguous with the previous one. */
lba_count += next_lba_count;
continue;
}
/* This cluster is not contiguous with the previous one. */
/* If a run of LBAs previously existing, send them
* as an unmap.
*/
if (lba_count > 0) {
spdk_bs_batch_unmap(batch, lba, lba_count);
}
/* Start building the next batch */
lba = next_lba;
lba_count = next_lba_count;
}
/* If we ended with a contiguous set of LBAs, send the unmap now */
if (lba_count > 0) {
spdk_bs_batch_unmap(batch, lba, lba_count);
}
spdk_bs_batch_close(batch);
}
static void
_spdk_blob_persist_unmap_pages_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob_persist_ctx *ctx = cb_arg;
struct spdk_blob *blob = ctx->blob;
struct spdk_blob_store *bs = blob->bs;
size_t i;
/* This loop starts at 1 because the first page is special and handled
* below. The pages (except the first) are never written in place,
* so any pages in the clean list must be unmapped.
*/
for (i = 1; i < blob->clean.num_pages; i++) {
spdk_bit_array_clear(bs->used_md_pages, blob->clean.pages[i]);
}
if (blob->active.num_pages == 0) {
uint32_t page_num;
page_num = _spdk_bs_blobid_to_page(blob->id);
spdk_bit_array_clear(bs->used_md_pages, page_num);
}
/* Move on to unmapping clusters */
_spdk_blob_persist_unmap_clusters(seq, ctx, 0);
}
static void
_spdk_blob_persist_unmap_pages(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob_persist_ctx *ctx = cb_arg;
struct spdk_blob *blob = ctx->blob;
struct spdk_blob_store *bs = blob->bs;
uint64_t lba;
uint32_t lba_count;
spdk_bs_batch_t *batch;
size_t i;
batch = spdk_bs_sequence_to_batch(seq, _spdk_blob_persist_unmap_pages_cpl, ctx);
lba_count = _spdk_bs_byte_to_lba(bs, SPDK_BS_PAGE_SIZE);
/* This loop starts at 1 because the first page is special and handled
* below. The pages (except the first) are never written in place,
* so any pages in the clean list must be unmapped.
*/
for (i = 1; i < blob->clean.num_pages; i++) {
lba = _spdk_bs_page_to_lba(bs, bs->md_start + blob->clean.pages[i]);
spdk_bs_batch_unmap(batch, lba, lba_count);
}
/* The first page will only be unmapped if this is a delete. */
if (blob->active.num_pages == 0) {
uint32_t page_num;
/* The first page in the metadata goes where the blobid indicates */
page_num = _spdk_bs_blobid_to_page(blob->id);
lba = _spdk_bs_page_to_lba(bs, bs->md_start + page_num);
spdk_bs_batch_unmap(batch, lba, lba_count);
}
spdk_bs_batch_close(batch);
}
static void
_spdk_blob_persist_write_page_root(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob_persist_ctx *ctx = cb_arg;
struct spdk_blob *blob = ctx->blob;
struct spdk_blob_store *bs = blob->bs;
uint64_t lba;
uint32_t lba_count;
struct spdk_blob_md_page *page;
if (blob->active.num_pages == 0) {
/* Move on to the next step */
_spdk_blob_persist_unmap_pages(seq, ctx, 0);
return;
}
lba_count = _spdk_bs_byte_to_lba(bs, sizeof(*page));
page = &ctx->pages[0];
/* The first page in the metadata goes where the blobid indicates */
lba = _spdk_bs_page_to_lba(bs, bs->md_start + _spdk_bs_blobid_to_page(blob->id));
spdk_bs_sequence_write(seq, page, lba, lba_count,
_spdk_blob_persist_unmap_pages, ctx);
}
static void
_spdk_blob_persist_write_page_chain(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob_persist_ctx *ctx = cb_arg;
struct spdk_blob *blob = ctx->blob;
struct spdk_blob_store *bs = blob->bs;
uint64_t lba;
uint32_t lba_count;
struct spdk_blob_md_page *page;
spdk_bs_batch_t *batch;
size_t i;
/* Clusters don't move around in blobs. The list shrinks or grows
* at the end, but no changes ever occur in the middle of the list.
*/
lba_count = _spdk_bs_byte_to_lba(bs, sizeof(*page));
batch = spdk_bs_sequence_to_batch(seq, _spdk_blob_persist_write_page_root, ctx);
/* This starts at 1. The root page is not written until
* all of the others are finished
*/
for (i = 1; i < blob->active.num_pages; i++) {
page = &ctx->pages[i];
assert(page->sequence_num == i);
lba = _spdk_bs_page_to_lba(bs, bs->md_start + blob->active.pages[i]);
spdk_bs_batch_write(batch, page, lba, lba_count);
}
spdk_bs_batch_close(batch);
}
static int
_spdk_resize_blob(struct spdk_blob *blob, uint64_t sz)
{
uint64_t i;
uint64_t *tmp;
uint64_t lfc; /* lowest free cluster */
struct spdk_blob_store *bs;
bs = blob->bs;
assert(blob->state != SPDK_BLOB_STATE_LOADING &&
blob->state != SPDK_BLOB_STATE_SYNCING);
if (blob->active.num_clusters == sz) {
return 0;
}
if (blob->active.num_clusters < blob->active.cluster_array_size) {
/* If this blob was resized to be larger, then smaller, then
* larger without syncing, then the cluster array already
* contains spare assigned clusters we can use.
*/
blob->active.num_clusters = spdk_min(blob->active.cluster_array_size,
sz);
}
blob->state = SPDK_BLOB_STATE_DIRTY;
/* Do two passes - one to verify that we can obtain enough clusters
* and another to actually claim them.
*/
lfc = 0;
for (i = blob->active.num_clusters; i < sz; i++) {
lfc = spdk_bit_array_find_first_clear(bs->used_clusters, lfc);
if (lfc >= bs->total_clusters) {
/* No more free clusters. Cannot satisfy the request */
assert(false);
return -1;
}
lfc++;
}
if (sz > blob->active.num_clusters) {
/* Expand the cluster array if necessary.
* We only shrink the array when persisting.
*/
tmp = realloc(blob->active.clusters, sizeof(uint64_t) * sz);
if (sz > 0 && tmp == NULL) {
assert(false);
return -1;
}
blob->active.clusters = tmp;
blob->active.cluster_array_size = sz;
}
lfc = 0;
for (i = blob->active.num_clusters; i < sz; i++) {
lfc = spdk_bit_array_find_first_clear(bs->used_clusters, lfc);
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Claiming cluster %lu for blob %lu\n", lfc, blob->id);
_spdk_bs_claim_cluster(bs, lfc);
blob->active.clusters[i] = _spdk_bs_cluster_to_lba(bs, lfc);
lfc++;
}
blob->active.num_clusters = sz;
return 0;
}
/* Write a blob to disk */
static void
_spdk_blob_persist(spdk_bs_sequence_t *seq, struct spdk_blob *blob,
spdk_bs_sequence_cpl cb_fn, void *cb_arg)
{
struct spdk_blob_persist_ctx *ctx;
int rc;
uint64_t i;
uint32_t page_num;
struct spdk_blob_store *bs;
assert(blob != NULL);
assert(blob->state == SPDK_BLOB_STATE_CLEAN ||
blob->state == SPDK_BLOB_STATE_DIRTY);
if (blob->state == SPDK_BLOB_STATE_CLEAN) {
cb_fn(seq, cb_arg, 0);
return;
}
bs = blob->bs;
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
cb_fn(seq, cb_arg, -ENOMEM);
return;
}
ctx->blob = blob;
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
blob->state = SPDK_BLOB_STATE_SYNCING;
if (blob->active.num_pages == 0) {
/* This is the signal that the blob should be deleted.
* Immediately jump to the clean up routine. */
assert(blob->clean.num_pages > 0);
ctx->idx = blob->clean.num_pages - 1;
_spdk_blob_persist_unmap_pages(seq, ctx, 0);
return;
}
/* Generate the new metadata */
rc = _spdk_blob_serialize(blob, &ctx->pages, &blob->active.num_pages);
if (rc < 0) {
free(ctx);
cb_fn(seq, cb_arg, rc);
return;
}
assert(blob->active.num_pages >= 1);
/* Resize the cache of page indices */
blob->active.pages = realloc(blob->active.pages,
blob->active.num_pages * sizeof(*blob->active.pages));
if (!blob->active.pages) {
free(ctx);
cb_fn(seq, cb_arg, -ENOMEM);
return;
}
/* Assign this metadata to pages. This requires two passes -
* one to verify that there are enough pages and a second
* to actually claim them. */
page_num = 0;
/* Note that this loop starts at one. The first page location is fixed by the blobid. */
for (i = 1; i < blob->active.num_pages; i++) {
page_num = spdk_bit_array_find_first_clear(bs->used_md_pages, page_num);
if (page_num >= spdk_bit_array_capacity(bs->used_md_pages)) {
spdk_dma_free(ctx->pages);
free(ctx);
blob->state = SPDK_BLOB_STATE_DIRTY;
cb_fn(seq, cb_arg, -ENOMEM);
return;
}
page_num++;
}
page_num = 0;
blob->active.pages[0] = _spdk_bs_blobid_to_page(blob->id);
for (i = 1; i < blob->active.num_pages; i++) {
page_num = spdk_bit_array_find_first_clear(bs->used_md_pages, page_num);
ctx->pages[i - 1].next = page_num;
blob->active.pages[i] = page_num;
spdk_bit_array_set(bs->used_md_pages, page_num);
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Claiming page %u for blob %lu\n", page_num, blob->id);
page_num++;
}
/* Start writing the metadata from last page to first */
ctx->idx = blob->active.num_pages - 1;
_spdk_blob_persist_write_page_chain(seq, ctx, 0);
}
static void
_spdk_blob_request_submit_rw(struct spdk_blob *blob, struct spdk_io_channel *_channel,
void *payload, uint64_t offset, uint64_t length,
spdk_blob_op_complete cb_fn, void *cb_arg, bool read)
{
spdk_bs_batch_t *batch;
struct spdk_bs_cpl cpl;
uint64_t lba;
uint32_t lba_count;
uint8_t *buf;
uint64_t page;
assert(blob != NULL);
if (offset + length > blob->active.num_clusters * blob->bs->pages_per_cluster) {
cb_fn(cb_arg, -EINVAL);
return;
}
cpl.type = SPDK_BS_CPL_TYPE_BLOB_BASIC;
cpl.u.blob_basic.cb_fn = cb_fn;
cpl.u.blob_basic.cb_arg = cb_arg;
batch = spdk_bs_batch_open(_channel, &cpl);
if (!batch) {
cb_fn(cb_arg, -ENOMEM);
return;
}
length = _spdk_bs_page_to_lba(blob->bs, length);
page = offset;
buf = payload;
while (length > 0) {
lba = _spdk_bs_blob_page_to_lba(blob, page);
lba_count = spdk_min(length,
_spdk_bs_page_to_lba(blob->bs,
_spdk_bs_num_pages_to_cluster_boundary(blob, page)));
if (read) {
spdk_bs_batch_read(batch, buf, lba, lba_count);
} else {
spdk_bs_batch_write(batch, buf, lba, lba_count);
}
length -= lba_count;
buf += _spdk_bs_lba_to_byte(blob->bs, lba_count);
page += _spdk_bs_lba_to_page(blob->bs, lba_count);
}
spdk_bs_batch_close(batch);
}
struct rw_iov_ctx {
struct spdk_blob *blob;
bool read;
int iovcnt;
struct iovec *orig_iov;
uint64_t page_offset;
uint64_t pages_remaining;
uint64_t pages_done;
struct iovec iov[0];
};
static void
_spdk_rw_iov_done(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
assert(cb_arg == NULL);
spdk_bs_sequence_finish(seq, bserrno);
}
static void
_spdk_rw_iov_split_next(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct rw_iov_ctx *ctx = cb_arg;
struct iovec *iov, *orig_iov;
int iovcnt;
size_t orig_iovoff;
uint64_t lba;
uint64_t page_count, pages_to_boundary;
uint32_t lba_count;
uint64_t byte_count;
if (bserrno != 0 || ctx->pages_remaining == 0) {
free(ctx);
spdk_bs_sequence_finish(seq, bserrno);
return;
}
pages_to_boundary = _spdk_bs_num_pages_to_cluster_boundary(ctx->blob, ctx->page_offset);
page_count = spdk_min(ctx->pages_remaining, pages_to_boundary);
lba = _spdk_bs_blob_page_to_lba(ctx->blob, ctx->page_offset);
lba_count = _spdk_bs_page_to_lba(ctx->blob->bs, page_count);
/*
* Get index and offset into the original iov array for our current position in the I/O sequence.
* byte_count will keep track of how many bytes remaining until orig_iov and orig_iovoff will
* point to the current position in the I/O sequence.
*/
byte_count = ctx->pages_done * sizeof(struct spdk_blob_md_page);
orig_iov = &ctx->orig_iov[0];
orig_iovoff = 0;
while (byte_count > 0) {
if (byte_count >= orig_iov->iov_len) {
byte_count -= orig_iov->iov_len;
orig_iov++;
} else {
orig_iovoff = byte_count;
byte_count = 0;
}
}
/*
* Build an iov array for the next I/O in the sequence. byte_count will keep track of how many
* bytes of this next I/O remain to be accounted for in the new iov array.
*/
byte_count = page_count * sizeof(struct spdk_blob_md_page);
iov = &ctx->iov[0];
iovcnt = 0;
while (byte_count > 0) {
iov->iov_len = spdk_min(byte_count, orig_iov->iov_len - orig_iovoff);
iov->iov_base = orig_iov->iov_base + orig_iovoff;
byte_count -= iov->iov_len;
orig_iovoff = 0;
orig_iov++;
iov++;
iovcnt++;
}
ctx->page_offset += page_count;
ctx->pages_done += page_count;
ctx->pages_remaining -= page_count;
iov = &ctx->iov[0];
if (ctx->read) {
spdk_bs_sequence_readv(seq, iov, iovcnt, lba, lba_count, _spdk_rw_iov_split_next, ctx);
} else {
spdk_bs_sequence_writev(seq, iov, iovcnt, lba, lba_count, _spdk_rw_iov_split_next, ctx);
}
}
static void
_spdk_blob_request_submit_rw_iov(struct spdk_blob *blob, struct spdk_io_channel *_channel,
struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length,
spdk_blob_op_complete cb_fn, void *cb_arg, bool read)
{
spdk_bs_sequence_t *seq;
struct spdk_bs_cpl cpl;
assert(blob != NULL);
if (length == 0) {
cb_fn(cb_arg, 0);
return;
}
if (offset + length > blob->active.num_clusters * blob->bs->pages_per_cluster) {
cb_fn(cb_arg, -EINVAL);
return;
}
cpl.type = SPDK_BS_CPL_TYPE_BLOB_BASIC;
cpl.u.blob_basic.cb_fn = cb_fn;
cpl.u.blob_basic.cb_arg = cb_arg;
/*
* For now, we implement readv/writev using a sequence (instead of a batch) to account for having
* to split a request that spans a cluster boundary. For I/O that do not span a cluster boundary,
* there will be no noticeable difference compared to using a batch. For I/O that do span a cluster
* boundary, the target LBAs (after blob offset to LBA translation) may not be contiguous, so we need
* to allocate a separate iov array and split the I/O such that none of the resulting
* smaller I/O cross a cluster boundary. These smaller I/O will be issued in sequence (not in parallel)
* but since this case happens very infrequently, any performance impact will be negligible.
*
* This could be optimized in the future to allocate a big enough iov array to account for all of the iovs
* for all of the smaller I/Os, pre-build all of the iov arrays for the smaller I/Os, then issue them
* in a batch. That would also require creating an intermediate spdk_bs_cpl that would get called
* when the batch was completed, to allow for freeing the memory for the iov arrays.
*/
seq = spdk_bs_sequence_start(_channel, &cpl);
if (!seq) {
cb_fn(cb_arg, -ENOMEM);
return;
}
if (spdk_likely(length <= _spdk_bs_num_pages_to_cluster_boundary(blob, offset))) {
uint64_t lba = _spdk_bs_blob_page_to_lba(blob, offset);
uint32_t lba_count = _spdk_bs_page_to_lba(blob->bs, length);
if (read) {
spdk_bs_sequence_readv(seq, iov, iovcnt, lba, lba_count, _spdk_rw_iov_done, NULL);
} else {
spdk_bs_sequence_writev(seq, iov, iovcnt, lba, lba_count, _spdk_rw_iov_done, NULL);
}
} else {
struct rw_iov_ctx *ctx;
ctx = calloc(1, sizeof(struct rw_iov_ctx) + iovcnt * sizeof(struct iovec));
if (ctx == NULL) {
spdk_bs_sequence_finish(seq, -ENOMEM);
return;
}
ctx->blob = blob;
ctx->read = read;
ctx->orig_iov = iov;
ctx->iovcnt = iovcnt;
ctx->page_offset = offset;
ctx->pages_remaining = length;
ctx->pages_done = 0;
_spdk_rw_iov_split_next(seq, ctx, 0);
}
}
static struct spdk_blob *
_spdk_blob_lookup(struct spdk_blob_store *bs, spdk_blob_id blobid)
{
struct spdk_blob *blob;
TAILQ_FOREACH(blob, &bs->blobs, link) {
if (blob->id == blobid) {
return blob;
}
}
return NULL;
}
static int
_spdk_bs_channel_create(struct spdk_blob_store *bs, struct spdk_bs_channel *channel,
uint32_t max_ops)
{
struct spdk_bs_dev *dev;
uint32_t i;
dev = bs->dev;
channel->req_mem = calloc(max_ops, sizeof(struct spdk_bs_request_set));
if (!channel->req_mem) {
return -1;
}
TAILQ_INIT(&channel->reqs);
for (i = 0; i < max_ops; i++) {
TAILQ_INSERT_TAIL(&channel->reqs, &channel->req_mem[i], link);
}
channel->bs = bs;
channel->dev = dev;
channel->dev_channel = dev->create_channel(dev);
return 0;
}
static int
_spdk_bs_md_channel_create(void *io_device, void *ctx_buf)
{
struct spdk_blob_store *bs;
struct spdk_bs_channel *channel = ctx_buf;
bs = SPDK_CONTAINEROF(io_device, struct spdk_blob_store, md_target);
return _spdk_bs_channel_create(bs, channel, bs->md_target.max_md_ops);
}
static int
_spdk_bs_io_channel_create(void *io_device, void *ctx_buf)
{
struct spdk_blob_store *bs;
struct spdk_bs_channel *channel = ctx_buf;
bs = SPDK_CONTAINEROF(io_device, struct spdk_blob_store, io_target);
return _spdk_bs_channel_create(bs, channel, bs->io_target.max_channel_ops);
}
static void
_spdk_bs_channel_destroy(void *io_device, void *ctx_buf)
{
struct spdk_bs_channel *channel = ctx_buf;
free(channel->req_mem);
channel->dev->destroy_channel(channel->dev, channel->dev_channel);
}
static void
_spdk_bs_dev_destroy(void *io_device)
{
struct spdk_blob_store *bs;
struct spdk_blob *blob, *blob_tmp;
bs = SPDK_CONTAINEROF(io_device, struct spdk_blob_store, md_target);
bs->dev->destroy(bs->dev);
TAILQ_FOREACH_SAFE(blob, &bs->blobs, link, blob_tmp) {
TAILQ_REMOVE(&bs->blobs, blob, link);
_spdk_blob_free(blob);
}
spdk_bit_array_free(&bs->used_md_pages);
spdk_bit_array_free(&bs->used_clusters);
free(bs);
}
static void
_spdk_bs_free(struct spdk_blob_store *bs)
{
spdk_bs_unregister_md_thread(bs);
spdk_io_device_unregister(&bs->io_target, NULL);
spdk_io_device_unregister(&bs->md_target, _spdk_bs_dev_destroy);
}
void
spdk_bs_opts_init(struct spdk_bs_opts *opts)
{
opts->cluster_sz = SPDK_BLOB_OPTS_CLUSTER_SZ;
opts->num_md_pages = SPDK_BLOB_OPTS_NUM_MD_PAGES;
opts->max_md_ops = SPDK_BLOB_OPTS_MAX_MD_OPS;
opts->max_channel_ops = SPDK_BLOB_OPTS_MAX_CHANNEL_OPS;
}
static struct spdk_blob_store *
_spdk_bs_alloc(struct spdk_bs_dev *dev, struct spdk_bs_opts *opts)
{
struct spdk_blob_store *bs;
bs = calloc(1, sizeof(struct spdk_blob_store));
if (!bs) {
return NULL;
}
TAILQ_INIT(&bs->blobs);
bs->dev = dev;
/*
* Do not use _spdk_bs_lba_to_cluster() here since blockcnt may not be an
* even multiple of the cluster size.
*/
bs->cluster_sz = opts->cluster_sz;
bs->total_clusters = dev->blockcnt / (bs->cluster_sz / dev->blocklen);
bs->pages_per_cluster = bs->cluster_sz / SPDK_BS_PAGE_SIZE;
bs->num_free_clusters = bs->total_clusters;
bs->used_clusters = spdk_bit_array_create(bs->total_clusters);
if (bs->used_clusters == NULL) {
_spdk_bs_free(bs);
return NULL;
}
bs->md_target.max_md_ops = opts->max_md_ops;
bs->io_target.max_channel_ops = opts->max_channel_ops;
bs->super_blob = SPDK_BLOBID_INVALID;
/* The metadata is assumed to be at least 1 page */
bs->used_md_pages = spdk_bit_array_create(1);
spdk_io_device_register(&bs->md_target, _spdk_bs_md_channel_create, _spdk_bs_channel_destroy,
sizeof(struct spdk_bs_channel));
spdk_bs_register_md_thread(bs);
spdk_io_device_register(&bs->io_target, _spdk_bs_io_channel_create, _spdk_bs_channel_destroy,
sizeof(struct spdk_bs_channel));
return bs;
}
/* START spdk_bs_load */
struct spdk_bs_load_ctx {
struct spdk_blob_store *bs;
struct spdk_bs_super_block *super;
struct spdk_bs_md_mask *mask;
};
static void
_spdk_bs_load_used_clusters_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_bs_load_ctx *ctx = cb_arg;
uint32_t i, j;
int rc;
/* The type must be correct */
assert(ctx->mask->type == SPDK_MD_MASK_TYPE_USED_CLUSTERS);
/* The length of the mask (in bits) must not be greater than the length of the buffer (converted to bits) */
assert(ctx->mask->length <= (ctx->super->used_cluster_mask_len * sizeof(
struct spdk_blob_md_page) * 8));
/* The length of the mask must be exactly equal to the total number of clusters */
assert(ctx->mask->length == ctx->bs->total_clusters);
rc = spdk_bit_array_resize(&ctx->bs->used_clusters, ctx->bs->total_clusters);
if (rc < 0) {
spdk_dma_free(ctx->super);
spdk_dma_free(ctx->mask);
_spdk_bs_free(ctx->bs);
free(ctx);
spdk_bs_sequence_finish(seq, -ENOMEM);
return;
}
ctx->bs->num_free_clusters = ctx->bs->total_clusters;
for (i = 0; i < ctx->mask->length / 8; i++) {
uint8_t segment = ctx->mask->mask[i];
for (j = 0; segment && (j < 8); j++) {
if (segment & 1U) {
spdk_bit_array_set(ctx->bs->used_clusters, (i * 8) + j);
assert(ctx->bs->num_free_clusters > 0);
ctx->bs->num_free_clusters--;
}
segment >>= 1U;
}
}
spdk_dma_free(ctx->super);
spdk_dma_free(ctx->mask);
free(ctx);
spdk_bs_sequence_finish(seq, bserrno);
}
static void
_spdk_bs_load_used_pages_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_bs_load_ctx *ctx = cb_arg;
uint64_t lba, lba_count, mask_size;
uint32_t i, j;
int rc;
/* The type must be correct */
assert(ctx->mask->type == SPDK_MD_MASK_TYPE_USED_PAGES);
/* The length of the mask (in bits) must not be greater than the length of the buffer (converted to bits) */
assert(ctx->mask->length <= (ctx->super->used_page_mask_len * SPDK_BS_PAGE_SIZE *
8));
/* The length of the mask must be exactly equal to the size (in pages) of the metadata region */
assert(ctx->mask->length == ctx->super->md_len);
rc = spdk_bit_array_resize(&ctx->bs->used_md_pages, ctx->mask->length);
if (rc < 0) {
spdk_dma_free(ctx->super);
spdk_dma_free(ctx->mask);
_spdk_bs_free(ctx->bs);
free(ctx);
spdk_bs_sequence_finish(seq, -ENOMEM);
return;
}
for (i = 0; i < ctx->mask->length / 8; i++) {
uint8_t segment = ctx->mask->mask[i];
for (j = 0; segment && (j < 8); j++) {
if (segment & 1U) {
spdk_bit_array_set(ctx->bs->used_md_pages, (i * 8) + j);
}
segment >>= 1U;
}
}
spdk_dma_free(ctx->mask);
/* Read the used clusters mask */
mask_size = ctx->super->used_cluster_mask_len * SPDK_BS_PAGE_SIZE;
ctx->mask = spdk_dma_zmalloc(mask_size, 0x1000, NULL);
if (!ctx->mask) {
spdk_dma_free(ctx->super);
_spdk_bs_free(ctx->bs);
free(ctx);
spdk_bs_sequence_finish(seq, -ENOMEM);
return;
}
lba = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_cluster_mask_start);
lba_count = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_cluster_mask_len);
spdk_bs_sequence_read(seq, ctx->mask, lba, lba_count,
_spdk_bs_load_used_clusters_cpl, ctx);
}
static void
_spdk_bs_load_super_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_bs_load_ctx *ctx = cb_arg;
uint64_t lba, lba_count, mask_size;
if (ctx->super->version != SPDK_BS_VERSION) {
spdk_dma_free(ctx->super);
_spdk_bs_free(ctx->bs);
free(ctx);
spdk_bs_sequence_finish(seq, -EILSEQ);
return;
}
if (memcmp(ctx->super->signature, SPDK_BS_SUPER_BLOCK_SIG,
sizeof(ctx->super->signature)) != 0) {
spdk_dma_free(ctx->super);
_spdk_bs_free(ctx->bs);
free(ctx);
spdk_bs_sequence_finish(seq, -EILSEQ);
return;
}
if (ctx->super->clean != 1) {
/* TODO: ONLY CLEAN SHUTDOWN IS CURRENTLY SUPPORTED.
* All of the necessary data to recover is available
* on disk - the code just has not been written yet.
*/
assert(false);
spdk_dma_free(ctx->super);
_spdk_bs_free(ctx->bs);
free(ctx);
spdk_bs_sequence_finish(seq, -EILSEQ);
return;
}
ctx->super->clean = 0;
/* Parse the super block */
ctx->bs->cluster_sz = ctx->super->cluster_size;
ctx->bs->total_clusters = ctx->bs->dev->blockcnt / (ctx->bs->cluster_sz / ctx->bs->dev->blocklen);
ctx->bs->pages_per_cluster = ctx->bs->cluster_sz / SPDK_BS_PAGE_SIZE;
ctx->bs->md_start = ctx->super->md_start;
ctx->bs->md_len = ctx->super->md_len;
ctx->bs->super_blob = ctx->super->super_blob;
/* Read the used pages mask */
mask_size = ctx->super->used_page_mask_len * SPDK_BS_PAGE_SIZE;
ctx->mask = spdk_dma_zmalloc(mask_size, 0x1000, NULL);
if (!ctx->mask) {
spdk_dma_free(ctx->super);
_spdk_bs_free(ctx->bs);
free(ctx);
spdk_bs_sequence_finish(seq, -ENOMEM);
return;
}
lba = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_page_mask_start);
lba_count = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_page_mask_len);
spdk_bs_sequence_read(seq, ctx->mask, lba, lba_count,
_spdk_bs_load_used_pages_cpl, ctx);
}
void
spdk_bs_load(struct spdk_bs_dev *dev,
spdk_bs_op_with_handle_complete cb_fn, void *cb_arg)
{
struct spdk_blob_store *bs;
struct spdk_bs_cpl cpl;
spdk_bs_sequence_t *seq;
struct spdk_bs_load_ctx *ctx;
struct spdk_bs_opts opts = {};
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Loading blobstore from dev %p\n", dev);
spdk_bs_opts_init(&opts);
bs = _spdk_bs_alloc(dev, &opts);
if (!bs) {
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
_spdk_bs_free(bs);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
ctx->bs = bs;
/* Allocate memory for the super block */
ctx->super = spdk_dma_zmalloc(sizeof(*ctx->super), 0x1000, NULL);
if (!ctx->super) {
free(ctx);
_spdk_bs_free(bs);
return;
}
cpl.type = SPDK_BS_CPL_TYPE_BS_HANDLE;
cpl.u.bs_handle.cb_fn = cb_fn;
cpl.u.bs_handle.cb_arg = cb_arg;
cpl.u.bs_handle.bs = bs;
seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl);
if (!seq) {
spdk_dma_free(ctx->super);
free(ctx);
_spdk_bs_free(bs);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
/* Read the super block */
spdk_bs_sequence_read(seq, ctx->super, _spdk_bs_page_to_lba(bs, 0),
_spdk_bs_byte_to_lba(bs, sizeof(*ctx->super)),
_spdk_bs_load_super_cpl, ctx);
}
/* END spdk_bs_load */
/* START spdk_bs_init */
struct spdk_bs_init_ctx {
struct spdk_blob_store *bs;
struct spdk_bs_super_block *super;
};
static void
_spdk_bs_init_persist_super_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_bs_init_ctx *ctx = cb_arg;
spdk_dma_free(ctx->super);
free(ctx);
spdk_bs_sequence_finish(seq, bserrno);
}
static void
_spdk_bs_init_trim_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_bs_init_ctx *ctx = cb_arg;
/* Write super block */
spdk_bs_sequence_write(seq, ctx->super, _spdk_bs_page_to_lba(ctx->bs, 0),
_spdk_bs_byte_to_lba(ctx->bs, sizeof(*ctx->super)),
_spdk_bs_init_persist_super_cpl, ctx);
}
void
spdk_bs_init(struct spdk_bs_dev *dev, struct spdk_bs_opts *o,
spdk_bs_op_with_handle_complete cb_fn, void *cb_arg)
{
struct spdk_bs_init_ctx *ctx;
struct spdk_blob_store *bs;
struct spdk_bs_cpl cpl;
spdk_bs_sequence_t *seq;
uint64_t num_md_pages;
uint32_t i;
struct spdk_bs_opts opts = {};
int rc;
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Initializing blobstore on dev %p\n", dev);
if ((SPDK_BS_PAGE_SIZE % dev->blocklen) != 0) {
SPDK_ERRLOG("unsupported dev block length of %d\n",
dev->blocklen);
cb_fn(cb_arg, NULL, -EINVAL);
return;
}
if (o) {
opts = *o;
} else {
spdk_bs_opts_init(&opts);
}
bs = _spdk_bs_alloc(dev, &opts);
if (!bs) {
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
if (opts.num_md_pages == UINT32_MAX) {
/* By default, allocate 1 page per cluster.
* Technically, this over-allocates metadata
* because more metadata will reduce the number
* of usable clusters. This can be addressed with
* more complex math in the future.
*/
bs->md_len = bs->total_clusters;
} else {
bs->md_len = opts.num_md_pages;
}
rc = spdk_bit_array_resize(&bs->used_md_pages, bs->md_len);
if (rc < 0) {
_spdk_bs_free(bs);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
_spdk_bs_free(bs);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
ctx->bs = bs;
/* Allocate memory for the super block */
ctx->super = spdk_dma_zmalloc(sizeof(*ctx->super), 0x1000, NULL);
if (!ctx->super) {
free(ctx);
_spdk_bs_free(bs);
return;
}
memcpy(ctx->super->signature, SPDK_BS_SUPER_BLOCK_SIG,
sizeof(ctx->super->signature));
ctx->super->version = SPDK_BS_VERSION;
ctx->super->length = sizeof(*ctx->super);
ctx->super->super_blob = bs->super_blob;
ctx->super->clean = 0;
ctx->super->cluster_size = bs->cluster_sz;
/* Calculate how many pages the metadata consumes at the front
* of the disk.
*/
/* The super block uses 1 page */
num_md_pages = 1;
/* The used_md_pages mask requires 1 bit per metadata page, rounded
* up to the nearest page, plus a header.
*/
ctx->super->used_page_mask_start = num_md_pages;
ctx->super->used_page_mask_len = divide_round_up(sizeof(struct spdk_bs_md_mask) +
divide_round_up(bs->md_len, 8),
SPDK_BS_PAGE_SIZE);
num_md_pages += ctx->super->used_page_mask_len;
/* The used_clusters mask requires 1 bit per cluster, rounded
* up to the nearest page, plus a header.
*/
ctx->super->used_cluster_mask_start = num_md_pages;
ctx->super->used_cluster_mask_len = divide_round_up(sizeof(struct spdk_bs_md_mask) +
divide_round_up(bs->total_clusters, 8),
SPDK_BS_PAGE_SIZE);
num_md_pages += ctx->super->used_cluster_mask_len;
/* The metadata region size was chosen above */
ctx->super->md_start = bs->md_start = num_md_pages;
ctx->super->md_len = bs->md_len;
num_md_pages += bs->md_len;
/* Claim all of the clusters used by the metadata */
for (i = 0; i < divide_round_up(num_md_pages, bs->pages_per_cluster); i++) {
_spdk_bs_claim_cluster(bs, i);
}
cpl.type = SPDK_BS_CPL_TYPE_BS_HANDLE;
cpl.u.bs_handle.cb_fn = cb_fn;
cpl.u.bs_handle.cb_arg = cb_arg;
cpl.u.bs_handle.bs = bs;
seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl);
if (!seq) {
spdk_dma_free(ctx->super);
free(ctx);
_spdk_bs_free(bs);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
/* TRIM the entire device */
spdk_bs_sequence_unmap(seq, 0, bs->dev->blockcnt, _spdk_bs_init_trim_cpl, ctx);
}
/* END spdk_bs_init */
/* START spdk_bs_unload */
struct spdk_bs_unload_ctx {
struct spdk_blob_store *bs;
struct spdk_bs_super_block *super;
struct spdk_bs_md_mask *mask;
};
static void
_spdk_bs_unload_write_super_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_bs_unload_ctx *ctx = cb_arg;
spdk_dma_free(ctx->super);
spdk_bs_sequence_finish(seq, bserrno);
_spdk_bs_free(ctx->bs);
free(ctx);
}
static void
_spdk_bs_unload_write_used_clusters_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_bs_unload_ctx *ctx = cb_arg;
spdk_dma_free(ctx->mask);
/* Update the values in the super block */
ctx->super->super_blob = ctx->bs->super_blob;
ctx->super->clean = 1;
spdk_bs_sequence_write(seq, ctx->super, _spdk_bs_page_to_lba(ctx->bs, 0),
_spdk_bs_byte_to_lba(ctx->bs, sizeof(*ctx->super)),
_spdk_bs_unload_write_super_cpl, ctx);
}
static void
_spdk_bs_unload_write_used_pages_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_bs_unload_ctx *ctx = cb_arg;
uint32_t i;
uint64_t lba, lba_count, mask_size;
spdk_dma_free(ctx->mask);
/* Write out the used clusters mask */
mask_size = ctx->super->used_cluster_mask_len * SPDK_BS_PAGE_SIZE;
ctx->mask = spdk_dma_zmalloc(mask_size, 0x1000, NULL);
if (!ctx->mask) {
spdk_dma_free(ctx->super);
free(ctx);
spdk_bs_sequence_finish(seq, -ENOMEM);
return;
}
ctx->mask->type = SPDK_MD_MASK_TYPE_USED_CLUSTERS;
ctx->mask->length = ctx->bs->total_clusters;
assert(ctx->mask->length == spdk_bit_array_capacity(ctx->bs->used_clusters));
i = 0;
while (true) {
i = spdk_bit_array_find_first_set(ctx->bs->used_clusters, i);
if (i > ctx->mask->length) {
break;
}
ctx->mask->mask[i / 8] |= 1U << (i % 8);
i++;
}
lba = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_cluster_mask_start);
lba_count = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_cluster_mask_len);
spdk_bs_sequence_write(seq, ctx->mask, lba, lba_count,
_spdk_bs_unload_write_used_clusters_cpl, ctx);
}
static void
_spdk_bs_unload_read_super_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_bs_unload_ctx *ctx = cb_arg;
uint32_t i;
uint64_t lba, lba_count, mask_size;
/* Write out the used page mask */
mask_size = ctx->super->used_page_mask_len * SPDK_BS_PAGE_SIZE;
ctx->mask = spdk_dma_zmalloc(mask_size, 0x1000, NULL);
if (!ctx->mask) {
spdk_dma_free(ctx->super);
free(ctx);
spdk_bs_sequence_finish(seq, -ENOMEM);
return;
}
ctx->mask->type = SPDK_MD_MASK_TYPE_USED_PAGES;
ctx->mask->length = ctx->super->md_len;
assert(ctx->mask->length == spdk_bit_array_capacity(ctx->bs->used_md_pages));
i = 0;
while (true) {
i = spdk_bit_array_find_first_set(ctx->bs->used_md_pages, i);
if (i > ctx->mask->length) {
break;
}
ctx->mask->mask[i / 8] |= 1U << (i % 8);
i++;
}
lba = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_page_mask_start);
lba_count = _spdk_bs_page_to_lba(ctx->bs, ctx->super->used_page_mask_len);
spdk_bs_sequence_write(seq, ctx->mask, lba, lba_count,
_spdk_bs_unload_write_used_pages_cpl, ctx);
}
void
spdk_bs_unload(struct spdk_blob_store *bs, spdk_bs_op_complete cb_fn, void *cb_arg)
{
struct spdk_bs_cpl cpl;
spdk_bs_sequence_t *seq;
struct spdk_bs_unload_ctx *ctx;
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Syncing blobstore\n");
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
cb_fn(cb_arg, -ENOMEM);
return;
}
ctx->bs = bs;
ctx->super = spdk_dma_zmalloc(sizeof(*ctx->super), 0x1000, NULL);
if (!ctx->super) {
free(ctx);
cb_fn(cb_arg, -ENOMEM);
return;
}
cpl.type = SPDK_BS_CPL_TYPE_BS_BASIC;
cpl.u.bs_basic.cb_fn = cb_fn;
cpl.u.bs_basic.cb_arg = cb_arg;
seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl);
if (!seq) {
spdk_dma_free(ctx->super);
free(ctx);
cb_fn(cb_arg, -ENOMEM);
return;
}
assert(TAILQ_EMPTY(&bs->blobs));
/* Read super block */
spdk_bs_sequence_read(seq, ctx->super, _spdk_bs_page_to_lba(bs, 0),
_spdk_bs_byte_to_lba(bs, sizeof(*ctx->super)),
_spdk_bs_unload_read_super_cpl, ctx);
}
/* END spdk_bs_unload */
void
spdk_bs_set_super(struct spdk_blob_store *bs, spdk_blob_id blobid,
spdk_bs_op_complete cb_fn, void *cb_arg)
{
bs->super_blob = blobid;
cb_fn(cb_arg, 0);
}
void
spdk_bs_get_super(struct spdk_blob_store *bs,
spdk_blob_op_with_id_complete cb_fn, void *cb_arg)
{
if (bs->super_blob == SPDK_BLOBID_INVALID) {
cb_fn(cb_arg, SPDK_BLOBID_INVALID, -ENOENT);
} else {
cb_fn(cb_arg, bs->super_blob, 0);
}
}
uint64_t
spdk_bs_get_cluster_size(struct spdk_blob_store *bs)
{
return bs->cluster_sz;
}
uint64_t
spdk_bs_get_page_size(struct spdk_blob_store *bs)
{
return SPDK_BS_PAGE_SIZE;
}
uint64_t
spdk_bs_free_cluster_count(struct spdk_blob_store *bs)
{
return bs->num_free_clusters;
}
int spdk_bs_register_md_thread(struct spdk_blob_store *bs)
{
bs->md_target.md_channel = spdk_get_io_channel(&bs->md_target);
return 0;
}
int spdk_bs_unregister_md_thread(struct spdk_blob_store *bs)
{
spdk_put_io_channel(bs->md_target.md_channel);
return 0;
}
spdk_blob_id spdk_blob_get_id(struct spdk_blob *blob)
{
assert(blob != NULL);
return blob->id;
}
uint64_t spdk_blob_get_num_pages(struct spdk_blob *blob)
{
assert(blob != NULL);
return _spdk_bs_cluster_to_page(blob->bs, blob->active.num_clusters);
}
uint64_t spdk_blob_get_num_clusters(struct spdk_blob *blob)
{
assert(blob != NULL);
return blob->active.num_clusters;
}
/* START spdk_bs_md_create_blob */
static void
_spdk_bs_md_create_blob_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob *blob = cb_arg;
_spdk_blob_free(blob);
spdk_bs_sequence_finish(seq, bserrno);
}
void spdk_bs_md_create_blob(struct spdk_blob_store *bs,
spdk_blob_op_with_id_complete cb_fn, void *cb_arg)
{
struct spdk_blob *blob;
uint32_t page_idx;
struct spdk_bs_cpl cpl;
spdk_bs_sequence_t *seq;
spdk_blob_id id;
page_idx = spdk_bit_array_find_first_clear(bs->used_md_pages, 0);
if (page_idx >= spdk_bit_array_capacity(bs->used_md_pages)) {
cb_fn(cb_arg, 0, -ENOMEM);
return;
}
spdk_bit_array_set(bs->used_md_pages, page_idx);
/* The blob id is a 64 bit number. The lower 32 bits are the page_idx. The upper
* 32 bits are not currently used. Stick a 1 there just to catch bugs where the
* code assumes blob id == page_idx.
*/
id = (1ULL << 32) | page_idx;
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Creating blob with id %lu at page %u\n", id, page_idx);
blob = _spdk_blob_alloc(bs, id);
if (!blob) {
cb_fn(cb_arg, 0, -ENOMEM);
return;
}
cpl.type = SPDK_BS_CPL_TYPE_BLOBID;
cpl.u.blobid.cb_fn = cb_fn;
cpl.u.blobid.cb_arg = cb_arg;
cpl.u.blobid.blobid = blob->id;
seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl);
if (!seq) {
_spdk_blob_free(blob);
cb_fn(cb_arg, 0, -ENOMEM);
return;
}
_spdk_blob_persist(seq, blob, _spdk_bs_md_create_blob_cpl, blob);
}
/* END spdk_bs_md_create_blob */
/* START spdk_bs_md_resize_blob */
int
spdk_bs_md_resize_blob(struct spdk_blob *blob, uint64_t sz)
{
int rc;
assert(blob != NULL);
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Resizing blob %lu to %lu clusters\n", blob->id, sz);
if (sz == blob->active.num_clusters) {
return 0;
}
rc = _spdk_resize_blob(blob, sz);
if (rc < 0) {
return rc;
}
return 0;
}
/* END spdk_bs_md_resize_blob */
/* START spdk_bs_md_delete_blob */
static void
_spdk_bs_md_delete_blob_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob *blob = cb_arg;
_spdk_blob_free(blob);
spdk_bs_sequence_finish(seq, bserrno);
}
static void
_spdk_bs_md_delete_open_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob *blob = cb_arg;
blob->state = SPDK_BLOB_STATE_DIRTY;
blob->active.num_pages = 0;
_spdk_resize_blob(blob, 0);
_spdk_blob_persist(seq, blob, _spdk_bs_md_delete_blob_cpl, blob);
}
void
spdk_bs_md_delete_blob(struct spdk_blob_store *bs, spdk_blob_id blobid,
spdk_blob_op_complete cb_fn, void *cb_arg)
{
struct spdk_blob *blob;
struct spdk_bs_cpl cpl;
spdk_bs_sequence_t *seq;
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Deleting blob %lu\n", blobid);
blob = _spdk_blob_lookup(bs, blobid);
if (blob) {
assert(blob->open_ref > 0);
cb_fn(cb_arg, -EINVAL);
return;
}
blob = _spdk_blob_alloc(bs, blobid);
if (!blob) {
cb_fn(cb_arg, -ENOMEM);
return;
}
cpl.type = SPDK_BS_CPL_TYPE_BLOB_BASIC;
cpl.u.blob_basic.cb_fn = cb_fn;
cpl.u.blob_basic.cb_arg = cb_arg;
seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl);
if (!seq) {
_spdk_blob_free(blob);
cb_fn(cb_arg, -ENOMEM);
return;
}
_spdk_blob_load(seq, blob, _spdk_bs_md_delete_open_cpl, blob);
}
/* END spdk_bs_md_delete_blob */
/* START spdk_bs_md_open_blob */
static void
_spdk_bs_md_open_blob_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob *blob = cb_arg;
blob->open_ref++;
TAILQ_INSERT_HEAD(&blob->bs->blobs, blob, link);
spdk_bs_sequence_finish(seq, bserrno);
}
void spdk_bs_md_open_blob(struct spdk_blob_store *bs, spdk_blob_id blobid,
spdk_blob_op_with_handle_complete cb_fn, void *cb_arg)
{
struct spdk_blob *blob;
struct spdk_bs_cpl cpl;
spdk_bs_sequence_t *seq;
uint32_t page_num;
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Opening blob %lu\n", blobid);
blob = _spdk_blob_lookup(bs, blobid);
if (blob) {
blob->open_ref++;
cb_fn(cb_arg, blob, 0);
return;
}
page_num = _spdk_bs_blobid_to_page(blobid);
if (spdk_bit_array_get(bs->used_md_pages, page_num) == false) {
/* Invalid blobid */
cb_fn(cb_arg, NULL, -ENOENT);
return;
}
blob = _spdk_blob_alloc(bs, blobid);
if (!blob) {
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
cpl.type = SPDK_BS_CPL_TYPE_BLOB_HANDLE;
cpl.u.blob_handle.cb_fn = cb_fn;
cpl.u.blob_handle.cb_arg = cb_arg;
cpl.u.blob_handle.blob = blob;
seq = spdk_bs_sequence_start(bs->md_target.md_channel, &cpl);
if (!seq) {
_spdk_blob_free(blob);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
_spdk_blob_load(seq, blob, _spdk_bs_md_open_blob_cpl, blob);
}
/* START spdk_bs_md_sync_blob */
static void
_spdk_blob_sync_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
spdk_bs_sequence_finish(seq, bserrno);
}
void spdk_bs_md_sync_blob(struct spdk_blob *blob,
spdk_blob_op_complete cb_fn, void *cb_arg)
{
struct spdk_bs_cpl cpl;
spdk_bs_sequence_t *seq;
assert(blob != NULL);
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Syncing blob %lu\n", blob->id);
assert(blob->state != SPDK_BLOB_STATE_LOADING &&
blob->state != SPDK_BLOB_STATE_SYNCING);
if (blob->state == SPDK_BLOB_STATE_CLEAN) {
cb_fn(cb_arg, 0);
return;
}
cpl.type = SPDK_BS_CPL_TYPE_BLOB_BASIC;
cpl.u.blob_basic.cb_fn = cb_fn;
cpl.u.blob_basic.cb_arg = cb_arg;
seq = spdk_bs_sequence_start(blob->bs->md_target.md_channel, &cpl);
if (!seq) {
cb_fn(cb_arg, -ENOMEM);
return;
}
_spdk_blob_persist(seq, blob, _spdk_blob_sync_cpl, blob);
}
/* END spdk_bs_md_sync_blob */
/* START spdk_bs_md_close_blob */
static void
_spdk_blob_close_cpl(spdk_bs_sequence_t *seq, void *cb_arg, int bserrno)
{
struct spdk_blob **blob = cb_arg;
if ((*blob)->open_ref == 0) {
TAILQ_REMOVE(&(*blob)->bs->blobs, (*blob), link);
_spdk_blob_free((*blob));
}
*blob = NULL;
spdk_bs_sequence_finish(seq, bserrno);
}
void spdk_bs_md_close_blob(struct spdk_blob **b,
spdk_blob_op_complete cb_fn, void *cb_arg)
{
struct spdk_bs_cpl cpl;
struct spdk_blob *blob;
spdk_bs_sequence_t *seq;
assert(b != NULL);
blob = *b;
assert(blob != NULL);
SPDK_DEBUGLOG(SPDK_TRACE_BLOB, "Closing blob %lu\n", blob->id);
assert(blob->state != SPDK_BLOB_STATE_LOADING &&
blob->state != SPDK_BLOB_STATE_SYNCING);
if (blob->open_ref == 0) {
cb_fn(cb_arg, -EBADF);
return;
}
blob->open_ref--;
cpl.type = SPDK_BS_CPL_TYPE_BLOB_BASIC;
cpl.u.blob_basic.cb_fn = cb_fn;
cpl.u.blob_basic.cb_arg = cb_arg;
seq = spdk_bs_sequence_start(blob->bs->md_target.md_channel, &cpl);
if (!seq) {
cb_fn(cb_arg, -ENOMEM);
return;
}
if (blob->state == SPDK_BLOB_STATE_CLEAN) {
_spdk_blob_close_cpl(seq, b, 0);
return;
}
/* Sync metadata */
_spdk_blob_persist(seq, blob, _spdk_blob_close_cpl, b);
}
/* END spdk_bs_md_close_blob */
struct spdk_io_channel *spdk_bs_alloc_io_channel(struct spdk_blob_store *bs)
{
return spdk_get_io_channel(&bs->io_target);
}
void spdk_bs_free_io_channel(struct spdk_io_channel *channel)
{
spdk_put_io_channel(channel);
}
void spdk_bs_io_flush_channel(struct spdk_io_channel *channel,
spdk_blob_op_complete cb_fn, void *cb_arg)
{
/* Flush is synchronous right now */
cb_fn(cb_arg, 0);
}
void spdk_bs_io_write_blob(struct spdk_blob *blob, struct spdk_io_channel *channel,
void *payload, uint64_t offset, uint64_t length,
spdk_blob_op_complete cb_fn, void *cb_arg)
{
_spdk_blob_request_submit_rw(blob, channel, payload, offset, length, cb_fn, cb_arg, false);
}
void spdk_bs_io_read_blob(struct spdk_blob *blob, struct spdk_io_channel *channel,
void *payload, uint64_t offset, uint64_t length,
spdk_blob_op_complete cb_fn, void *cb_arg)
{
_spdk_blob_request_submit_rw(blob, channel, payload, offset, length, cb_fn, cb_arg, true);
}
void spdk_bs_io_writev_blob(struct spdk_blob *blob, struct spdk_io_channel *channel,
struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length,
spdk_blob_op_complete cb_fn, void *cb_arg)
{
_spdk_blob_request_submit_rw_iov(blob, channel, iov, iovcnt, offset, length, cb_fn, cb_arg, false);
}
void spdk_bs_io_readv_blob(struct spdk_blob *blob, struct spdk_io_channel *channel,
struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length,
spdk_blob_op_complete cb_fn, void *cb_arg)
{
_spdk_blob_request_submit_rw_iov(blob, channel, iov, iovcnt, offset, length, cb_fn, cb_arg, true);
}
struct spdk_bs_iter_ctx {
int64_t page_num;
struct spdk_blob_store *bs;
spdk_blob_op_with_handle_complete cb_fn;
void *cb_arg;
};
static void
_spdk_bs_iter_cpl(void *cb_arg, struct spdk_blob *blob, int bserrno)
{
struct spdk_bs_iter_ctx *ctx = cb_arg;
struct spdk_blob_store *bs = ctx->bs;
spdk_blob_id id;
if (bserrno == 0) {
ctx->cb_fn(ctx->cb_arg, blob, bserrno);
free(ctx);
return;
}
ctx->page_num++;
ctx->page_num = spdk_bit_array_find_first_set(bs->used_md_pages, ctx->page_num);
if (ctx->page_num >= spdk_bit_array_capacity(bs->used_md_pages)) {
ctx->cb_fn(ctx->cb_arg, NULL, -ENOENT);
free(ctx);
return;
}
id = (1ULL << 32) | ctx->page_num;
blob = _spdk_blob_lookup(bs, id);
if (blob) {
blob->open_ref++;
ctx->cb_fn(ctx->cb_arg, blob, 0);
free(ctx);
return;
}
spdk_bs_md_open_blob(bs, id, _spdk_bs_iter_cpl, ctx);
}
void
spdk_bs_md_iter_first(struct spdk_blob_store *bs,
spdk_blob_op_with_handle_complete cb_fn, void *cb_arg)
{
struct spdk_bs_iter_ctx *ctx;
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
ctx->page_num = -1;
ctx->bs = bs;
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
_spdk_bs_iter_cpl(ctx, NULL, -1);
}
static void
_spdk_bs_iter_close_cpl(void *cb_arg, int bserrno)
{
struct spdk_bs_iter_ctx *ctx = cb_arg;
_spdk_bs_iter_cpl(ctx, NULL, -1);
}
void
spdk_bs_md_iter_next(struct spdk_blob_store *bs, struct spdk_blob **b,
spdk_blob_op_with_handle_complete cb_fn, void *cb_arg)
{
struct spdk_bs_iter_ctx *ctx;
struct spdk_blob *blob;
assert(b != NULL);
blob = *b;
assert(blob != NULL);
ctx = calloc(1, sizeof(*ctx));
if (!ctx) {
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
ctx->page_num = _spdk_bs_blobid_to_page(blob->id);
ctx->bs = bs;
ctx->cb_fn = cb_fn;
ctx->cb_arg = cb_arg;
/* Close the existing blob */
spdk_bs_md_close_blob(b, _spdk_bs_iter_close_cpl, ctx);
}
int
spdk_blob_md_set_xattr(struct spdk_blob *blob, const char *name, const void *value,
uint16_t value_len)
{
struct spdk_xattr *xattr;
assert(blob != NULL);
assert(blob->state != SPDK_BLOB_STATE_LOADING &&
blob->state != SPDK_BLOB_STATE_SYNCING);
TAILQ_FOREACH(xattr, &blob->xattrs, link) {
if (!strcmp(name, xattr->name)) {
free(xattr->value);
xattr->value_len = value_len;
xattr->value = malloc(value_len);
memcpy(xattr->value, value, value_len);
blob->state = SPDK_BLOB_STATE_DIRTY;
return 0;
}
}
xattr = calloc(1, sizeof(*xattr));
if (!xattr) {
return -1;
}
xattr->name = strdup(name);
xattr->value_len = value_len;
xattr->value = malloc(value_len);
memcpy(xattr->value, value, value_len);
TAILQ_INSERT_TAIL(&blob->xattrs, xattr, link);
blob->state = SPDK_BLOB_STATE_DIRTY;
return 0;
}
int
spdk_blob_md_remove_xattr(struct spdk_blob *blob, const char *name)
{
struct spdk_xattr *xattr;
assert(blob != NULL);
assert(blob->state != SPDK_BLOB_STATE_LOADING &&
blob->state != SPDK_BLOB_STATE_SYNCING);
TAILQ_FOREACH(xattr, &blob->xattrs, link) {
if (!strcmp(name, xattr->name)) {
TAILQ_REMOVE(&blob->xattrs, xattr, link);
free(xattr->value);
free(xattr->name);
free(xattr);
blob->state = SPDK_BLOB_STATE_DIRTY;
return 0;
}
}
return -ENOENT;
}
int
spdk_bs_md_get_xattr_value(struct spdk_blob *blob, const char *name,
const void **value, size_t *value_len)
{
struct spdk_xattr *xattr;
TAILQ_FOREACH(xattr, &blob->xattrs, link) {
if (!strcmp(name, xattr->name)) {
*value = xattr->value;
*value_len = xattr->value_len;
return 0;
}
}
return -ENOENT;
}
struct spdk_xattr_names {
uint32_t count;
const char *names[0];
};
int
spdk_bs_md_get_xattr_names(struct spdk_blob *blob,
struct spdk_xattr_names **names)
{
struct spdk_xattr *xattr;
int count = 0;
TAILQ_FOREACH(xattr, &blob->xattrs, link) {
count++;
}
*names = calloc(1, sizeof(struct spdk_xattr_names) + count * sizeof(char *));
if (*names == NULL) {
return -ENOMEM;
}
TAILQ_FOREACH(xattr, &blob->xattrs, link) {
(*names)->names[(*names)->count++] = xattr->name;
}
return 0;
}
uint32_t
spdk_xattr_names_get_count(struct spdk_xattr_names *names)
{
assert(names != NULL);
return names->count;
}
const char *
spdk_xattr_names_get_name(struct spdk_xattr_names *names, uint32_t index)
{
if (index >= names->count) {
return NULL;
}
return names->names[index];
}
void
spdk_xattr_names_free(struct spdk_xattr_names *names)
{
free(names);
}
SPDK_LOG_REGISTER_TRACE_FLAG("blob", SPDK_TRACE_BLOB);