numam-spdk/lib/nvme/nvme.c
Daniel Verkamp 8217814218 nvme: remove dump_command and dump_completion
nvme_dump_command is totally unused aside from the unit test.

nvme_dump_completion was used in qpair, but it can be replaced with the
equivalent nvme_qpair_print_completion.

Also added the missing nvme_completion fields to nvme_qpair_print_completion
that had been printed by nvme_dump_command.

Change-Id: Ia5ee66f3553df06febe8f465d42e49a84c555dd2
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
2015-09-22 15:48:12 -07:00

273 lines
6.9 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "nvme_internal.h"
/** \file
*
*/
struct nvme_driver g_nvme_driver = {
.lock = NVME_MUTEX_INITIALIZER,
.max_io_queues = NVME_MAX_IO_QUEUES
};
int32_t nvme_retry_count;
int __thread nvme_thread_ioq_index = -1;
/**
* \page nvme_initialization NVMe Initialization
\msc
app [label="Application"], nvme [label="NVMe Driver"];
app=>nvme [label="nvme_attach(devhandle)"];
app<<nvme [label="nvme_controller ptr"];
app=>nvme [label="nvme_ctrlr_start(nvme_controller ptr)"];
nvme=>nvme [label="identify controller"];
nvme=>nvme [label="create queue pairs"];
nvme=>nvme [label="identify namespace(s)"];
app=>app [label="create block devices based on controller's namespaces"];
\endmsc
*/
struct nvme_controller *
nvme_attach(void *devhandle)
{
struct nvme_controller *ctrlr;
int status;
uint64_t phys_addr = 0;
ctrlr = nvme_malloc("nvme_ctrlr", sizeof(struct nvme_controller),
64, &phys_addr);
if (ctrlr == NULL) {
nvme_printf(NULL, "could not allocate ctrlr\n");
return NULL;
}
status = nvme_ctrlr_construct(ctrlr, devhandle);
if (status != 0) {
nvme_free(ctrlr);
return NULL;
}
if (nvme_ctrlr_start(ctrlr) != 0) {
nvme_ctrlr_destruct(ctrlr);
nvme_free(ctrlr);
return NULL;
}
return ctrlr;
}
int
nvme_detach(struct nvme_controller *ctrlr)
{
nvme_ctrlr_destruct(ctrlr);
nvme_free(ctrlr);
return 0;
}
void
nvme_completion_poll_cb(void *arg, const struct nvme_completion *cpl)
{
struct nvme_completion_poll_status *status = arg;
/*
* Copy status into the argument passed by the caller, so that
* the caller can check the status to determine if the
* the request passed or failed.
*/
memcpy(&status->cpl, cpl, sizeof(*cpl));
status->done = true;
}
size_t
nvme_request_size(void)
{
return sizeof(struct nvme_request);
}
struct nvme_request *
nvme_allocate_request(void *payload, uint32_t payload_size,
nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req = NULL;
nvme_alloc_request(&req);
if (req == NULL) {
return req;
}
/*
* Only memset up to (but not including) the children
* TAILQ_ENTRY. children, and following members, are
* only used as part of I/O splitting so we avoid
* memsetting them until it is actually needed.
*/
memset(req, 0, offsetof(struct nvme_request, children));
req->cb_fn = cb_fn;
req->cb_arg = cb_arg;
req->timeout = true;
nvme_assert((payload == NULL && payload_size == 0) ||
(payload != NULL && payload_size != 0),
("Invalid argument combination of payload and payload_size\n"));
if (payload == NULL || payload_size == 0) {
req->u.payload = NULL;
req->payload_size = 0;
} else {
req->u.payload = payload;
req->payload_size = payload_size;
}
return req;
}
void
nvme_cb_complete_child(void *child_arg, const struct nvme_completion *cpl)
{
struct nvme_request *child = child_arg;
struct nvme_request *parent = child->parent;
parent->num_children--;
TAILQ_REMOVE(&parent->children, child, child_tailq);
if (nvme_completion_is_error(cpl)) {
memcpy(&parent->parent_status, cpl, sizeof(*cpl));
}
if (parent->num_children == 0) {
if (parent->cb_fn) {
parent->cb_fn(parent->cb_arg, &parent->parent_status);
}
nvme_free_request(parent);
}
}
void
nvme_request_add_child(struct nvme_request *parent, struct nvme_request *child)
{
if (parent->num_children == 0) {
/*
* Defer initialization of the children TAILQ since it falls
* on a separate cacheline. This ensures we do not touch this
* cacheline except on request splitting cases, which are
* relatively rare.
*/
TAILQ_INIT(&parent->children);
memset(&parent->parent_status, 0, sizeof(struct nvme_completion));
}
parent->num_children++;
TAILQ_INSERT_TAIL(&parent->children, child, child_tailq);
child->parent = parent;
child->cb_fn = nvme_cb_complete_child;
child->cb_arg = child;
}
static int
nvme_allocate_ioq_index(void)
{
struct nvme_driver *driver = &g_nvme_driver;
uint32_t i;
nvme_mutex_lock(&driver->lock);
if (driver->ioq_index_pool == NULL) {
driver->ioq_index_pool =
calloc(driver->max_io_queues, sizeof(*driver->ioq_index_pool));
if (driver->ioq_index_pool) {
for (i = 0; i < driver->max_io_queues; i++) {
driver->ioq_index_pool[i] = i;
}
} else {
nvme_mutex_unlock(&driver->lock);
return -1;
}
driver->ioq_index_pool_next = 0;
}
if (driver->ioq_index_pool_next < driver->max_io_queues) {
nvme_thread_ioq_index = driver->ioq_index_pool[driver->ioq_index_pool_next];
driver->ioq_index_pool[driver->ioq_index_pool_next] = -1;
driver->ioq_index_pool_next++;
} else {
nvme_thread_ioq_index = -1;
}
nvme_mutex_unlock(&driver->lock);
return 0;
}
static void
nvme_free_ioq_index(void)
{
struct nvme_driver *driver = &g_nvme_driver;
nvme_mutex_lock(&driver->lock);
if (nvme_thread_ioq_index >= 0) {
driver->ioq_index_pool_next--;
driver->ioq_index_pool[driver->ioq_index_pool_next] = nvme_thread_ioq_index;
nvme_thread_ioq_index = -1;
}
nvme_mutex_unlock(&driver->lock);
}
int
nvme_register_io_thread(void)
{
int rc = 0;
if (nvme_thread_ioq_index >= 0) {
nvme_printf(NULL, "thread already registered\n");
return -1;
}
rc = nvme_allocate_ioq_index();
if (rc) {
nvme_printf(NULL, "ioq_index_pool alloc failed\n");
return rc;
}
return (nvme_thread_ioq_index >= 0) ? 0 : -1;
}
void
nvme_unregister_io_thread(void)
{
nvme_free_ioq_index();
}