79945ef0ed
This patch makes multi SGL case possible to call spdk_nvmf_request_get_buffers() per WR. This patch has an unrelated fix to clear req->iovcnt in reset_nvmf_rdma_request() in UT. We can do the fix in a separate patch but include it in this patch because it is very small. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: If6e5af0505fb199c95ef5d0522b579242a7cef29 Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/468942 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Alexey Marchuk <alexeymar@mellanox.com> Reviewed-by: Seth Howell <seth.howell@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com>
4045 lines
126 KiB
C
4045 lines
126 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2019 Mellanox Technologies LTD. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include <infiniband/verbs.h>
|
|
#include <rdma/rdma_cma.h>
|
|
#include <rdma/rdma_verbs.h>
|
|
|
|
#include "nvmf_internal.h"
|
|
#include "transport.h"
|
|
|
|
#include "spdk/config.h"
|
|
#include "spdk/thread.h"
|
|
#include "spdk/nvmf.h"
|
|
#include "spdk/nvmf_spec.h"
|
|
#include "spdk/string.h"
|
|
#include "spdk/trace.h"
|
|
#include "spdk/util.h"
|
|
|
|
#include "spdk_internal/assert.h"
|
|
#include "spdk_internal/log.h"
|
|
|
|
struct spdk_nvme_rdma_hooks g_nvmf_hooks = {};
|
|
|
|
/*
|
|
RDMA Connection Resource Defaults
|
|
*/
|
|
#define NVMF_DEFAULT_TX_SGE SPDK_NVMF_MAX_SGL_ENTRIES
|
|
#define NVMF_DEFAULT_RSP_SGE 1
|
|
#define NVMF_DEFAULT_RX_SGE 2
|
|
|
|
/* The RDMA completion queue size */
|
|
#define DEFAULT_NVMF_RDMA_CQ_SIZE 4096
|
|
#define MAX_WR_PER_QP(queue_depth) (queue_depth * 3 + 2)
|
|
|
|
/* Timeout for destroying defunct rqpairs */
|
|
#define NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US 4000000
|
|
|
|
/* The maximum number of buffers per request */
|
|
#define NVMF_REQ_MAX_BUFFERS (SPDK_NVMF_MAX_SGL_ENTRIES * 2)
|
|
|
|
static int g_spdk_nvmf_ibv_query_mask =
|
|
IBV_QP_STATE |
|
|
IBV_QP_PKEY_INDEX |
|
|
IBV_QP_PORT |
|
|
IBV_QP_ACCESS_FLAGS |
|
|
IBV_QP_AV |
|
|
IBV_QP_PATH_MTU |
|
|
IBV_QP_DEST_QPN |
|
|
IBV_QP_RQ_PSN |
|
|
IBV_QP_MAX_DEST_RD_ATOMIC |
|
|
IBV_QP_MIN_RNR_TIMER |
|
|
IBV_QP_SQ_PSN |
|
|
IBV_QP_TIMEOUT |
|
|
IBV_QP_RETRY_CNT |
|
|
IBV_QP_RNR_RETRY |
|
|
IBV_QP_MAX_QP_RD_ATOMIC;
|
|
|
|
enum spdk_nvmf_rdma_request_state {
|
|
/* The request is not currently in use */
|
|
RDMA_REQUEST_STATE_FREE = 0,
|
|
|
|
/* Initial state when request first received */
|
|
RDMA_REQUEST_STATE_NEW,
|
|
|
|
/* The request is queued until a data buffer is available. */
|
|
RDMA_REQUEST_STATE_NEED_BUFFER,
|
|
|
|
/* The request is waiting on RDMA queue depth availability
|
|
* to transfer data from the host to the controller.
|
|
*/
|
|
RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
|
|
|
|
/* The request is currently transferring data from the host to the controller. */
|
|
RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
|
|
|
|
/* The request is ready to execute at the block device */
|
|
RDMA_REQUEST_STATE_READY_TO_EXECUTE,
|
|
|
|
/* The request is currently executing at the block device */
|
|
RDMA_REQUEST_STATE_EXECUTING,
|
|
|
|
/* The request finished executing at the block device */
|
|
RDMA_REQUEST_STATE_EXECUTED,
|
|
|
|
/* The request is waiting on RDMA queue depth availability
|
|
* to transfer data from the controller to the host.
|
|
*/
|
|
RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
|
|
|
|
/* The request is ready to send a completion */
|
|
RDMA_REQUEST_STATE_READY_TO_COMPLETE,
|
|
|
|
/* The request is currently transferring data from the controller to the host. */
|
|
RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
|
|
|
|
/* The request currently has an outstanding completion without an
|
|
* associated data transfer.
|
|
*/
|
|
RDMA_REQUEST_STATE_COMPLETING,
|
|
|
|
/* The request completed and can be marked free. */
|
|
RDMA_REQUEST_STATE_COMPLETED,
|
|
|
|
/* Terminator */
|
|
RDMA_REQUEST_NUM_STATES,
|
|
};
|
|
|
|
#define OBJECT_NVMF_RDMA_IO 0x40
|
|
|
|
#define TRACE_GROUP_NVMF_RDMA 0x4
|
|
#define TRACE_RDMA_REQUEST_STATE_NEW SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x0)
|
|
#define TRACE_RDMA_REQUEST_STATE_NEED_BUFFER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x1)
|
|
#define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x2)
|
|
#define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x3)
|
|
#define TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x4)
|
|
#define TRACE_RDMA_REQUEST_STATE_EXECUTING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x5)
|
|
#define TRACE_RDMA_REQUEST_STATE_EXECUTED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x6)
|
|
#define TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x7)
|
|
#define TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x8)
|
|
#define TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x9)
|
|
#define TRACE_RDMA_REQUEST_STATE_COMPLETING SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xA)
|
|
#define TRACE_RDMA_REQUEST_STATE_COMPLETED SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xB)
|
|
#define TRACE_RDMA_QP_CREATE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xC)
|
|
#define TRACE_RDMA_IBV_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xD)
|
|
#define TRACE_RDMA_CM_ASYNC_EVENT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xE)
|
|
#define TRACE_RDMA_QP_STATE_CHANGE SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0xF)
|
|
#define TRACE_RDMA_QP_DISCONNECT SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x10)
|
|
#define TRACE_RDMA_QP_DESTROY SPDK_TPOINT_ID(TRACE_GROUP_NVMF_RDMA, 0x11)
|
|
|
|
SPDK_TRACE_REGISTER_FN(nvmf_trace, "nvmf_rdma", TRACE_GROUP_NVMF_RDMA)
|
|
{
|
|
spdk_trace_register_object(OBJECT_NVMF_RDMA_IO, 'r');
|
|
spdk_trace_register_description("RDMA_REQ_NEW", TRACE_RDMA_REQUEST_STATE_NEW,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 1, 1, "cmid: ");
|
|
spdk_trace_register_description("RDMA_REQ_NEED_BUFFER", TRACE_RDMA_REQUEST_STATE_NEED_BUFFER,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
|
|
spdk_trace_register_description("RDMA_REQ_TX_PENDING_C2H",
|
|
TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
|
|
spdk_trace_register_description("RDMA_REQ_TX_PENDING_H2C",
|
|
TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
|
|
spdk_trace_register_description("RDMA_REQ_TX_H2C",
|
|
TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
|
|
spdk_trace_register_description("RDMA_REQ_RDY_TO_EXECUTE",
|
|
TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
|
|
spdk_trace_register_description("RDMA_REQ_EXECUTING",
|
|
TRACE_RDMA_REQUEST_STATE_EXECUTING,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
|
|
spdk_trace_register_description("RDMA_REQ_EXECUTED",
|
|
TRACE_RDMA_REQUEST_STATE_EXECUTED,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
|
|
spdk_trace_register_description("RDMA_REQ_RDY_TO_COMPL",
|
|
TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
|
|
spdk_trace_register_description("RDMA_REQ_COMPLETING_C2H",
|
|
TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
|
|
spdk_trace_register_description("RDMA_REQ_COMPLETING",
|
|
TRACE_RDMA_REQUEST_STATE_COMPLETING,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
|
|
spdk_trace_register_description("RDMA_REQ_COMPLETED",
|
|
TRACE_RDMA_REQUEST_STATE_COMPLETED,
|
|
OWNER_NONE, OBJECT_NVMF_RDMA_IO, 0, 1, "cmid: ");
|
|
|
|
spdk_trace_register_description("RDMA_QP_CREATE", TRACE_RDMA_QP_CREATE,
|
|
OWNER_NONE, OBJECT_NONE, 0, 0, "");
|
|
spdk_trace_register_description("RDMA_IBV_ASYNC_EVENT", TRACE_RDMA_IBV_ASYNC_EVENT,
|
|
OWNER_NONE, OBJECT_NONE, 0, 0, "type: ");
|
|
spdk_trace_register_description("RDMA_CM_ASYNC_EVENT", TRACE_RDMA_CM_ASYNC_EVENT,
|
|
OWNER_NONE, OBJECT_NONE, 0, 0, "type: ");
|
|
spdk_trace_register_description("RDMA_QP_STATE_CHANGE", TRACE_RDMA_QP_STATE_CHANGE,
|
|
OWNER_NONE, OBJECT_NONE, 0, 1, "state: ");
|
|
spdk_trace_register_description("RDMA_QP_DISCONNECT", TRACE_RDMA_QP_DISCONNECT,
|
|
OWNER_NONE, OBJECT_NONE, 0, 0, "");
|
|
spdk_trace_register_description("RDMA_QP_DESTROY", TRACE_RDMA_QP_DESTROY,
|
|
OWNER_NONE, OBJECT_NONE, 0, 0, "");
|
|
}
|
|
|
|
enum spdk_nvmf_rdma_wr_type {
|
|
RDMA_WR_TYPE_RECV,
|
|
RDMA_WR_TYPE_SEND,
|
|
RDMA_WR_TYPE_DATA,
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_wr {
|
|
enum spdk_nvmf_rdma_wr_type type;
|
|
};
|
|
|
|
/* This structure holds commands as they are received off the wire.
|
|
* It must be dynamically paired with a full request object
|
|
* (spdk_nvmf_rdma_request) to service a request. It is separate
|
|
* from the request because RDMA does not appear to order
|
|
* completions, so occasionally we'll get a new incoming
|
|
* command when there aren't any free request objects.
|
|
*/
|
|
struct spdk_nvmf_rdma_recv {
|
|
struct ibv_recv_wr wr;
|
|
struct ibv_sge sgl[NVMF_DEFAULT_RX_SGE];
|
|
|
|
struct spdk_nvmf_rdma_qpair *qpair;
|
|
|
|
/* In-capsule data buffer */
|
|
uint8_t *buf;
|
|
|
|
struct spdk_nvmf_rdma_wr rdma_wr;
|
|
uint64_t receive_tsc;
|
|
|
|
STAILQ_ENTRY(spdk_nvmf_rdma_recv) link;
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_request_data {
|
|
struct spdk_nvmf_rdma_wr rdma_wr;
|
|
struct ibv_send_wr wr;
|
|
struct ibv_sge sgl[SPDK_NVMF_MAX_SGL_ENTRIES];
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_request {
|
|
struct spdk_nvmf_request req;
|
|
|
|
enum spdk_nvmf_rdma_request_state state;
|
|
|
|
struct spdk_nvmf_rdma_recv *recv;
|
|
|
|
struct {
|
|
struct spdk_nvmf_rdma_wr rdma_wr;
|
|
struct ibv_send_wr wr;
|
|
struct ibv_sge sgl[NVMF_DEFAULT_RSP_SGE];
|
|
} rsp;
|
|
|
|
struct spdk_nvmf_rdma_request_data data;
|
|
|
|
uint32_t num_outstanding_data_wr;
|
|
uint64_t receive_tsc;
|
|
|
|
struct spdk_dif_ctx dif_ctx;
|
|
bool dif_insert_or_strip;
|
|
uint32_t elba_length;
|
|
uint32_t orig_length;
|
|
|
|
STAILQ_ENTRY(spdk_nvmf_rdma_request) state_link;
|
|
};
|
|
|
|
enum spdk_nvmf_rdma_qpair_disconnect_flags {
|
|
RDMA_QP_DISCONNECTING = 1,
|
|
RDMA_QP_RECV_DRAINED = 1 << 1,
|
|
RDMA_QP_SEND_DRAINED = 1 << 2
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_resource_opts {
|
|
struct spdk_nvmf_rdma_qpair *qpair;
|
|
/* qp points either to an ibv_qp object or an ibv_srq object depending on the value of shared. */
|
|
void *qp;
|
|
struct ibv_pd *pd;
|
|
uint32_t max_queue_depth;
|
|
uint32_t in_capsule_data_size;
|
|
bool shared;
|
|
};
|
|
|
|
struct spdk_nvmf_send_wr_list {
|
|
struct ibv_send_wr *first;
|
|
struct ibv_send_wr *last;
|
|
};
|
|
|
|
struct spdk_nvmf_recv_wr_list {
|
|
struct ibv_recv_wr *first;
|
|
struct ibv_recv_wr *last;
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_resources {
|
|
/* Array of size "max_queue_depth" containing RDMA requests. */
|
|
struct spdk_nvmf_rdma_request *reqs;
|
|
|
|
/* Array of size "max_queue_depth" containing RDMA recvs. */
|
|
struct spdk_nvmf_rdma_recv *recvs;
|
|
|
|
/* Array of size "max_queue_depth" containing 64 byte capsules
|
|
* used for receive.
|
|
*/
|
|
union nvmf_h2c_msg *cmds;
|
|
struct ibv_mr *cmds_mr;
|
|
|
|
/* Array of size "max_queue_depth" containing 16 byte completions
|
|
* to be sent back to the user.
|
|
*/
|
|
union nvmf_c2h_msg *cpls;
|
|
struct ibv_mr *cpls_mr;
|
|
|
|
/* Array of size "max_queue_depth * InCapsuleDataSize" containing
|
|
* buffers to be used for in capsule data.
|
|
*/
|
|
void *bufs;
|
|
struct ibv_mr *bufs_mr;
|
|
|
|
/* The list of pending recvs to transfer */
|
|
struct spdk_nvmf_recv_wr_list recvs_to_post;
|
|
|
|
/* Receives that are waiting for a request object */
|
|
STAILQ_HEAD(, spdk_nvmf_rdma_recv) incoming_queue;
|
|
|
|
/* Queue to track free requests */
|
|
STAILQ_HEAD(, spdk_nvmf_rdma_request) free_queue;
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_qpair {
|
|
struct spdk_nvmf_qpair qpair;
|
|
|
|
struct spdk_nvmf_rdma_port *port;
|
|
struct spdk_nvmf_rdma_poller *poller;
|
|
|
|
struct rdma_cm_id *cm_id;
|
|
struct ibv_srq *srq;
|
|
struct rdma_cm_id *listen_id;
|
|
|
|
/* The maximum number of I/O outstanding on this connection at one time */
|
|
uint16_t max_queue_depth;
|
|
|
|
/* The maximum number of active RDMA READ and ATOMIC operations at one time */
|
|
uint16_t max_read_depth;
|
|
|
|
/* The maximum number of RDMA SEND operations at one time */
|
|
uint32_t max_send_depth;
|
|
|
|
/* The current number of outstanding WRs from this qpair's
|
|
* recv queue. Should not exceed device->attr.max_queue_depth.
|
|
*/
|
|
uint16_t current_recv_depth;
|
|
|
|
/* The current number of active RDMA READ operations */
|
|
uint16_t current_read_depth;
|
|
|
|
/* The current number of posted WRs from this qpair's
|
|
* send queue. Should not exceed max_send_depth.
|
|
*/
|
|
uint32_t current_send_depth;
|
|
|
|
/* The maximum number of SGEs per WR on the send queue */
|
|
uint32_t max_send_sge;
|
|
|
|
/* The maximum number of SGEs per WR on the recv queue */
|
|
uint32_t max_recv_sge;
|
|
|
|
/* The list of pending send requests for a transfer */
|
|
struct spdk_nvmf_send_wr_list sends_to_post;
|
|
|
|
struct spdk_nvmf_rdma_resources *resources;
|
|
|
|
STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_read_queue;
|
|
|
|
STAILQ_HEAD(, spdk_nvmf_rdma_request) pending_rdma_write_queue;
|
|
|
|
/* Number of requests not in the free state */
|
|
uint32_t qd;
|
|
|
|
TAILQ_ENTRY(spdk_nvmf_rdma_qpair) link;
|
|
|
|
STAILQ_ENTRY(spdk_nvmf_rdma_qpair) recv_link;
|
|
|
|
STAILQ_ENTRY(spdk_nvmf_rdma_qpair) send_link;
|
|
|
|
/* IBV queue pair attributes: they are used to manage
|
|
* qp state and recover from errors.
|
|
*/
|
|
enum ibv_qp_state ibv_state;
|
|
|
|
uint32_t disconnect_flags;
|
|
|
|
/* Poller registered in case the qpair doesn't properly
|
|
* complete the qpair destruct process and becomes defunct.
|
|
*/
|
|
|
|
struct spdk_poller *destruct_poller;
|
|
|
|
/* There are several ways a disconnect can start on a qpair
|
|
* and they are not all mutually exclusive. It is important
|
|
* that we only initialize one of these paths.
|
|
*/
|
|
bool disconnect_started;
|
|
/* Lets us know that we have received the last_wqe event. */
|
|
bool last_wqe_reached;
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_poller_stat {
|
|
uint64_t completions;
|
|
uint64_t polls;
|
|
uint64_t requests;
|
|
uint64_t request_latency;
|
|
uint64_t pending_free_request;
|
|
uint64_t pending_rdma_read;
|
|
uint64_t pending_rdma_write;
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_poller {
|
|
struct spdk_nvmf_rdma_device *device;
|
|
struct spdk_nvmf_rdma_poll_group *group;
|
|
|
|
int num_cqe;
|
|
int required_num_wr;
|
|
struct ibv_cq *cq;
|
|
|
|
/* The maximum number of I/O outstanding on the shared receive queue at one time */
|
|
uint16_t max_srq_depth;
|
|
|
|
/* Shared receive queue */
|
|
struct ibv_srq *srq;
|
|
|
|
struct spdk_nvmf_rdma_resources *resources;
|
|
struct spdk_nvmf_rdma_poller_stat stat;
|
|
|
|
TAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs;
|
|
|
|
STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_recv;
|
|
|
|
STAILQ_HEAD(, spdk_nvmf_rdma_qpair) qpairs_pending_send;
|
|
|
|
TAILQ_ENTRY(spdk_nvmf_rdma_poller) link;
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_poll_group_stat {
|
|
uint64_t pending_data_buffer;
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_poll_group {
|
|
struct spdk_nvmf_transport_poll_group group;
|
|
struct spdk_nvmf_rdma_poll_group_stat stat;
|
|
TAILQ_HEAD(, spdk_nvmf_rdma_poller) pollers;
|
|
TAILQ_ENTRY(spdk_nvmf_rdma_poll_group) link;
|
|
/*
|
|
* buffers which are split across multiple RDMA
|
|
* memory regions cannot be used by this transport.
|
|
*/
|
|
STAILQ_HEAD(, spdk_nvmf_transport_pg_cache_buf) retired_bufs;
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_conn_sched {
|
|
struct spdk_nvmf_rdma_poll_group *next_admin_pg;
|
|
struct spdk_nvmf_rdma_poll_group *next_io_pg;
|
|
};
|
|
|
|
/* Assuming rdma_cm uses just one protection domain per ibv_context. */
|
|
struct spdk_nvmf_rdma_device {
|
|
struct ibv_device_attr attr;
|
|
struct ibv_context *context;
|
|
|
|
struct spdk_mem_map *map;
|
|
struct ibv_pd *pd;
|
|
|
|
int num_srq;
|
|
|
|
TAILQ_ENTRY(spdk_nvmf_rdma_device) link;
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_port {
|
|
struct spdk_nvme_transport_id trid;
|
|
struct rdma_cm_id *id;
|
|
struct spdk_nvmf_rdma_device *device;
|
|
uint32_t ref;
|
|
TAILQ_ENTRY(spdk_nvmf_rdma_port) link;
|
|
};
|
|
|
|
struct spdk_nvmf_rdma_transport {
|
|
struct spdk_nvmf_transport transport;
|
|
|
|
struct spdk_nvmf_rdma_conn_sched conn_sched;
|
|
|
|
struct rdma_event_channel *event_channel;
|
|
|
|
struct spdk_mempool *data_wr_pool;
|
|
|
|
pthread_mutex_t lock;
|
|
|
|
/* fields used to poll RDMA/IB events */
|
|
nfds_t npoll_fds;
|
|
struct pollfd *poll_fds;
|
|
|
|
TAILQ_HEAD(, spdk_nvmf_rdma_device) devices;
|
|
TAILQ_HEAD(, spdk_nvmf_rdma_port) ports;
|
|
TAILQ_HEAD(, spdk_nvmf_rdma_poll_group) poll_groups;
|
|
};
|
|
|
|
static inline void
|
|
spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair);
|
|
|
|
static inline int
|
|
spdk_nvmf_rdma_check_ibv_state(enum ibv_qp_state state)
|
|
{
|
|
switch (state) {
|
|
case IBV_QPS_RESET:
|
|
case IBV_QPS_INIT:
|
|
case IBV_QPS_RTR:
|
|
case IBV_QPS_RTS:
|
|
case IBV_QPS_SQD:
|
|
case IBV_QPS_SQE:
|
|
case IBV_QPS_ERR:
|
|
return 0;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static inline enum spdk_nvme_media_error_status_code
|
|
spdk_nvmf_rdma_dif_error_to_compl_status(uint8_t err_type) {
|
|
enum spdk_nvme_media_error_status_code result;
|
|
switch (err_type)
|
|
{
|
|
case SPDK_DIF_REFTAG_ERROR:
|
|
result = SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR;
|
|
break;
|
|
case SPDK_DIF_APPTAG_ERROR:
|
|
result = SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR;
|
|
break;
|
|
case SPDK_DIF_GUARD_ERROR:
|
|
result = SPDK_NVME_SC_GUARD_CHECK_ERROR;
|
|
break;
|
|
default:
|
|
SPDK_UNREACHABLE();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static enum ibv_qp_state
|
|
spdk_nvmf_rdma_update_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair) {
|
|
enum ibv_qp_state old_state, new_state;
|
|
struct ibv_qp_attr qp_attr;
|
|
struct ibv_qp_init_attr init_attr;
|
|
int rc;
|
|
|
|
old_state = rqpair->ibv_state;
|
|
rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr,
|
|
g_spdk_nvmf_ibv_query_mask, &init_attr);
|
|
|
|
if (rc)
|
|
{
|
|
SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
|
|
return IBV_QPS_ERR + 1;
|
|
}
|
|
|
|
new_state = qp_attr.qp_state;
|
|
rqpair->ibv_state = new_state;
|
|
qp_attr.ah_attr.port_num = qp_attr.port_num;
|
|
|
|
rc = spdk_nvmf_rdma_check_ibv_state(new_state);
|
|
if (rc)
|
|
{
|
|
SPDK_ERRLOG("QP#%d: bad state updated: %u, maybe hardware issue\n", rqpair->qpair.qid, new_state);
|
|
/*
|
|
* IBV_QPS_UNKNOWN undefined if lib version smaller than libibverbs-1.1.8
|
|
* IBV_QPS_UNKNOWN is the enum element after IBV_QPS_ERR
|
|
*/
|
|
return IBV_QPS_ERR + 1;
|
|
}
|
|
|
|
if (old_state != new_state)
|
|
{
|
|
spdk_trace_record(TRACE_RDMA_QP_STATE_CHANGE, 0, 0,
|
|
(uintptr_t)rqpair->cm_id, new_state);
|
|
}
|
|
return new_state;
|
|
}
|
|
|
|
static const char *str_ibv_qp_state[] = {
|
|
"IBV_QPS_RESET",
|
|
"IBV_QPS_INIT",
|
|
"IBV_QPS_RTR",
|
|
"IBV_QPS_RTS",
|
|
"IBV_QPS_SQD",
|
|
"IBV_QPS_SQE",
|
|
"IBV_QPS_ERR",
|
|
"IBV_QPS_UNKNOWN"
|
|
};
|
|
|
|
static int
|
|
spdk_nvmf_rdma_set_ibv_state(struct spdk_nvmf_rdma_qpair *rqpair,
|
|
enum ibv_qp_state new_state)
|
|
{
|
|
struct ibv_qp_attr qp_attr;
|
|
struct ibv_qp_init_attr init_attr;
|
|
int rc;
|
|
enum ibv_qp_state state;
|
|
static int attr_mask_rc[] = {
|
|
[IBV_QPS_RESET] = IBV_QP_STATE,
|
|
[IBV_QPS_INIT] = (IBV_QP_STATE |
|
|
IBV_QP_PKEY_INDEX |
|
|
IBV_QP_PORT |
|
|
IBV_QP_ACCESS_FLAGS),
|
|
[IBV_QPS_RTR] = (IBV_QP_STATE |
|
|
IBV_QP_AV |
|
|
IBV_QP_PATH_MTU |
|
|
IBV_QP_DEST_QPN |
|
|
IBV_QP_RQ_PSN |
|
|
IBV_QP_MAX_DEST_RD_ATOMIC |
|
|
IBV_QP_MIN_RNR_TIMER),
|
|
[IBV_QPS_RTS] = (IBV_QP_STATE |
|
|
IBV_QP_SQ_PSN |
|
|
IBV_QP_TIMEOUT |
|
|
IBV_QP_RETRY_CNT |
|
|
IBV_QP_RNR_RETRY |
|
|
IBV_QP_MAX_QP_RD_ATOMIC),
|
|
[IBV_QPS_SQD] = IBV_QP_STATE,
|
|
[IBV_QPS_SQE] = IBV_QP_STATE,
|
|
[IBV_QPS_ERR] = IBV_QP_STATE,
|
|
};
|
|
|
|
rc = spdk_nvmf_rdma_check_ibv_state(new_state);
|
|
if (rc) {
|
|
SPDK_ERRLOG("QP#%d: bad state requested: %u\n",
|
|
rqpair->qpair.qid, new_state);
|
|
return rc;
|
|
}
|
|
|
|
rc = ibv_query_qp(rqpair->cm_id->qp, &qp_attr,
|
|
g_spdk_nvmf_ibv_query_mask, &init_attr);
|
|
|
|
if (rc) {
|
|
SPDK_ERRLOG("Failed to get updated RDMA queue pair state!\n");
|
|
assert(false);
|
|
}
|
|
|
|
qp_attr.cur_qp_state = rqpair->ibv_state;
|
|
qp_attr.qp_state = new_state;
|
|
|
|
rc = ibv_modify_qp(rqpair->cm_id->qp, &qp_attr,
|
|
attr_mask_rc[new_state]);
|
|
|
|
if (rc) {
|
|
SPDK_ERRLOG("QP#%d: failed to set state to: %s, %d (%s)\n",
|
|
rqpair->qpair.qid, str_ibv_qp_state[new_state], errno, strerror(errno));
|
|
return rc;
|
|
}
|
|
|
|
state = spdk_nvmf_rdma_update_ibv_state(rqpair);
|
|
|
|
if (state != new_state) {
|
|
SPDK_ERRLOG("QP#%d: expected state: %s, actual state: %s\n",
|
|
rqpair->qpair.qid, str_ibv_qp_state[new_state],
|
|
str_ibv_qp_state[state]);
|
|
return -1;
|
|
}
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "IBV QP#%u changed to: %s\n", rqpair->qpair.qid,
|
|
str_ibv_qp_state[state]);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvmf_rdma_request_free_data(struct spdk_nvmf_rdma_request *rdma_req,
|
|
struct spdk_nvmf_rdma_transport *rtransport)
|
|
{
|
|
struct spdk_nvmf_rdma_request_data *data_wr;
|
|
struct ibv_send_wr *next_send_wr;
|
|
uint64_t req_wrid;
|
|
|
|
rdma_req->num_outstanding_data_wr = 0;
|
|
data_wr = &rdma_req->data;
|
|
req_wrid = data_wr->wr.wr_id;
|
|
while (data_wr && data_wr->wr.wr_id == req_wrid) {
|
|
memset(data_wr->sgl, 0, sizeof(data_wr->wr.sg_list[0]) * data_wr->wr.num_sge);
|
|
data_wr->wr.num_sge = 0;
|
|
next_send_wr = data_wr->wr.next;
|
|
if (data_wr != &rdma_req->data) {
|
|
spdk_mempool_put(rtransport->data_wr_pool, data_wr);
|
|
}
|
|
data_wr = (!next_send_wr || next_send_wr == &rdma_req->rsp.wr) ? NULL :
|
|
SPDK_CONTAINEROF(next_send_wr, struct spdk_nvmf_rdma_request_data, wr);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvmf_rdma_dump_request(struct spdk_nvmf_rdma_request *req)
|
|
{
|
|
SPDK_ERRLOG("\t\tRequest Data From Pool: %d\n", req->req.data_from_pool);
|
|
if (req->req.cmd) {
|
|
SPDK_ERRLOG("\t\tRequest opcode: %d\n", req->req.cmd->nvmf_cmd.opcode);
|
|
}
|
|
if (req->recv) {
|
|
SPDK_ERRLOG("\t\tRequest recv wr_id%lu\n", req->recv->wr.wr_id);
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvmf_rdma_dump_qpair_contents(struct spdk_nvmf_rdma_qpair *rqpair)
|
|
{
|
|
int i;
|
|
|
|
SPDK_ERRLOG("Dumping contents of queue pair (QID %d)\n", rqpair->qpair.qid);
|
|
for (i = 0; i < rqpair->max_queue_depth; i++) {
|
|
if (rqpair->resources->reqs[i].state != RDMA_REQUEST_STATE_FREE) {
|
|
nvmf_rdma_dump_request(&rqpair->resources->reqs[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvmf_rdma_resources_destroy(struct spdk_nvmf_rdma_resources *resources)
|
|
{
|
|
if (resources->cmds_mr) {
|
|
ibv_dereg_mr(resources->cmds_mr);
|
|
}
|
|
|
|
if (resources->cpls_mr) {
|
|
ibv_dereg_mr(resources->cpls_mr);
|
|
}
|
|
|
|
if (resources->bufs_mr) {
|
|
ibv_dereg_mr(resources->bufs_mr);
|
|
}
|
|
|
|
spdk_free(resources->cmds);
|
|
spdk_free(resources->cpls);
|
|
spdk_free(resources->bufs);
|
|
free(resources->reqs);
|
|
free(resources->recvs);
|
|
free(resources);
|
|
}
|
|
|
|
|
|
static struct spdk_nvmf_rdma_resources *
|
|
nvmf_rdma_resources_create(struct spdk_nvmf_rdma_resource_opts *opts)
|
|
{
|
|
struct spdk_nvmf_rdma_resources *resources;
|
|
struct spdk_nvmf_rdma_request *rdma_req;
|
|
struct spdk_nvmf_rdma_recv *rdma_recv;
|
|
struct ibv_qp *qp;
|
|
struct ibv_srq *srq;
|
|
uint32_t i;
|
|
int rc;
|
|
|
|
resources = calloc(1, sizeof(struct spdk_nvmf_rdma_resources));
|
|
if (!resources) {
|
|
SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
|
|
return NULL;
|
|
}
|
|
|
|
resources->reqs = calloc(opts->max_queue_depth, sizeof(*resources->reqs));
|
|
resources->recvs = calloc(opts->max_queue_depth, sizeof(*resources->recvs));
|
|
resources->cmds = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cmds),
|
|
0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
|
|
resources->cpls = spdk_zmalloc(opts->max_queue_depth * sizeof(*resources->cpls),
|
|
0x1000, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
|
|
|
|
if (opts->in_capsule_data_size > 0) {
|
|
resources->bufs = spdk_zmalloc(opts->max_queue_depth * opts->in_capsule_data_size,
|
|
0x1000, NULL, SPDK_ENV_LCORE_ID_ANY,
|
|
SPDK_MALLOC_DMA);
|
|
}
|
|
|
|
if (!resources->reqs || !resources->recvs || !resources->cmds ||
|
|
!resources->cpls || (opts->in_capsule_data_size && !resources->bufs)) {
|
|
SPDK_ERRLOG("Unable to allocate sufficient memory for RDMA queue.\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
resources->cmds_mr = ibv_reg_mr(opts->pd, resources->cmds,
|
|
opts->max_queue_depth * sizeof(*resources->cmds),
|
|
IBV_ACCESS_LOCAL_WRITE);
|
|
resources->cpls_mr = ibv_reg_mr(opts->pd, resources->cpls,
|
|
opts->max_queue_depth * sizeof(*resources->cpls),
|
|
0);
|
|
|
|
if (opts->in_capsule_data_size) {
|
|
resources->bufs_mr = ibv_reg_mr(opts->pd, resources->bufs,
|
|
opts->max_queue_depth *
|
|
opts->in_capsule_data_size,
|
|
IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
|
|
}
|
|
|
|
if (!resources->cmds_mr || !resources->cpls_mr ||
|
|
(opts->in_capsule_data_size &&
|
|
!resources->bufs_mr)) {
|
|
goto cleanup;
|
|
}
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Command Array: %p Length: %lx LKey: %x\n",
|
|
resources->cmds, opts->max_queue_depth * sizeof(*resources->cmds),
|
|
resources->cmds_mr->lkey);
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Completion Array: %p Length: %lx LKey: %x\n",
|
|
resources->cpls, opts->max_queue_depth * sizeof(*resources->cpls),
|
|
resources->cpls_mr->lkey);
|
|
if (resources->bufs && resources->bufs_mr) {
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "In Capsule Data Array: %p Length: %x LKey: %x\n",
|
|
resources->bufs, opts->max_queue_depth *
|
|
opts->in_capsule_data_size, resources->bufs_mr->lkey);
|
|
}
|
|
|
|
/* Initialize queues */
|
|
STAILQ_INIT(&resources->incoming_queue);
|
|
STAILQ_INIT(&resources->free_queue);
|
|
|
|
for (i = 0; i < opts->max_queue_depth; i++) {
|
|
struct ibv_recv_wr *bad_wr = NULL;
|
|
|
|
rdma_recv = &resources->recvs[i];
|
|
rdma_recv->qpair = opts->qpair;
|
|
|
|
/* Set up memory to receive commands */
|
|
if (resources->bufs) {
|
|
rdma_recv->buf = (void *)((uintptr_t)resources->bufs + (i *
|
|
opts->in_capsule_data_size));
|
|
}
|
|
|
|
rdma_recv->rdma_wr.type = RDMA_WR_TYPE_RECV;
|
|
|
|
rdma_recv->sgl[0].addr = (uintptr_t)&resources->cmds[i];
|
|
rdma_recv->sgl[0].length = sizeof(resources->cmds[i]);
|
|
rdma_recv->sgl[0].lkey = resources->cmds_mr->lkey;
|
|
rdma_recv->wr.num_sge = 1;
|
|
|
|
if (rdma_recv->buf && resources->bufs_mr) {
|
|
rdma_recv->sgl[1].addr = (uintptr_t)rdma_recv->buf;
|
|
rdma_recv->sgl[1].length = opts->in_capsule_data_size;
|
|
rdma_recv->sgl[1].lkey = resources->bufs_mr->lkey;
|
|
rdma_recv->wr.num_sge++;
|
|
}
|
|
|
|
rdma_recv->wr.wr_id = (uintptr_t)&rdma_recv->rdma_wr;
|
|
rdma_recv->wr.sg_list = rdma_recv->sgl;
|
|
if (opts->shared) {
|
|
srq = (struct ibv_srq *)opts->qp;
|
|
rc = ibv_post_srq_recv(srq, &rdma_recv->wr, &bad_wr);
|
|
} else {
|
|
qp = (struct ibv_qp *)opts->qp;
|
|
rc = ibv_post_recv(qp, &rdma_recv->wr, &bad_wr);
|
|
}
|
|
if (rc) {
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < opts->max_queue_depth; i++) {
|
|
rdma_req = &resources->reqs[i];
|
|
|
|
if (opts->qpair != NULL) {
|
|
rdma_req->req.qpair = &opts->qpair->qpair;
|
|
} else {
|
|
rdma_req->req.qpair = NULL;
|
|
}
|
|
rdma_req->req.cmd = NULL;
|
|
|
|
/* Set up memory to send responses */
|
|
rdma_req->req.rsp = &resources->cpls[i];
|
|
|
|
rdma_req->rsp.sgl[0].addr = (uintptr_t)&resources->cpls[i];
|
|
rdma_req->rsp.sgl[0].length = sizeof(resources->cpls[i]);
|
|
rdma_req->rsp.sgl[0].lkey = resources->cpls_mr->lkey;
|
|
|
|
rdma_req->rsp.rdma_wr.type = RDMA_WR_TYPE_SEND;
|
|
rdma_req->rsp.wr.wr_id = (uintptr_t)&rdma_req->rsp.rdma_wr;
|
|
rdma_req->rsp.wr.next = NULL;
|
|
rdma_req->rsp.wr.opcode = IBV_WR_SEND;
|
|
rdma_req->rsp.wr.send_flags = IBV_SEND_SIGNALED;
|
|
rdma_req->rsp.wr.sg_list = rdma_req->rsp.sgl;
|
|
rdma_req->rsp.wr.num_sge = SPDK_COUNTOF(rdma_req->rsp.sgl);
|
|
|
|
/* Set up memory for data buffers */
|
|
rdma_req->data.rdma_wr.type = RDMA_WR_TYPE_DATA;
|
|
rdma_req->data.wr.wr_id = (uintptr_t)&rdma_req->data.rdma_wr;
|
|
rdma_req->data.wr.next = NULL;
|
|
rdma_req->data.wr.send_flags = IBV_SEND_SIGNALED;
|
|
rdma_req->data.wr.sg_list = rdma_req->data.sgl;
|
|
rdma_req->data.wr.num_sge = SPDK_COUNTOF(rdma_req->data.sgl);
|
|
|
|
/* Initialize request state to FREE */
|
|
rdma_req->state = RDMA_REQUEST_STATE_FREE;
|
|
STAILQ_INSERT_TAIL(&resources->free_queue, rdma_req, state_link);
|
|
}
|
|
|
|
return resources;
|
|
|
|
cleanup:
|
|
nvmf_rdma_resources_destroy(resources);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_rdma_qpair_destroy(struct spdk_nvmf_rdma_qpair *rqpair)
|
|
{
|
|
struct spdk_nvmf_rdma_recv *rdma_recv, *recv_tmp;
|
|
struct ibv_recv_wr *bad_recv_wr = NULL;
|
|
int rc;
|
|
|
|
spdk_trace_record(TRACE_RDMA_QP_DESTROY, 0, 0, (uintptr_t)rqpair->cm_id, 0);
|
|
|
|
spdk_poller_unregister(&rqpair->destruct_poller);
|
|
|
|
if (rqpair->qd != 0) {
|
|
if (rqpair->srq == NULL) {
|
|
nvmf_rdma_dump_qpair_contents(rqpair);
|
|
}
|
|
SPDK_WARNLOG("Destroying qpair when queue depth is %d\n", rqpair->qd);
|
|
}
|
|
|
|
if (rqpair->poller) {
|
|
TAILQ_REMOVE(&rqpair->poller->qpairs, rqpair, link);
|
|
|
|
if (rqpair->srq != NULL && rqpair->resources != NULL) {
|
|
/* Drop all received but unprocessed commands for this queue and return them to SRQ */
|
|
STAILQ_FOREACH_SAFE(rdma_recv, &rqpair->resources->incoming_queue, link, recv_tmp) {
|
|
if (rqpair == rdma_recv->qpair) {
|
|
STAILQ_REMOVE_HEAD(&rqpair->resources->incoming_queue, link);
|
|
rc = ibv_post_srq_recv(rqpair->srq, &rdma_recv->wr, &bad_recv_wr);
|
|
if (rc) {
|
|
SPDK_ERRLOG("Unable to re-post rx descriptor\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rqpair->cm_id) {
|
|
if (rqpair->cm_id->qp != NULL) {
|
|
rdma_destroy_qp(rqpair->cm_id);
|
|
}
|
|
rdma_destroy_id(rqpair->cm_id);
|
|
|
|
if (rqpair->poller != NULL && rqpair->srq == NULL) {
|
|
rqpair->poller->required_num_wr -= MAX_WR_PER_QP(rqpair->max_queue_depth);
|
|
}
|
|
}
|
|
|
|
if (rqpair->srq == NULL && rqpair->resources != NULL) {
|
|
nvmf_rdma_resources_destroy(rqpair->resources);
|
|
}
|
|
|
|
free(rqpair);
|
|
}
|
|
|
|
static int
|
|
nvmf_rdma_resize_cq(struct spdk_nvmf_rdma_qpair *rqpair, struct spdk_nvmf_rdma_device *device)
|
|
{
|
|
struct spdk_nvmf_rdma_poller *rpoller;
|
|
int rc, num_cqe, required_num_wr;
|
|
|
|
/* Enlarge CQ size dynamically */
|
|
rpoller = rqpair->poller;
|
|
required_num_wr = rpoller->required_num_wr + MAX_WR_PER_QP(rqpair->max_queue_depth);
|
|
num_cqe = rpoller->num_cqe;
|
|
if (num_cqe < required_num_wr) {
|
|
num_cqe = spdk_max(num_cqe * 2, required_num_wr);
|
|
num_cqe = spdk_min(num_cqe, device->attr.max_cqe);
|
|
}
|
|
|
|
if (rpoller->num_cqe != num_cqe) {
|
|
if (required_num_wr > device->attr.max_cqe) {
|
|
SPDK_ERRLOG("RDMA CQE requirement (%d) exceeds device max_cqe limitation (%d)\n",
|
|
required_num_wr, device->attr.max_cqe);
|
|
return -1;
|
|
}
|
|
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Resize RDMA CQ from %d to %d\n", rpoller->num_cqe, num_cqe);
|
|
rc = ibv_resize_cq(rpoller->cq, num_cqe);
|
|
if (rc) {
|
|
SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
rpoller->num_cqe = num_cqe;
|
|
}
|
|
|
|
rpoller->required_num_wr = required_num_wr;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_qpair_initialize(struct spdk_nvmf_qpair *qpair)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
int rc;
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
struct spdk_nvmf_transport *transport;
|
|
struct spdk_nvmf_rdma_resource_opts opts;
|
|
struct spdk_nvmf_rdma_device *device;
|
|
struct ibv_qp_init_attr ibv_init_attr;
|
|
|
|
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
device = rqpair->port->device;
|
|
|
|
memset(&ibv_init_attr, 0, sizeof(struct ibv_qp_init_attr));
|
|
ibv_init_attr.qp_context = rqpair;
|
|
ibv_init_attr.qp_type = IBV_QPT_RC;
|
|
ibv_init_attr.send_cq = rqpair->poller->cq;
|
|
ibv_init_attr.recv_cq = rqpair->poller->cq;
|
|
|
|
if (rqpair->srq) {
|
|
ibv_init_attr.srq = rqpair->srq;
|
|
} else {
|
|
ibv_init_attr.cap.max_recv_wr = rqpair->max_queue_depth +
|
|
1; /* RECV operations + dummy drain WR */
|
|
}
|
|
|
|
ibv_init_attr.cap.max_send_wr = rqpair->max_queue_depth *
|
|
2 + 1; /* SEND, READ, and WRITE operations + dummy drain WR */
|
|
ibv_init_attr.cap.max_send_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_TX_SGE);
|
|
ibv_init_attr.cap.max_recv_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
|
|
|
|
if (rqpair->srq == NULL && nvmf_rdma_resize_cq(rqpair, device) < 0) {
|
|
SPDK_ERRLOG("Failed to resize the completion queue. Cannot initialize qpair.\n");
|
|
goto error;
|
|
}
|
|
|
|
rc = rdma_create_qp(rqpair->cm_id, rqpair->port->device->pd, &ibv_init_attr);
|
|
if (rc) {
|
|
SPDK_ERRLOG("rdma_create_qp failed: errno %d: %s\n", errno, spdk_strerror(errno));
|
|
goto error;
|
|
}
|
|
|
|
rqpair->max_send_depth = spdk_min((uint32_t)(rqpair->max_queue_depth * 2 + 1),
|
|
ibv_init_attr.cap.max_send_wr);
|
|
rqpair->max_send_sge = spdk_min(NVMF_DEFAULT_TX_SGE, ibv_init_attr.cap.max_send_sge);
|
|
rqpair->max_recv_sge = spdk_min(NVMF_DEFAULT_RX_SGE, ibv_init_attr.cap.max_recv_sge);
|
|
spdk_trace_record(TRACE_RDMA_QP_CREATE, 0, 0, (uintptr_t)rqpair->cm_id, 0);
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "New RDMA Connection: %p\n", qpair);
|
|
|
|
rqpair->sends_to_post.first = NULL;
|
|
rqpair->sends_to_post.last = NULL;
|
|
|
|
if (rqpair->poller->srq == NULL) {
|
|
rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
|
|
transport = &rtransport->transport;
|
|
|
|
opts.qp = rqpair->cm_id->qp;
|
|
opts.pd = rqpair->cm_id->pd;
|
|
opts.qpair = rqpair;
|
|
opts.shared = false;
|
|
opts.max_queue_depth = rqpair->max_queue_depth;
|
|
opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
|
|
|
|
rqpair->resources = nvmf_rdma_resources_create(&opts);
|
|
|
|
if (!rqpair->resources) {
|
|
SPDK_ERRLOG("Unable to allocate resources for receive queue.\n");
|
|
rdma_destroy_qp(rqpair->cm_id);
|
|
goto error;
|
|
}
|
|
} else {
|
|
rqpair->resources = rqpair->poller->resources;
|
|
}
|
|
|
|
rqpair->current_recv_depth = 0;
|
|
STAILQ_INIT(&rqpair->pending_rdma_read_queue);
|
|
STAILQ_INIT(&rqpair->pending_rdma_write_queue);
|
|
|
|
return 0;
|
|
|
|
error:
|
|
rdma_destroy_id(rqpair->cm_id);
|
|
rqpair->cm_id = NULL;
|
|
return -1;
|
|
}
|
|
|
|
/* Append the given recv wr structure to the resource structs outstanding recvs list. */
|
|
/* This function accepts either a single wr or the first wr in a linked list. */
|
|
static void
|
|
nvmf_rdma_qpair_queue_recv_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *first)
|
|
{
|
|
struct ibv_recv_wr *last;
|
|
|
|
last = first;
|
|
while (last->next != NULL) {
|
|
last = last->next;
|
|
}
|
|
|
|
if (rqpair->resources->recvs_to_post.first == NULL) {
|
|
rqpair->resources->recvs_to_post.first = first;
|
|
rqpair->resources->recvs_to_post.last = last;
|
|
if (rqpair->srq == NULL) {
|
|
STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_recv, rqpair, recv_link);
|
|
}
|
|
} else {
|
|
rqpair->resources->recvs_to_post.last->next = first;
|
|
rqpair->resources->recvs_to_post.last = last;
|
|
}
|
|
}
|
|
|
|
/* Append the given send wr structure to the qpair's outstanding sends list. */
|
|
/* This function accepts either a single wr or the first wr in a linked list. */
|
|
static void
|
|
nvmf_rdma_qpair_queue_send_wrs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *first)
|
|
{
|
|
struct ibv_send_wr *last;
|
|
|
|
last = first;
|
|
while (last->next != NULL) {
|
|
last = last->next;
|
|
}
|
|
|
|
if (rqpair->sends_to_post.first == NULL) {
|
|
rqpair->sends_to_post.first = first;
|
|
rqpair->sends_to_post.last = last;
|
|
STAILQ_INSERT_TAIL(&rqpair->poller->qpairs_pending_send, rqpair, send_link);
|
|
} else {
|
|
rqpair->sends_to_post.last->next = first;
|
|
rqpair->sends_to_post.last = last;
|
|
}
|
|
}
|
|
|
|
static int
|
|
request_transfer_in(struct spdk_nvmf_request *req)
|
|
{
|
|
struct spdk_nvmf_rdma_request *rdma_req;
|
|
struct spdk_nvmf_qpair *qpair;
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
|
|
qpair = req->qpair;
|
|
rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
|
|
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
|
|
assert(req->xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER);
|
|
assert(rdma_req != NULL);
|
|
|
|
nvmf_rdma_qpair_queue_send_wrs(rqpair, &rdma_req->data.wr);
|
|
rqpair->current_read_depth += rdma_req->num_outstanding_data_wr;
|
|
rqpair->current_send_depth += rdma_req->num_outstanding_data_wr;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
request_transfer_out(struct spdk_nvmf_request *req, int *data_posted)
|
|
{
|
|
int num_outstanding_data_wr = 0;
|
|
struct spdk_nvmf_rdma_request *rdma_req;
|
|
struct spdk_nvmf_qpair *qpair;
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
struct spdk_nvme_cpl *rsp;
|
|
struct ibv_send_wr *first = NULL;
|
|
|
|
*data_posted = 0;
|
|
qpair = req->qpair;
|
|
rsp = &req->rsp->nvme_cpl;
|
|
rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
|
|
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
|
|
/* Advance our sq_head pointer */
|
|
if (qpair->sq_head == qpair->sq_head_max) {
|
|
qpair->sq_head = 0;
|
|
} else {
|
|
qpair->sq_head++;
|
|
}
|
|
rsp->sqhd = qpair->sq_head;
|
|
|
|
/* queue the capsule for the recv buffer */
|
|
assert(rdma_req->recv != NULL);
|
|
|
|
nvmf_rdma_qpair_queue_recv_wrs(rqpair, &rdma_req->recv->wr);
|
|
|
|
rdma_req->recv = NULL;
|
|
assert(rqpair->current_recv_depth > 0);
|
|
rqpair->current_recv_depth--;
|
|
|
|
/* Build the response which consists of optional
|
|
* RDMA WRITEs to transfer data, plus an RDMA SEND
|
|
* containing the response.
|
|
*/
|
|
first = &rdma_req->rsp.wr;
|
|
|
|
if (rsp->status.sc == SPDK_NVME_SC_SUCCESS &&
|
|
req->xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
|
|
first = &rdma_req->data.wr;
|
|
*data_posted = 1;
|
|
num_outstanding_data_wr = rdma_req->num_outstanding_data_wr;
|
|
}
|
|
nvmf_rdma_qpair_queue_send_wrs(rqpair, first);
|
|
/* +1 for the rsp wr */
|
|
rqpair->current_send_depth += num_outstanding_data_wr + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_event_accept(struct rdma_cm_id *id, struct spdk_nvmf_rdma_qpair *rqpair)
|
|
{
|
|
struct spdk_nvmf_rdma_accept_private_data accept_data;
|
|
struct rdma_conn_param ctrlr_event_data = {};
|
|
int rc;
|
|
|
|
accept_data.recfmt = 0;
|
|
accept_data.crqsize = rqpair->max_queue_depth;
|
|
|
|
ctrlr_event_data.private_data = &accept_data;
|
|
ctrlr_event_data.private_data_len = sizeof(accept_data);
|
|
if (id->ps == RDMA_PS_TCP) {
|
|
ctrlr_event_data.responder_resources = 0; /* We accept 0 reads from the host */
|
|
ctrlr_event_data.initiator_depth = rqpair->max_read_depth;
|
|
}
|
|
|
|
/* Configure infinite retries for the initiator side qpair.
|
|
* When using a shared receive queue on the target side,
|
|
* we need to pass this value to the initiator to prevent the
|
|
* initiator side NIC from completing SEND requests back to the
|
|
* initiator with status rnr_retry_count_exceeded. */
|
|
if (rqpair->srq != NULL) {
|
|
ctrlr_event_data.rnr_retry_count = 0x7;
|
|
}
|
|
|
|
rc = rdma_accept(id, &ctrlr_event_data);
|
|
if (rc) {
|
|
SPDK_ERRLOG("Error %d on rdma_accept\n", errno);
|
|
} else {
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Sent back the accept\n");
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_rdma_event_reject(struct rdma_cm_id *id, enum spdk_nvmf_rdma_transport_error error)
|
|
{
|
|
struct spdk_nvmf_rdma_reject_private_data rej_data;
|
|
|
|
rej_data.recfmt = 0;
|
|
rej_data.sts = error;
|
|
|
|
rdma_reject(id, &rej_data, sizeof(rej_data));
|
|
}
|
|
|
|
static int
|
|
nvmf_rdma_connect(struct spdk_nvmf_transport *transport, struct rdma_cm_event *event,
|
|
new_qpair_fn cb_fn)
|
|
{
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
struct spdk_nvmf_rdma_qpair *rqpair = NULL;
|
|
struct spdk_nvmf_rdma_port *port;
|
|
struct rdma_conn_param *rdma_param = NULL;
|
|
const struct spdk_nvmf_rdma_request_private_data *private_data = NULL;
|
|
uint16_t max_queue_depth;
|
|
uint16_t max_read_depth;
|
|
|
|
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
|
|
|
|
assert(event->id != NULL); /* Impossible. Can't even reject the connection. */
|
|
assert(event->id->verbs != NULL); /* Impossible. No way to handle this. */
|
|
|
|
rdma_param = &event->param.conn;
|
|
if (rdma_param->private_data == NULL ||
|
|
rdma_param->private_data_len < sizeof(struct spdk_nvmf_rdma_request_private_data)) {
|
|
SPDK_ERRLOG("connect request: no private data provided\n");
|
|
spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_PRIVATE_DATA_LENGTH);
|
|
return -1;
|
|
}
|
|
|
|
private_data = rdma_param->private_data;
|
|
if (private_data->recfmt != 0) {
|
|
SPDK_ERRLOG("Received RDMA private data with RECFMT != 0\n");
|
|
spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_INVALID_RECFMT);
|
|
return -1;
|
|
}
|
|
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Connect Recv on fabric intf name %s, dev_name %s\n",
|
|
event->id->verbs->device->name, event->id->verbs->device->dev_name);
|
|
|
|
port = event->listen_id->context;
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Listen Id was %p with verbs %p. ListenAddr: %p\n",
|
|
event->listen_id, event->listen_id->verbs, port);
|
|
|
|
/* Figure out the supported queue depth. This is a multi-step process
|
|
* that takes into account hardware maximums, host provided values,
|
|
* and our target's internal memory limits */
|
|
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Calculating Queue Depth\n");
|
|
|
|
/* Start with the maximum queue depth allowed by the target */
|
|
max_queue_depth = rtransport->transport.opts.max_queue_depth;
|
|
max_read_depth = rtransport->transport.opts.max_queue_depth;
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Target Max Queue Depth: %d\n",
|
|
rtransport->transport.opts.max_queue_depth);
|
|
|
|
/* Next check the local NIC's hardware limitations */
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA,
|
|
"Local NIC Max Send/Recv Queue Depth: %d Max Read/Write Queue Depth: %d\n",
|
|
port->device->attr.max_qp_wr, port->device->attr.max_qp_rd_atom);
|
|
max_queue_depth = spdk_min(max_queue_depth, port->device->attr.max_qp_wr);
|
|
max_read_depth = spdk_min(max_read_depth, port->device->attr.max_qp_init_rd_atom);
|
|
|
|
/* Next check the remote NIC's hardware limitations */
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA,
|
|
"Host (Initiator) NIC Max Incoming RDMA R/W operations: %d Max Outgoing RDMA R/W operations: %d\n",
|
|
rdma_param->initiator_depth, rdma_param->responder_resources);
|
|
if (rdma_param->initiator_depth > 0) {
|
|
max_read_depth = spdk_min(max_read_depth, rdma_param->initiator_depth);
|
|
}
|
|
|
|
/* Finally check for the host software requested values, which are
|
|
* optional. */
|
|
if (rdma_param->private_data != NULL &&
|
|
rdma_param->private_data_len >= sizeof(struct spdk_nvmf_rdma_request_private_data)) {
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Receive Queue Size: %d\n", private_data->hrqsize);
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Host Send Queue Size: %d\n", private_data->hsqsize);
|
|
max_queue_depth = spdk_min(max_queue_depth, private_data->hrqsize);
|
|
max_queue_depth = spdk_min(max_queue_depth, private_data->hsqsize + 1);
|
|
}
|
|
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Final Negotiated Queue Depth: %d R/W Depth: %d\n",
|
|
max_queue_depth, max_read_depth);
|
|
|
|
rqpair = calloc(1, sizeof(struct spdk_nvmf_rdma_qpair));
|
|
if (rqpair == NULL) {
|
|
SPDK_ERRLOG("Could not allocate new connection.\n");
|
|
spdk_nvmf_rdma_event_reject(event->id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
|
|
return -1;
|
|
}
|
|
|
|
rqpair->port = port;
|
|
rqpair->max_queue_depth = max_queue_depth;
|
|
rqpair->max_read_depth = max_read_depth;
|
|
rqpair->cm_id = event->id;
|
|
rqpair->listen_id = event->listen_id;
|
|
rqpair->qpair.transport = transport;
|
|
/* use qid from the private data to determine the qpair type
|
|
qid will be set to the appropriate value when the controller is created */
|
|
rqpair->qpair.qid = private_data->qid;
|
|
|
|
event->id->context = &rqpair->qpair;
|
|
|
|
cb_fn(&rqpair->qpair);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_mem_notify(void *cb_ctx, struct spdk_mem_map *map,
|
|
enum spdk_mem_map_notify_action action,
|
|
void *vaddr, size_t size)
|
|
{
|
|
struct ibv_pd *pd = cb_ctx;
|
|
struct ibv_mr *mr;
|
|
int rc;
|
|
|
|
switch (action) {
|
|
case SPDK_MEM_MAP_NOTIFY_REGISTER:
|
|
if (!g_nvmf_hooks.get_rkey) {
|
|
mr = ibv_reg_mr(pd, vaddr, size,
|
|
IBV_ACCESS_LOCAL_WRITE |
|
|
IBV_ACCESS_REMOTE_READ |
|
|
IBV_ACCESS_REMOTE_WRITE);
|
|
if (mr == NULL) {
|
|
SPDK_ERRLOG("ibv_reg_mr() failed\n");
|
|
return -1;
|
|
} else {
|
|
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
|
|
}
|
|
} else {
|
|
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size,
|
|
g_nvmf_hooks.get_rkey(pd, vaddr, size));
|
|
}
|
|
break;
|
|
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
|
|
if (!g_nvmf_hooks.get_rkey) {
|
|
mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
|
|
if (mr) {
|
|
ibv_dereg_mr(mr);
|
|
}
|
|
}
|
|
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
|
|
break;
|
|
default:
|
|
SPDK_UNREACHABLE();
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2)
|
|
{
|
|
/* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */
|
|
return addr_1 == addr_2;
|
|
}
|
|
|
|
typedef enum spdk_nvme_data_transfer spdk_nvme_data_transfer_t;
|
|
|
|
static spdk_nvme_data_transfer_t
|
|
spdk_nvmf_rdma_request_get_xfer(struct spdk_nvmf_rdma_request *rdma_req)
|
|
{
|
|
enum spdk_nvme_data_transfer xfer;
|
|
struct spdk_nvme_cmd *cmd = &rdma_req->req.cmd->nvme_cmd;
|
|
struct spdk_nvme_sgl_descriptor *sgl = &cmd->dptr.sgl1;
|
|
|
|
#ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
|
|
rdma_req->rsp.wr.opcode = IBV_WR_SEND;
|
|
rdma_req->rsp.wr.imm_data = 0;
|
|
#endif
|
|
|
|
/* Figure out data transfer direction */
|
|
if (cmd->opc == SPDK_NVME_OPC_FABRIC) {
|
|
xfer = spdk_nvme_opc_get_data_transfer(rdma_req->req.cmd->nvmf_cmd.fctype);
|
|
} else {
|
|
xfer = spdk_nvme_opc_get_data_transfer(cmd->opc);
|
|
|
|
/* Some admin commands are special cases */
|
|
if ((rdma_req->req.qpair->qid == 0) &&
|
|
((cmd->opc == SPDK_NVME_OPC_GET_FEATURES) ||
|
|
(cmd->opc == SPDK_NVME_OPC_SET_FEATURES))) {
|
|
switch (cmd->cdw10 & 0xff) {
|
|
case SPDK_NVME_FEAT_LBA_RANGE_TYPE:
|
|
case SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
|
|
case SPDK_NVME_FEAT_HOST_IDENTIFIER:
|
|
break;
|
|
default:
|
|
xfer = SPDK_NVME_DATA_NONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (xfer == SPDK_NVME_DATA_NONE) {
|
|
return xfer;
|
|
}
|
|
|
|
/* Even for commands that may transfer data, they could have specified 0 length.
|
|
* We want those to show up with xfer SPDK_NVME_DATA_NONE.
|
|
*/
|
|
switch (sgl->generic.type) {
|
|
case SPDK_NVME_SGL_TYPE_DATA_BLOCK:
|
|
case SPDK_NVME_SGL_TYPE_BIT_BUCKET:
|
|
case SPDK_NVME_SGL_TYPE_SEGMENT:
|
|
case SPDK_NVME_SGL_TYPE_LAST_SEGMENT:
|
|
case SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK:
|
|
if (sgl->unkeyed.length == 0) {
|
|
xfer = SPDK_NVME_DATA_NONE;
|
|
}
|
|
break;
|
|
case SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK:
|
|
if (sgl->keyed.length == 0) {
|
|
xfer = SPDK_NVME_DATA_NONE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return xfer;
|
|
}
|
|
|
|
static int
|
|
nvmf_request_alloc_wrs(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_request *rdma_req,
|
|
uint32_t num_sgl_descriptors)
|
|
{
|
|
struct spdk_nvmf_rdma_request_data *work_requests[SPDK_NVMF_MAX_SGL_ENTRIES];
|
|
struct spdk_nvmf_rdma_request_data *current_data_wr;
|
|
uint32_t i;
|
|
|
|
if (spdk_mempool_get_bulk(rtransport->data_wr_pool, (void **)work_requests, num_sgl_descriptors)) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
current_data_wr = &rdma_req->data;
|
|
|
|
for (i = 0; i < num_sgl_descriptors; i++) {
|
|
if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
|
|
current_data_wr->wr.opcode = IBV_WR_RDMA_WRITE;
|
|
current_data_wr->wr.send_flags = 0;
|
|
} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
|
|
current_data_wr->wr.opcode = IBV_WR_RDMA_READ;
|
|
current_data_wr->wr.send_flags = IBV_SEND_SIGNALED;
|
|
} else {
|
|
assert(false);
|
|
}
|
|
work_requests[i]->wr.sg_list = work_requests[i]->sgl;
|
|
work_requests[i]->wr.wr_id = rdma_req->data.wr.wr_id;
|
|
current_data_wr->wr.next = &work_requests[i]->wr;
|
|
current_data_wr = work_requests[i];
|
|
}
|
|
|
|
if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
|
|
current_data_wr->wr.opcode = IBV_WR_RDMA_WRITE;
|
|
current_data_wr->wr.next = &rdma_req->rsp.wr;
|
|
current_data_wr->wr.send_flags = 0;
|
|
} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
|
|
current_data_wr->wr.opcode = IBV_WR_RDMA_READ;
|
|
current_data_wr->wr.next = NULL;
|
|
current_data_wr->wr.send_flags = IBV_SEND_SIGNALED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* This function is used in the rare case that we have a buffer split over multiple memory regions. */
|
|
static int
|
|
nvmf_rdma_replace_buffer(struct spdk_nvmf_rdma_poll_group *rgroup, void **buf)
|
|
{
|
|
struct spdk_nvmf_transport_poll_group *group = &rgroup->group;
|
|
struct spdk_nvmf_transport *transport = group->transport;
|
|
struct spdk_nvmf_transport_pg_cache_buf *old_buf;
|
|
void *new_buf;
|
|
|
|
if (!(STAILQ_EMPTY(&group->buf_cache))) {
|
|
group->buf_cache_count--;
|
|
new_buf = STAILQ_FIRST(&group->buf_cache);
|
|
STAILQ_REMOVE_HEAD(&group->buf_cache, link);
|
|
assert(*buf != NULL);
|
|
} else {
|
|
new_buf = spdk_mempool_get(transport->data_buf_pool);
|
|
}
|
|
|
|
if (*buf == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
old_buf = *buf;
|
|
STAILQ_INSERT_HEAD(&rgroup->retired_bufs, old_buf, link);
|
|
*buf = new_buf;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fills iov and SGL, iov[i] points to buffer[i], SGE[i] is limited in length to data block size
|
|
* and points to part of buffer
|
|
*/
|
|
static int
|
|
nvmf_rdma_fill_buffers_with_md_interleave(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_poll_group *rgroup,
|
|
struct spdk_nvmf_rdma_device *device,
|
|
struct spdk_nvmf_request *req,
|
|
struct ibv_send_wr *wr,
|
|
uint32_t length,
|
|
uint32_t data_block_size,
|
|
uint32_t md_size)
|
|
{
|
|
uint32_t remaining_length = length;
|
|
uint32_t remaining_io_buffer_length;
|
|
uint32_t remaining_data_block = data_block_size;
|
|
uint32_t offset = 0;
|
|
uint32_t sge_len;
|
|
uint64_t translation_len;
|
|
struct iovec *iovec;
|
|
struct ibv_sge *sg_list;
|
|
uint32_t lkey = 0;
|
|
|
|
wr->num_sge = 0;
|
|
|
|
while (remaining_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
|
|
iovec = &req->iov[req->iovcnt];
|
|
iovec->iov_base = (void *)((uintptr_t)(req->buffers[req->iovcnt] + NVMF_DATA_BUFFER_MASK)
|
|
& ~NVMF_DATA_BUFFER_MASK);
|
|
iovec->iov_len = spdk_min(remaining_length, rtransport->transport.opts.io_unit_size);
|
|
remaining_io_buffer_length = iovec->iov_len - offset;
|
|
translation_len = iovec->iov_len;
|
|
|
|
if (!g_nvmf_hooks.get_rkey) {
|
|
lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map, (uint64_t)iovec->iov_base,
|
|
&translation_len))->lkey;
|
|
} else {
|
|
lkey = spdk_mem_map_translate(device->map, (uint64_t)iovec->iov_base, &translation_len);
|
|
}
|
|
/* This is a very rare case that can occur when using DPDK version < 19.05 */
|
|
if (spdk_unlikely(translation_len < iovec->iov_len)) {
|
|
SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions. Removing it from circulation.\n");
|
|
if (nvmf_rdma_replace_buffer(rgroup, &req->buffers[req->iovcnt]) == -ENOMEM) {
|
|
return -ENOMEM;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
req->iovcnt++;
|
|
|
|
while (remaining_io_buffer_length && wr->num_sge < SPDK_NVMF_MAX_SGL_ENTRIES) {
|
|
sg_list = &wr->sg_list[wr->num_sge];
|
|
sg_list->addr = (uintptr_t)((char *) iovec->iov_base + offset);
|
|
sge_len = spdk_min(remaining_io_buffer_length, remaining_data_block);
|
|
sg_list->length = sge_len;
|
|
sg_list->lkey = lkey;
|
|
remaining_io_buffer_length -= sge_len;
|
|
remaining_data_block -= sge_len;
|
|
offset += sge_len;
|
|
wr->num_sge++;
|
|
|
|
if (remaining_data_block == 0) {
|
|
/* skip metadata */
|
|
offset += md_size;
|
|
/* Metadata that do not fit this IO buffer will be included in the next IO buffer */
|
|
remaining_io_buffer_length -= spdk_min(remaining_io_buffer_length, md_size);
|
|
remaining_data_block = data_block_size;
|
|
}
|
|
|
|
if (remaining_io_buffer_length == 0) {
|
|
/* By subtracting the size of the last IOV from the offset, we ensure that we skip
|
|
the remaining metadata bits at the beginning of the next buffer */
|
|
offset -= iovec->iov_len;
|
|
}
|
|
}
|
|
remaining_length -= iovec->iov_len;
|
|
}
|
|
|
|
if (remaining_length) {
|
|
SPDK_ERRLOG("Not enough SG entries to hold data buffer\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvmf_rdma_fill_buffers(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_poll_group *rgroup,
|
|
struct spdk_nvmf_rdma_device *device,
|
|
struct spdk_nvmf_request *req,
|
|
struct ibv_send_wr *wr,
|
|
uint32_t length)
|
|
{
|
|
uint64_t translation_len;
|
|
|
|
wr->num_sge = 0;
|
|
while (length) {
|
|
req->iov[req->iovcnt].iov_base = (void *)((uintptr_t)(req->buffers[req->iovcnt] +
|
|
NVMF_DATA_BUFFER_MASK) &
|
|
~NVMF_DATA_BUFFER_MASK);
|
|
req->iov[req->iovcnt].iov_len = spdk_min(length,
|
|
rtransport->transport.opts.io_unit_size);
|
|
translation_len = req->iov[req->iovcnt].iov_len;
|
|
|
|
if (!g_nvmf_hooks.get_rkey) {
|
|
wr->sg_list[wr->num_sge].lkey = ((struct ibv_mr *)spdk_mem_map_translate(device->map,
|
|
(uint64_t)req->iov[req->iovcnt].iov_base, &translation_len))->lkey;
|
|
} else {
|
|
wr->sg_list[wr->num_sge].lkey = spdk_mem_map_translate(device->map,
|
|
(uint64_t)req->iov[req->iovcnt].iov_base, &translation_len);
|
|
}
|
|
|
|
/* This is a very rare case that can occur when using DPDK version < 19.05 */
|
|
if (spdk_unlikely(translation_len < req->iov[req->iovcnt].iov_len)) {
|
|
SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions. Removing it from circulation.\n");
|
|
if (nvmf_rdma_replace_buffer(rgroup, &req->buffers[req->iovcnt]) == -ENOMEM) {
|
|
return -ENOMEM;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
length -= req->iov[req->iovcnt].iov_len;
|
|
wr->sg_list[wr->num_sge].addr = (uintptr_t)(req->iov[req->iovcnt].iov_base);
|
|
wr->sg_list[wr->num_sge].length = req->iov[req->iovcnt].iov_len;
|
|
req->iovcnt++;
|
|
wr->num_sge++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_request_fill_iovs(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_device *device,
|
|
struct spdk_nvmf_rdma_request *rdma_req,
|
|
uint32_t length)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
struct spdk_nvmf_rdma_poll_group *rgroup;
|
|
struct spdk_nvmf_request *req = &rdma_req->req;
|
|
struct ibv_send_wr *wr = &rdma_req->data.wr;
|
|
uint32_t num_buffers;
|
|
int rc = 0;
|
|
|
|
rqpair = SPDK_CONTAINEROF(req->qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
rgroup = rqpair->poller->group;
|
|
|
|
num_buffers = SPDK_CEIL_DIV(length, rtransport->transport.opts.io_unit_size);
|
|
|
|
if (spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
|
|
num_buffers)) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
req->iovcnt = 0;
|
|
|
|
if (spdk_unlikely(rdma_req->dif_insert_or_strip)) {
|
|
rc = nvmf_rdma_fill_buffers_with_md_interleave(rtransport,
|
|
rgroup,
|
|
device,
|
|
&rdma_req->req,
|
|
wr,
|
|
length,
|
|
rdma_req->dif_ctx.block_size - rdma_req->dif_ctx.md_size,
|
|
rdma_req->dif_ctx.md_size);
|
|
} else {
|
|
rc = nvmf_rdma_fill_buffers(rtransport, rgroup, device, req, wr, length);
|
|
}
|
|
if (rc != 0) {
|
|
goto err_exit;
|
|
}
|
|
|
|
assert(req->iovcnt <= rqpair->max_send_sge);
|
|
|
|
req->data_from_pool = true;
|
|
|
|
return rc;
|
|
|
|
err_exit:
|
|
spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
|
|
memset(wr->sg_list, 0, sizeof(wr->sg_list[0]) * wr->num_sge);
|
|
wr->num_sge = 0;
|
|
req->iovcnt = 0;
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvmf_rdma_request_fill_iovs_multi_sgl(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_device *device,
|
|
struct spdk_nvmf_rdma_request *rdma_req)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
struct spdk_nvmf_rdma_poll_group *rgroup;
|
|
struct ibv_send_wr *current_wr;
|
|
struct spdk_nvmf_request *req = &rdma_req->req;
|
|
struct spdk_nvme_sgl_descriptor *inline_segment, *desc;
|
|
uint32_t num_sgl_descriptors;
|
|
uint32_t num_buffers = 0;
|
|
uint32_t i;
|
|
int rc;
|
|
|
|
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
rgroup = rqpair->poller->group;
|
|
|
|
inline_segment = &req->cmd->nvme_cmd.dptr.sgl1;
|
|
assert(inline_segment->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT);
|
|
assert(inline_segment->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET);
|
|
|
|
num_sgl_descriptors = inline_segment->unkeyed.length / sizeof(struct spdk_nvme_sgl_descriptor);
|
|
assert(num_sgl_descriptors <= SPDK_NVMF_MAX_SGL_ENTRIES);
|
|
|
|
if (nvmf_request_alloc_wrs(rtransport, rdma_req, num_sgl_descriptors - 1) != 0) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
|
|
|
|
for (i = 0; i < num_sgl_descriptors; i++) {
|
|
num_buffers += SPDK_CEIL_DIV(desc->keyed.length, rtransport->transport.opts.io_unit_size);
|
|
desc++;
|
|
}
|
|
/* If the number of buffers is too large, then we know the I/O is larger than allowed. Fail it. */
|
|
if (num_buffers > NVMF_REQ_MAX_BUFFERS) {
|
|
nvmf_rdma_request_free_data(rdma_req, rtransport);
|
|
return -EINVAL;
|
|
}
|
|
if (spdk_nvmf_request_get_buffers(req, &rgroup->group, &rtransport->transport,
|
|
num_buffers) != 0) {
|
|
nvmf_rdma_request_free_data(rdma_req, rtransport);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* The first WR must always be the embedded data WR. This is how we unwind them later. */
|
|
current_wr = &rdma_req->data.wr;
|
|
assert(current_wr != NULL);
|
|
|
|
req->iovcnt = 0;
|
|
req->length = 0;
|
|
desc = (struct spdk_nvme_sgl_descriptor *)rdma_req->recv->buf + inline_segment->address;
|
|
for (i = 0; i < num_sgl_descriptors; i++) {
|
|
/* The descriptors must be keyed data block descriptors with an address, not an offset. */
|
|
if (spdk_unlikely(desc->generic.type != SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK ||
|
|
desc->keyed.subtype != SPDK_NVME_SGL_SUBTYPE_ADDRESS)) {
|
|
rc = -EINVAL;
|
|
goto err_exit;
|
|
}
|
|
|
|
current_wr->num_sge = 0;
|
|
|
|
rc = nvmf_rdma_fill_buffers(rtransport, rgroup, device, req, current_wr,
|
|
desc->keyed.length);
|
|
if (rc != 0) {
|
|
rc = -ENOMEM;
|
|
goto err_exit;
|
|
}
|
|
|
|
req->length += desc->keyed.length;
|
|
current_wr->wr.rdma.rkey = desc->keyed.key;
|
|
current_wr->wr.rdma.remote_addr = desc->address;
|
|
current_wr = current_wr->next;
|
|
desc++;
|
|
}
|
|
|
|
#ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
|
|
/* Go back to the last descriptor in the list. */
|
|
desc--;
|
|
if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
|
|
if (desc->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
|
|
rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
|
|
rdma_req->rsp.wr.imm_data = desc->keyed.key;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
rdma_req->num_outstanding_data_wr = num_sgl_descriptors;
|
|
req->data_from_pool = true;
|
|
|
|
return 0;
|
|
|
|
err_exit:
|
|
spdk_nvmf_request_free_buffers(req, &rgroup->group, &rtransport->transport);
|
|
nvmf_rdma_request_free_data(rdma_req, rtransport);
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_request_parse_sgl(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_device *device,
|
|
struct spdk_nvmf_rdma_request *rdma_req)
|
|
{
|
|
struct spdk_nvme_cmd *cmd;
|
|
struct spdk_nvme_cpl *rsp;
|
|
struct spdk_nvme_sgl_descriptor *sgl;
|
|
int rc;
|
|
uint32_t length;
|
|
|
|
cmd = &rdma_req->req.cmd->nvme_cmd;
|
|
rsp = &rdma_req->req.rsp->nvme_cpl;
|
|
sgl = &cmd->dptr.sgl1;
|
|
|
|
if (sgl->generic.type == SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK &&
|
|
(sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_ADDRESS ||
|
|
sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY)) {
|
|
|
|
length = sgl->keyed.length;
|
|
if (length > rtransport->transport.opts.max_io_size) {
|
|
SPDK_ERRLOG("SGL length 0x%x exceeds max io size 0x%x\n",
|
|
length, rtransport->transport.opts.max_io_size);
|
|
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
|
|
return -1;
|
|
}
|
|
#ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
|
|
if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) != 0) {
|
|
if (sgl->keyed.subtype == SPDK_NVME_SGL_SUBTYPE_INVALIDATE_KEY) {
|
|
rdma_req->rsp.wr.opcode = IBV_WR_SEND_WITH_INV;
|
|
rdma_req->rsp.wr.imm_data = sgl->keyed.key;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* fill request length and populate iovs */
|
|
rdma_req->req.length = length;
|
|
|
|
if (spdk_unlikely(rdma_req->dif_insert_or_strip)) {
|
|
rdma_req->orig_length = length;
|
|
length = spdk_dif_get_length_with_md(length, &rdma_req->dif_ctx);
|
|
rdma_req->elba_length = length;
|
|
}
|
|
|
|
if (spdk_nvmf_rdma_request_fill_iovs(rtransport, device, rdma_req, length) < 0) {
|
|
/* No available buffers. Queue this request up. */
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
|
|
return 0;
|
|
}
|
|
|
|
/* backward compatible */
|
|
rdma_req->req.data = rdma_req->req.iov[0].iov_base;
|
|
|
|
/* rdma wr specifics */
|
|
rdma_req->data.wr.wr.rdma.rkey = sgl->keyed.key;
|
|
rdma_req->data.wr.wr.rdma.remote_addr = sgl->address;
|
|
if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
|
|
rdma_req->data.wr.opcode = IBV_WR_RDMA_WRITE;
|
|
rdma_req->data.wr.next = &rdma_req->rsp.wr;
|
|
rdma_req->data.wr.send_flags &= ~IBV_SEND_SIGNALED;
|
|
} else if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
|
|
rdma_req->data.wr.opcode = IBV_WR_RDMA_READ;
|
|
rdma_req->data.wr.next = NULL;
|
|
rdma_req->data.wr.send_flags |= IBV_SEND_SIGNALED;
|
|
}
|
|
|
|
/* set the number of outstanding data WRs for this request. */
|
|
rdma_req->num_outstanding_data_wr = 1;
|
|
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
|
|
rdma_req->req.iovcnt);
|
|
|
|
return 0;
|
|
} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_DATA_BLOCK &&
|
|
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
|
|
uint64_t offset = sgl->address;
|
|
uint32_t max_len = rtransport->transport.opts.in_capsule_data_size;
|
|
|
|
SPDK_DEBUGLOG(SPDK_LOG_NVMF, "In-capsule data: offset 0x%" PRIx64 ", length 0x%x\n",
|
|
offset, sgl->unkeyed.length);
|
|
|
|
if (offset > max_len) {
|
|
SPDK_ERRLOG("In-capsule offset 0x%" PRIx64 " exceeds capsule length 0x%x\n",
|
|
offset, max_len);
|
|
rsp->status.sc = SPDK_NVME_SC_INVALID_SGL_OFFSET;
|
|
return -1;
|
|
}
|
|
max_len -= (uint32_t)offset;
|
|
|
|
if (sgl->unkeyed.length > max_len) {
|
|
SPDK_ERRLOG("In-capsule data length 0x%x exceeds capsule length 0x%x\n",
|
|
sgl->unkeyed.length, max_len);
|
|
rsp->status.sc = SPDK_NVME_SC_DATA_SGL_LENGTH_INVALID;
|
|
return -1;
|
|
}
|
|
|
|
rdma_req->num_outstanding_data_wr = 0;
|
|
rdma_req->req.data = rdma_req->recv->buf + offset;
|
|
rdma_req->req.data_from_pool = false;
|
|
rdma_req->req.length = sgl->unkeyed.length;
|
|
|
|
rdma_req->req.iov[0].iov_base = rdma_req->req.data;
|
|
rdma_req->req.iov[0].iov_len = rdma_req->req.length;
|
|
rdma_req->req.iovcnt = 1;
|
|
|
|
return 0;
|
|
} else if (sgl->generic.type == SPDK_NVME_SGL_TYPE_LAST_SEGMENT &&
|
|
sgl->unkeyed.subtype == SPDK_NVME_SGL_SUBTYPE_OFFSET) {
|
|
|
|
rc = nvmf_rdma_request_fill_iovs_multi_sgl(rtransport, device, rdma_req);
|
|
if (rc == -ENOMEM) {
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "No available large data buffers. Queueing request %p\n", rdma_req);
|
|
return 0;
|
|
} else if (rc == -EINVAL) {
|
|
SPDK_ERRLOG("Multi SGL element request length exceeds the max I/O size\n");
|
|
return -1;
|
|
}
|
|
|
|
/* backward compatible */
|
|
rdma_req->req.data = rdma_req->req.iov[0].iov_base;
|
|
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p took %d buffer/s from central pool\n", rdma_req,
|
|
rdma_req->req.iovcnt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SPDK_ERRLOG("Invalid NVMf I/O Command SGL: Type 0x%x, Subtype 0x%x\n",
|
|
sgl->generic.type, sgl->generic.subtype);
|
|
rsp->status.sc = SPDK_NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID;
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
nvmf_rdma_request_free(struct spdk_nvmf_rdma_request *rdma_req,
|
|
struct spdk_nvmf_rdma_transport *rtransport)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
struct spdk_nvmf_rdma_poll_group *rgroup;
|
|
|
|
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
if (rdma_req->req.data_from_pool) {
|
|
rgroup = rqpair->poller->group;
|
|
|
|
spdk_nvmf_request_free_buffers(&rdma_req->req, &rgroup->group, &rtransport->transport);
|
|
}
|
|
nvmf_rdma_request_free_data(rdma_req, rtransport);
|
|
rdma_req->req.length = 0;
|
|
rdma_req->req.iovcnt = 0;
|
|
rdma_req->req.data = NULL;
|
|
rdma_req->rsp.wr.next = NULL;
|
|
rdma_req->data.wr.next = NULL;
|
|
rdma_req->dif_insert_or_strip = false;
|
|
rdma_req->elba_length = 0;
|
|
rdma_req->orig_length = 0;
|
|
memset(&rdma_req->dif_ctx, 0, sizeof(rdma_req->dif_ctx));
|
|
rqpair->qd--;
|
|
|
|
STAILQ_INSERT_HEAD(&rqpair->resources->free_queue, rdma_req, state_link);
|
|
rdma_req->state = RDMA_REQUEST_STATE_FREE;
|
|
}
|
|
|
|
static bool
|
|
spdk_nvmf_rdma_request_process(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_request *rdma_req)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
struct spdk_nvmf_rdma_device *device;
|
|
struct spdk_nvmf_rdma_poll_group *rgroup;
|
|
struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
|
|
int rc;
|
|
struct spdk_nvmf_rdma_recv *rdma_recv;
|
|
enum spdk_nvmf_rdma_request_state prev_state;
|
|
bool progress = false;
|
|
int data_posted;
|
|
uint32_t num_blocks;
|
|
|
|
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
device = rqpair->port->device;
|
|
rgroup = rqpair->poller->group;
|
|
|
|
assert(rdma_req->state != RDMA_REQUEST_STATE_FREE);
|
|
|
|
/* If the queue pair is in an error state, force the request to the completed state
|
|
* to release resources. */
|
|
if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
|
|
if (rdma_req->state == RDMA_REQUEST_STATE_NEED_BUFFER) {
|
|
STAILQ_REMOVE(&rgroup->group.pending_buf_queue, &rdma_req->req, spdk_nvmf_request, buf_link);
|
|
} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING) {
|
|
STAILQ_REMOVE(&rqpair->pending_rdma_read_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
|
|
} else if (rdma_req->state == RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING) {
|
|
STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
|
|
}
|
|
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
}
|
|
|
|
/* The loop here is to allow for several back-to-back state changes. */
|
|
do {
|
|
prev_state = rdma_req->state;
|
|
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Request %p entering state %d\n", rdma_req, prev_state);
|
|
|
|
switch (rdma_req->state) {
|
|
case RDMA_REQUEST_STATE_FREE:
|
|
/* Some external code must kick a request into RDMA_REQUEST_STATE_NEW
|
|
* to escape this state. */
|
|
break;
|
|
case RDMA_REQUEST_STATE_NEW:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEW, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
rdma_recv = rdma_req->recv;
|
|
|
|
/* The first element of the SGL is the NVMe command */
|
|
rdma_req->req.cmd = (union nvmf_h2c_msg *)rdma_recv->sgl[0].addr;
|
|
memset(rdma_req->req.rsp, 0, sizeof(*rdma_req->req.rsp));
|
|
|
|
if (rqpair->ibv_state == IBV_QPS_ERR || rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
|
|
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
break;
|
|
}
|
|
|
|
if (spdk_unlikely(spdk_nvmf_request_get_dif_ctx(&rdma_req->req, &rdma_req->dif_ctx))) {
|
|
rdma_req->dif_insert_or_strip = true;
|
|
}
|
|
|
|
/* The next state transition depends on the data transfer needs of this request. */
|
|
rdma_req->req.xfer = spdk_nvmf_rdma_request_get_xfer(rdma_req);
|
|
|
|
/* If no data to transfer, ready to execute. */
|
|
if (rdma_req->req.xfer == SPDK_NVME_DATA_NONE) {
|
|
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
|
|
break;
|
|
}
|
|
|
|
rdma_req->state = RDMA_REQUEST_STATE_NEED_BUFFER;
|
|
STAILQ_INSERT_TAIL(&rgroup->group.pending_buf_queue, &rdma_req->req, buf_link);
|
|
break;
|
|
case RDMA_REQUEST_STATE_NEED_BUFFER:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_NEED_BUFFER, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
|
|
assert(rdma_req->req.xfer != SPDK_NVME_DATA_NONE);
|
|
|
|
if (&rdma_req->req != STAILQ_FIRST(&rgroup->group.pending_buf_queue)) {
|
|
/* This request needs to wait in line to obtain a buffer */
|
|
break;
|
|
}
|
|
|
|
/* Try to get a data buffer */
|
|
rc = spdk_nvmf_rdma_request_parse_sgl(rtransport, device, rdma_req);
|
|
if (rc < 0) {
|
|
STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
|
|
rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
|
|
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
|
|
break;
|
|
}
|
|
|
|
if (!rdma_req->req.data) {
|
|
/* No buffers available. */
|
|
rgroup->stat.pending_data_buffer++;
|
|
break;
|
|
}
|
|
|
|
STAILQ_REMOVE_HEAD(&rgroup->group.pending_buf_queue, buf_link);
|
|
|
|
/* If data is transferring from host to controller and the data didn't
|
|
* arrive using in capsule data, we need to do a transfer from the host.
|
|
*/
|
|
if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER &&
|
|
rdma_req->req.data_from_pool) {
|
|
STAILQ_INSERT_TAIL(&rqpair->pending_rdma_read_queue, rdma_req, state_link);
|
|
rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING;
|
|
break;
|
|
}
|
|
|
|
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
|
|
break;
|
|
case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_CONTROLLER_PENDING, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
|
|
if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_read_queue)) {
|
|
/* This request needs to wait in line to perform RDMA */
|
|
break;
|
|
}
|
|
if (rqpair->current_send_depth + rdma_req->num_outstanding_data_wr > rqpair->max_send_depth
|
|
|| rqpair->current_read_depth + rdma_req->num_outstanding_data_wr > rqpair->max_read_depth) {
|
|
/* We can only have so many WRs outstanding. we have to wait until some finish. */
|
|
rqpair->poller->stat.pending_rdma_read++;
|
|
break;
|
|
}
|
|
|
|
/* We have already verified that this request is the head of the queue. */
|
|
STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_read_queue, state_link);
|
|
|
|
rc = request_transfer_in(&rdma_req->req);
|
|
if (!rc) {
|
|
rdma_req->state = RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER;
|
|
} else {
|
|
rsp->status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
|
|
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
|
|
}
|
|
break;
|
|
case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
/* Some external code must kick a request into RDMA_REQUEST_STATE_READY_TO_EXECUTE
|
|
* to escape this state. */
|
|
break;
|
|
case RDMA_REQUEST_STATE_READY_TO_EXECUTE:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_EXECUTE, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
|
|
if (spdk_unlikely(rdma_req->dif_insert_or_strip)) {
|
|
if (rdma_req->req.xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
|
|
/* generate DIF for write operation */
|
|
num_blocks = SPDK_CEIL_DIV(rdma_req->elba_length, rdma_req->dif_ctx.block_size);
|
|
assert(num_blocks > 0);
|
|
|
|
rc = spdk_dif_generate(rdma_req->req.iov, rdma_req->req.iovcnt,
|
|
num_blocks, &rdma_req->dif_ctx);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("DIF generation failed\n");
|
|
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
spdk_nvmf_rdma_start_disconnect(rqpair);
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(rdma_req->elba_length >= rdma_req->req.length);
|
|
/* set extended length before IO operation */
|
|
rdma_req->req.length = rdma_req->elba_length;
|
|
}
|
|
|
|
rdma_req->state = RDMA_REQUEST_STATE_EXECUTING;
|
|
spdk_nvmf_request_exec(&rdma_req->req);
|
|
break;
|
|
case RDMA_REQUEST_STATE_EXECUTING:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTING, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
/* Some external code must kick a request into RDMA_REQUEST_STATE_EXECUTED
|
|
* to escape this state. */
|
|
break;
|
|
case RDMA_REQUEST_STATE_EXECUTED:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_EXECUTED, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
|
|
STAILQ_INSERT_TAIL(&rqpair->pending_rdma_write_queue, rdma_req, state_link);
|
|
rdma_req->state = RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING;
|
|
} else {
|
|
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
|
|
}
|
|
if (spdk_unlikely(rdma_req->dif_insert_or_strip)) {
|
|
/* restore the original length */
|
|
rdma_req->req.length = rdma_req->orig_length;
|
|
|
|
if (rdma_req->req.xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST) {
|
|
struct spdk_dif_error error_blk;
|
|
|
|
num_blocks = SPDK_CEIL_DIV(rdma_req->elba_length, rdma_req->dif_ctx.block_size);
|
|
|
|
rc = spdk_dif_verify(rdma_req->req.iov, rdma_req->req.iovcnt, num_blocks, &rdma_req->dif_ctx,
|
|
&error_blk);
|
|
if (rc) {
|
|
struct spdk_nvme_cpl *rsp = &rdma_req->req.rsp->nvme_cpl;
|
|
|
|
SPDK_ERRLOG("DIF error detected. type=%d, offset=%" PRIu32 "\n", error_blk.err_type,
|
|
error_blk.err_offset);
|
|
rsp->status.sct = SPDK_NVME_SCT_MEDIA_ERROR;
|
|
rsp->status.sc = spdk_nvmf_rdma_dif_error_to_compl_status(error_blk.err_type);
|
|
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
|
|
STAILQ_REMOVE(&rqpair->pending_rdma_write_queue, rdma_req, spdk_nvmf_rdma_request, state_link);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_DATA_TRANSFER_TO_HOST_PENDING, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
|
|
if (rdma_req != STAILQ_FIRST(&rqpair->pending_rdma_write_queue)) {
|
|
/* This request needs to wait in line to perform RDMA */
|
|
break;
|
|
}
|
|
if ((rqpair->current_send_depth + rdma_req->num_outstanding_data_wr + 1) >
|
|
rqpair->max_send_depth) {
|
|
/* We can only have so many WRs outstanding. we have to wait until some finish.
|
|
* +1 since each request has an additional wr in the resp. */
|
|
rqpair->poller->stat.pending_rdma_write++;
|
|
break;
|
|
}
|
|
|
|
/* We have already verified that this request is the head of the queue. */
|
|
STAILQ_REMOVE_HEAD(&rqpair->pending_rdma_write_queue, state_link);
|
|
|
|
/* The data transfer will be kicked off from
|
|
* RDMA_REQUEST_STATE_READY_TO_COMPLETE state.
|
|
*/
|
|
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
|
|
break;
|
|
case RDMA_REQUEST_STATE_READY_TO_COMPLETE:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_READY_TO_COMPLETE, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
rc = request_transfer_out(&rdma_req->req, &data_posted);
|
|
assert(rc == 0); /* No good way to handle this currently */
|
|
if (rc) {
|
|
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
} else {
|
|
rdma_req->state = data_posted ? RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST :
|
|
RDMA_REQUEST_STATE_COMPLETING;
|
|
}
|
|
break;
|
|
case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
|
|
* to escape this state. */
|
|
break;
|
|
case RDMA_REQUEST_STATE_COMPLETING:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETING, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
/* Some external code must kick a request into RDMA_REQUEST_STATE_COMPLETED
|
|
* to escape this state. */
|
|
break;
|
|
case RDMA_REQUEST_STATE_COMPLETED:
|
|
spdk_trace_record(TRACE_RDMA_REQUEST_STATE_COMPLETED, 0, 0,
|
|
(uintptr_t)rdma_req, (uintptr_t)rqpair->cm_id);
|
|
|
|
rqpair->poller->stat.request_latency += spdk_get_ticks() - rdma_req->receive_tsc;
|
|
nvmf_rdma_request_free(rdma_req, rtransport);
|
|
break;
|
|
case RDMA_REQUEST_NUM_STATES:
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
if (rdma_req->state != prev_state) {
|
|
progress = true;
|
|
}
|
|
} while (rdma_req->state != prev_state);
|
|
|
|
return progress;
|
|
}
|
|
|
|
/* Public API callbacks begin here */
|
|
|
|
#define SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH 128
|
|
#define SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH 128
|
|
#define SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH 4096
|
|
#define SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR 128
|
|
#define SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE 4096
|
|
#define SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE 131072
|
|
#define SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE (SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE / SPDK_NVMF_MAX_SGL_ENTRIES)
|
|
#define SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS 4095
|
|
#define SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE 32
|
|
#define SPDK_NVMF_RDMA_DEFAULT_NO_SRQ false
|
|
#define SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP false
|
|
|
|
static void
|
|
spdk_nvmf_rdma_opts_init(struct spdk_nvmf_transport_opts *opts)
|
|
{
|
|
opts->max_queue_depth = SPDK_NVMF_RDMA_DEFAULT_MAX_QUEUE_DEPTH;
|
|
opts->max_qpairs_per_ctrlr = SPDK_NVMF_RDMA_DEFAULT_MAX_QPAIRS_PER_CTRLR;
|
|
opts->in_capsule_data_size = SPDK_NVMF_RDMA_DEFAULT_IN_CAPSULE_DATA_SIZE;
|
|
opts->max_io_size = SPDK_NVMF_RDMA_DEFAULT_MAX_IO_SIZE;
|
|
opts->io_unit_size = SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE;
|
|
opts->max_aq_depth = SPDK_NVMF_RDMA_DEFAULT_AQ_DEPTH;
|
|
opts->num_shared_buffers = SPDK_NVMF_RDMA_DEFAULT_NUM_SHARED_BUFFERS;
|
|
opts->buf_cache_size = SPDK_NVMF_RDMA_DEFAULT_BUFFER_CACHE_SIZE;
|
|
opts->max_srq_depth = SPDK_NVMF_RDMA_DEFAULT_SRQ_DEPTH;
|
|
opts->no_srq = SPDK_NVMF_RDMA_DEFAULT_NO_SRQ;
|
|
opts->dif_insert_or_strip = SPDK_NVMF_RDMA_DIF_INSERT_OR_STRIP;
|
|
}
|
|
|
|
const struct spdk_mem_map_ops g_nvmf_rdma_map_ops = {
|
|
.notify_cb = spdk_nvmf_rdma_mem_notify,
|
|
.are_contiguous = spdk_nvmf_rdma_check_contiguous_entries
|
|
};
|
|
|
|
static int spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport);
|
|
|
|
static struct spdk_nvmf_transport *
|
|
spdk_nvmf_rdma_create(struct spdk_nvmf_transport_opts *opts)
|
|
{
|
|
int rc;
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
struct spdk_nvmf_rdma_device *device, *tmp;
|
|
struct ibv_context **contexts;
|
|
uint32_t i;
|
|
int flag;
|
|
uint32_t sge_count;
|
|
uint32_t min_shared_buffers;
|
|
int max_device_sge = SPDK_NVMF_MAX_SGL_ENTRIES;
|
|
pthread_mutexattr_t attr;
|
|
|
|
rtransport = calloc(1, sizeof(*rtransport));
|
|
if (!rtransport) {
|
|
return NULL;
|
|
}
|
|
|
|
if (pthread_mutexattr_init(&attr)) {
|
|
SPDK_ERRLOG("pthread_mutexattr_init() failed\n");
|
|
free(rtransport);
|
|
return NULL;
|
|
}
|
|
|
|
if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) {
|
|
SPDK_ERRLOG("pthread_mutexattr_settype() failed\n");
|
|
pthread_mutexattr_destroy(&attr);
|
|
free(rtransport);
|
|
return NULL;
|
|
}
|
|
|
|
if (pthread_mutex_init(&rtransport->lock, &attr)) {
|
|
SPDK_ERRLOG("pthread_mutex_init() failed\n");
|
|
pthread_mutexattr_destroy(&attr);
|
|
free(rtransport);
|
|
return NULL;
|
|
}
|
|
|
|
pthread_mutexattr_destroy(&attr);
|
|
|
|
TAILQ_INIT(&rtransport->devices);
|
|
TAILQ_INIT(&rtransport->ports);
|
|
TAILQ_INIT(&rtransport->poll_groups);
|
|
|
|
rtransport->transport.ops = &spdk_nvmf_transport_rdma;
|
|
|
|
SPDK_INFOLOG(SPDK_LOG_RDMA, "*** RDMA Transport Init ***\n"
|
|
" Transport opts: max_ioq_depth=%d, max_io_size=%d,\n"
|
|
" max_qpairs_per_ctrlr=%d, io_unit_size=%d,\n"
|
|
" in_capsule_data_size=%d, max_aq_depth=%d,\n"
|
|
" num_shared_buffers=%d, max_srq_depth=%d, no_srq=%d\n",
|
|
opts->max_queue_depth,
|
|
opts->max_io_size,
|
|
opts->max_qpairs_per_ctrlr,
|
|
opts->io_unit_size,
|
|
opts->in_capsule_data_size,
|
|
opts->max_aq_depth,
|
|
opts->num_shared_buffers,
|
|
opts->max_srq_depth,
|
|
opts->no_srq);
|
|
|
|
/* I/O unit size cannot be larger than max I/O size */
|
|
if (opts->io_unit_size > opts->max_io_size) {
|
|
opts->io_unit_size = opts->max_io_size;
|
|
}
|
|
|
|
if (opts->num_shared_buffers < (SPDK_NVMF_MAX_SGL_ENTRIES * 2)) {
|
|
SPDK_ERRLOG("The number of shared data buffers (%d) is less than"
|
|
"the minimum number required to guarantee that forward progress can be made (%d)\n",
|
|
opts->num_shared_buffers, (SPDK_NVMF_MAX_SGL_ENTRIES * 2));
|
|
spdk_nvmf_rdma_destroy(&rtransport->transport);
|
|
return NULL;
|
|
}
|
|
|
|
min_shared_buffers = spdk_thread_get_count() * opts->buf_cache_size;
|
|
if (min_shared_buffers > opts->num_shared_buffers) {
|
|
SPDK_ERRLOG("There are not enough buffers to satisfy"
|
|
"per-poll group caches for each thread. (%" PRIu32 ")"
|
|
"supplied. (%" PRIu32 ") required\n", opts->num_shared_buffers, min_shared_buffers);
|
|
SPDK_ERRLOG("Please specify a larger number of shared buffers\n");
|
|
spdk_nvmf_rdma_destroy(&rtransport->transport);
|
|
return NULL;
|
|
}
|
|
|
|
sge_count = opts->max_io_size / opts->io_unit_size;
|
|
if (sge_count > NVMF_DEFAULT_TX_SGE) {
|
|
SPDK_ERRLOG("Unsupported IO Unit size specified, %d bytes\n", opts->io_unit_size);
|
|
spdk_nvmf_rdma_destroy(&rtransport->transport);
|
|
return NULL;
|
|
}
|
|
|
|
rtransport->event_channel = rdma_create_event_channel();
|
|
if (rtransport->event_channel == NULL) {
|
|
SPDK_ERRLOG("rdma_create_event_channel() failed, %s\n", spdk_strerror(errno));
|
|
spdk_nvmf_rdma_destroy(&rtransport->transport);
|
|
return NULL;
|
|
}
|
|
|
|
flag = fcntl(rtransport->event_channel->fd, F_GETFL);
|
|
if (fcntl(rtransport->event_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
|
|
SPDK_ERRLOG("fcntl can't set nonblocking mode for socket, fd: %d (%s)\n",
|
|
rtransport->event_channel->fd, spdk_strerror(errno));
|
|
spdk_nvmf_rdma_destroy(&rtransport->transport);
|
|
return NULL;
|
|
}
|
|
|
|
rtransport->data_wr_pool = spdk_mempool_create("spdk_nvmf_rdma_wr_data",
|
|
opts->max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES,
|
|
sizeof(struct spdk_nvmf_rdma_request_data),
|
|
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
|
|
SPDK_ENV_SOCKET_ID_ANY);
|
|
if (!rtransport->data_wr_pool) {
|
|
SPDK_ERRLOG("Unable to allocate work request pool for poll group\n");
|
|
spdk_nvmf_rdma_destroy(&rtransport->transport);
|
|
return NULL;
|
|
}
|
|
|
|
contexts = rdma_get_devices(NULL);
|
|
if (contexts == NULL) {
|
|
SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
|
|
spdk_nvmf_rdma_destroy(&rtransport->transport);
|
|
return NULL;
|
|
}
|
|
|
|
i = 0;
|
|
rc = 0;
|
|
while (contexts[i] != NULL) {
|
|
device = calloc(1, sizeof(*device));
|
|
if (!device) {
|
|
SPDK_ERRLOG("Unable to allocate memory for RDMA devices.\n");
|
|
rc = -ENOMEM;
|
|
break;
|
|
}
|
|
device->context = contexts[i];
|
|
rc = ibv_query_device(device->context, &device->attr);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
|
|
free(device);
|
|
break;
|
|
|
|
}
|
|
|
|
max_device_sge = spdk_min(max_device_sge, device->attr.max_sge);
|
|
|
|
#ifdef SPDK_CONFIG_RDMA_SEND_WITH_INVAL
|
|
if ((device->attr.device_cap_flags & IBV_DEVICE_MEM_MGT_EXTENSIONS) == 0) {
|
|
SPDK_WARNLOG("The libibverbs on this system supports SEND_WITH_INVALIDATE,");
|
|
SPDK_WARNLOG("but the device with vendor ID %u does not.\n", device->attr.vendor_id);
|
|
}
|
|
|
|
/**
|
|
* The vendor ID is assigned by the IEEE and an ID of 0 implies Soft-RoCE.
|
|
* The Soft-RoCE RXE driver does not currently support send with invalidate,
|
|
* but incorrectly reports that it does. There are changes making their way
|
|
* through the kernel now that will enable this feature. When they are merged,
|
|
* we can conditionally enable this feature.
|
|
*
|
|
* TODO: enable this for versions of the kernel rxe driver that support it.
|
|
*/
|
|
if (device->attr.vendor_id == 0) {
|
|
device->attr.device_cap_flags &= ~(IBV_DEVICE_MEM_MGT_EXTENSIONS);
|
|
}
|
|
#endif
|
|
|
|
/* set up device context async ev fd as NON_BLOCKING */
|
|
flag = fcntl(device->context->async_fd, F_GETFL);
|
|
rc = fcntl(device->context->async_fd, F_SETFL, flag | O_NONBLOCK);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Failed to set context async fd to NONBLOCK.\n");
|
|
free(device);
|
|
break;
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&rtransport->devices, device, link);
|
|
i++;
|
|
|
|
if (g_nvmf_hooks.get_ibv_pd) {
|
|
device->pd = g_nvmf_hooks.get_ibv_pd(NULL, device->context);
|
|
} else {
|
|
device->pd = ibv_alloc_pd(device->context);
|
|
}
|
|
|
|
if (!device->pd) {
|
|
SPDK_ERRLOG("Unable to allocate protection domain.\n");
|
|
rc = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
assert(device->map == NULL);
|
|
|
|
device->map = spdk_mem_map_alloc(0, &g_nvmf_rdma_map_ops, device->pd);
|
|
if (!device->map) {
|
|
SPDK_ERRLOG("Unable to allocate memory map for listen address\n");
|
|
rc = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
assert(device->map != NULL);
|
|
assert(device->pd != NULL);
|
|
}
|
|
rdma_free_devices(contexts);
|
|
|
|
if (opts->io_unit_size * max_device_sge < opts->max_io_size) {
|
|
/* divide and round up. */
|
|
opts->io_unit_size = (opts->max_io_size + max_device_sge - 1) / max_device_sge;
|
|
|
|
/* round up to the nearest 4k. */
|
|
opts->io_unit_size = (opts->io_unit_size + NVMF_DATA_BUFFER_ALIGNMENT - 1) & ~NVMF_DATA_BUFFER_MASK;
|
|
|
|
opts->io_unit_size = spdk_max(opts->io_unit_size, SPDK_NVMF_RDMA_MIN_IO_BUFFER_SIZE);
|
|
SPDK_NOTICELOG("Adjusting the io unit size to fit the device's maximum I/O size. New I/O unit size %u\n",
|
|
opts->io_unit_size);
|
|
}
|
|
|
|
if (rc < 0) {
|
|
spdk_nvmf_rdma_destroy(&rtransport->transport);
|
|
return NULL;
|
|
}
|
|
|
|
/* Set up poll descriptor array to monitor events from RDMA and IB
|
|
* in a single poll syscall
|
|
*/
|
|
rtransport->npoll_fds = i + 1;
|
|
i = 0;
|
|
rtransport->poll_fds = calloc(rtransport->npoll_fds, sizeof(struct pollfd));
|
|
if (rtransport->poll_fds == NULL) {
|
|
SPDK_ERRLOG("poll_fds allocation failed\n");
|
|
spdk_nvmf_rdma_destroy(&rtransport->transport);
|
|
return NULL;
|
|
}
|
|
|
|
rtransport->poll_fds[i].fd = rtransport->event_channel->fd;
|
|
rtransport->poll_fds[i++].events = POLLIN;
|
|
|
|
TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
|
|
rtransport->poll_fds[i].fd = device->context->async_fd;
|
|
rtransport->poll_fds[i++].events = POLLIN;
|
|
}
|
|
|
|
return &rtransport->transport;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_destroy(struct spdk_nvmf_transport *transport)
|
|
{
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
struct spdk_nvmf_rdma_port *port, *port_tmp;
|
|
struct spdk_nvmf_rdma_device *device, *device_tmp;
|
|
|
|
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
|
|
|
|
TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, port_tmp) {
|
|
TAILQ_REMOVE(&rtransport->ports, port, link);
|
|
rdma_destroy_id(port->id);
|
|
free(port);
|
|
}
|
|
|
|
if (rtransport->poll_fds != NULL) {
|
|
free(rtransport->poll_fds);
|
|
}
|
|
|
|
if (rtransport->event_channel != NULL) {
|
|
rdma_destroy_event_channel(rtransport->event_channel);
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, device_tmp) {
|
|
TAILQ_REMOVE(&rtransport->devices, device, link);
|
|
if (device->map) {
|
|
spdk_mem_map_free(&device->map);
|
|
}
|
|
if (device->pd) {
|
|
if (!g_nvmf_hooks.get_ibv_pd) {
|
|
ibv_dealloc_pd(device->pd);
|
|
}
|
|
}
|
|
free(device);
|
|
}
|
|
|
|
if (rtransport->data_wr_pool != NULL) {
|
|
if (spdk_mempool_count(rtransport->data_wr_pool) !=
|
|
(transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES)) {
|
|
SPDK_ERRLOG("transport wr pool count is %zu but should be %u\n",
|
|
spdk_mempool_count(rtransport->data_wr_pool),
|
|
transport->opts.max_queue_depth * SPDK_NVMF_MAX_SGL_ENTRIES);
|
|
}
|
|
}
|
|
|
|
spdk_mempool_free(rtransport->data_wr_pool);
|
|
|
|
pthread_mutex_destroy(&rtransport->lock);
|
|
free(rtransport);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
|
|
struct spdk_nvme_transport_id *trid,
|
|
bool peer);
|
|
|
|
static int
|
|
spdk_nvmf_rdma_listen(struct spdk_nvmf_transport *transport,
|
|
const struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
struct spdk_nvmf_rdma_device *device;
|
|
struct spdk_nvmf_rdma_port *port_tmp, *port;
|
|
struct addrinfo *res;
|
|
struct addrinfo hints;
|
|
int family;
|
|
int rc;
|
|
|
|
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
|
|
|
|
port = calloc(1, sizeof(*port));
|
|
if (!port) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Selectively copy the trid. Things like NQN don't matter here - that
|
|
* mapping is enforced elsewhere.
|
|
*/
|
|
port->trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
|
|
port->trid.adrfam = trid->adrfam;
|
|
snprintf(port->trid.traddr, sizeof(port->trid.traddr), "%s", trid->traddr);
|
|
snprintf(port->trid.trsvcid, sizeof(port->trid.trsvcid), "%s", trid->trsvcid);
|
|
|
|
switch (port->trid.adrfam) {
|
|
case SPDK_NVMF_ADRFAM_IPV4:
|
|
family = AF_INET;
|
|
break;
|
|
case SPDK_NVMF_ADRFAM_IPV6:
|
|
family = AF_INET6;
|
|
break;
|
|
default:
|
|
SPDK_ERRLOG("Unhandled ADRFAM %d\n", port->trid.adrfam);
|
|
free(port);
|
|
return -EINVAL;
|
|
}
|
|
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = family;
|
|
hints.ai_flags = AI_NUMERICSERV;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
hints.ai_protocol = 0;
|
|
|
|
rc = getaddrinfo(port->trid.traddr, port->trid.trsvcid, &hints, &res);
|
|
if (rc) {
|
|
SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(rc), rc);
|
|
free(port);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pthread_mutex_lock(&rtransport->lock);
|
|
assert(rtransport->event_channel != NULL);
|
|
TAILQ_FOREACH(port_tmp, &rtransport->ports, link) {
|
|
if (spdk_nvme_transport_id_compare(&port_tmp->trid, &port->trid) == 0) {
|
|
port_tmp->ref++;
|
|
freeaddrinfo(res);
|
|
free(port);
|
|
/* Already listening at this address */
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
rc = rdma_create_id(rtransport->event_channel, &port->id, port, RDMA_PS_TCP);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("rdma_create_id() failed\n");
|
|
freeaddrinfo(res);
|
|
free(port);
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return rc;
|
|
}
|
|
|
|
rc = rdma_bind_addr(port->id, res->ai_addr);
|
|
freeaddrinfo(res);
|
|
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("rdma_bind_addr() failed\n");
|
|
rdma_destroy_id(port->id);
|
|
free(port);
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return rc;
|
|
}
|
|
|
|
if (!port->id->verbs) {
|
|
SPDK_ERRLOG("ibv_context is null\n");
|
|
rdma_destroy_id(port->id);
|
|
free(port);
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return -1;
|
|
}
|
|
|
|
rc = rdma_listen(port->id, 10); /* 10 = backlog */
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("rdma_listen() failed\n");
|
|
rdma_destroy_id(port->id);
|
|
free(port);
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return rc;
|
|
}
|
|
|
|
TAILQ_FOREACH(device, &rtransport->devices, link) {
|
|
if (device->context == port->id->verbs) {
|
|
port->device = device;
|
|
break;
|
|
}
|
|
}
|
|
if (!port->device) {
|
|
SPDK_ERRLOG("Accepted a connection with verbs %p, but unable to find a corresponding device.\n",
|
|
port->id->verbs);
|
|
rdma_destroy_id(port->id);
|
|
free(port);
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
SPDK_INFOLOG(SPDK_LOG_RDMA, "*** NVMf Target Listening on %s port %d ***\n",
|
|
port->trid.traddr, ntohs(rdma_get_src_port(port->id)));
|
|
|
|
port->ref = 1;
|
|
|
|
TAILQ_INSERT_TAIL(&rtransport->ports, port, link);
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_stop_listen(struct spdk_nvmf_transport *transport,
|
|
const struct spdk_nvme_transport_id *_trid)
|
|
{
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
struct spdk_nvmf_rdma_port *port, *tmp;
|
|
struct spdk_nvme_transport_id trid = {};
|
|
|
|
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
|
|
|
|
/* Selectively copy the trid. Things like NQN don't matter here - that
|
|
* mapping is enforced elsewhere.
|
|
*/
|
|
trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
|
|
trid.adrfam = _trid->adrfam;
|
|
snprintf(trid.traddr, sizeof(port->trid.traddr), "%s", _trid->traddr);
|
|
snprintf(trid.trsvcid, sizeof(port->trid.trsvcid), "%s", _trid->trsvcid);
|
|
|
|
pthread_mutex_lock(&rtransport->lock);
|
|
TAILQ_FOREACH_SAFE(port, &rtransport->ports, link, tmp) {
|
|
if (spdk_nvme_transport_id_compare(&port->trid, &trid) == 0) {
|
|
assert(port->ref > 0);
|
|
port->ref--;
|
|
if (port->ref == 0) {
|
|
TAILQ_REMOVE(&rtransport->ports, port, link);
|
|
rdma_destroy_id(port->id);
|
|
free(port);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_rdma_qpair_process_pending(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_qpair *rqpair, bool drain)
|
|
{
|
|
struct spdk_nvmf_request *req, *tmp;
|
|
struct spdk_nvmf_rdma_request *rdma_req, *req_tmp;
|
|
struct spdk_nvmf_rdma_resources *resources;
|
|
|
|
/* We process I/O in the data transfer pending queue at the highest priority. RDMA reads first */
|
|
STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_read_queue, state_link, req_tmp) {
|
|
if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Then RDMA writes since reads have stronger restrictions than writes */
|
|
STAILQ_FOREACH_SAFE(rdma_req, &rqpair->pending_rdma_write_queue, state_link, req_tmp) {
|
|
if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* The second highest priority is I/O waiting on memory buffers. */
|
|
STAILQ_FOREACH_SAFE(req, &rqpair->poller->group->group.pending_buf_queue, buf_link, tmp) {
|
|
rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
|
|
if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false && drain == false) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
resources = rqpair->resources;
|
|
while (!STAILQ_EMPTY(&resources->free_queue) && !STAILQ_EMPTY(&resources->incoming_queue)) {
|
|
rdma_req = STAILQ_FIRST(&resources->free_queue);
|
|
STAILQ_REMOVE_HEAD(&resources->free_queue, state_link);
|
|
rdma_req->recv = STAILQ_FIRST(&resources->incoming_queue);
|
|
STAILQ_REMOVE_HEAD(&resources->incoming_queue, link);
|
|
|
|
if (rqpair->srq != NULL) {
|
|
rdma_req->req.qpair = &rdma_req->recv->qpair->qpair;
|
|
rdma_req->recv->qpair->qd++;
|
|
} else {
|
|
rqpair->qd++;
|
|
}
|
|
|
|
rdma_req->receive_tsc = rdma_req->recv->receive_tsc;
|
|
rdma_req->state = RDMA_REQUEST_STATE_NEW;
|
|
if (spdk_nvmf_rdma_request_process(rtransport, rdma_req) == false) {
|
|
break;
|
|
}
|
|
}
|
|
if (!STAILQ_EMPTY(&resources->incoming_queue) && STAILQ_EMPTY(&resources->free_queue)) {
|
|
rqpair->poller->stat.pending_free_request++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
_nvmf_rdma_qpair_disconnect(void *ctx)
|
|
{
|
|
struct spdk_nvmf_qpair *qpair = ctx;
|
|
|
|
spdk_nvmf_qpair_disconnect(qpair, NULL, NULL);
|
|
}
|
|
|
|
static void
|
|
_nvmf_rdma_try_disconnect(void *ctx)
|
|
{
|
|
struct spdk_nvmf_qpair *qpair = ctx;
|
|
struct spdk_nvmf_poll_group *group;
|
|
|
|
/* Read the group out of the qpair. This is normally set and accessed only from
|
|
* the thread that created the group. Here, we're not on that thread necessarily.
|
|
* The data member qpair->group begins it's life as NULL and then is assigned to
|
|
* a pointer and never changes. So fortunately reading this and checking for
|
|
* non-NULL is thread safe in the x86_64 memory model. */
|
|
group = qpair->group;
|
|
|
|
if (group == NULL) {
|
|
/* The qpair hasn't been assigned to a group yet, so we can't
|
|
* process a disconnect. Send a message to ourself and try again. */
|
|
spdk_thread_send_msg(spdk_get_thread(), _nvmf_rdma_try_disconnect, qpair);
|
|
return;
|
|
}
|
|
|
|
spdk_thread_send_msg(group->thread, _nvmf_rdma_qpair_disconnect, qpair);
|
|
}
|
|
|
|
static inline void
|
|
spdk_nvmf_rdma_start_disconnect(struct spdk_nvmf_rdma_qpair *rqpair)
|
|
{
|
|
if (__sync_bool_compare_and_swap(&rqpair->disconnect_started, false, true)) {
|
|
_nvmf_rdma_try_disconnect(&rqpair->qpair);
|
|
}
|
|
}
|
|
|
|
static void nvmf_rdma_destroy_drained_qpair(void *ctx)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair = ctx;
|
|
struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
|
|
struct spdk_nvmf_rdma_transport, transport);
|
|
|
|
/* In non SRQ path, we will reach rqpair->max_queue_depth. In SRQ path, we will get the last_wqe event. */
|
|
if (rqpair->current_send_depth != 0) {
|
|
return;
|
|
}
|
|
|
|
if (rqpair->srq == NULL && rqpair->current_recv_depth != rqpair->max_queue_depth) {
|
|
return;
|
|
}
|
|
|
|
if (rqpair->srq != NULL && rqpair->last_wqe_reached == false) {
|
|
return;
|
|
}
|
|
|
|
spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
|
|
|
|
/* Qpair will be destroyed after nvmf layer closes this qpair */
|
|
if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ERROR) {
|
|
return;
|
|
}
|
|
|
|
spdk_nvmf_rdma_qpair_destroy(rqpair);
|
|
}
|
|
|
|
|
|
static int
|
|
nvmf_rdma_disconnect(struct rdma_cm_event *evt)
|
|
{
|
|
struct spdk_nvmf_qpair *qpair;
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
|
|
if (evt->id == NULL) {
|
|
SPDK_ERRLOG("disconnect request: missing cm_id\n");
|
|
return -1;
|
|
}
|
|
|
|
qpair = evt->id->context;
|
|
if (qpair == NULL) {
|
|
SPDK_ERRLOG("disconnect request: no active connection\n");
|
|
return -1;
|
|
}
|
|
|
|
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
|
|
spdk_trace_record(TRACE_RDMA_QP_DISCONNECT, 0, 0, (uintptr_t)rqpair->cm_id, 0);
|
|
|
|
spdk_nvmf_rdma_update_ibv_state(rqpair);
|
|
|
|
spdk_nvmf_rdma_start_disconnect(rqpair);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static const char *CM_EVENT_STR[] = {
|
|
"RDMA_CM_EVENT_ADDR_RESOLVED",
|
|
"RDMA_CM_EVENT_ADDR_ERROR",
|
|
"RDMA_CM_EVENT_ROUTE_RESOLVED",
|
|
"RDMA_CM_EVENT_ROUTE_ERROR",
|
|
"RDMA_CM_EVENT_CONNECT_REQUEST",
|
|
"RDMA_CM_EVENT_CONNECT_RESPONSE",
|
|
"RDMA_CM_EVENT_CONNECT_ERROR",
|
|
"RDMA_CM_EVENT_UNREACHABLE",
|
|
"RDMA_CM_EVENT_REJECTED",
|
|
"RDMA_CM_EVENT_ESTABLISHED",
|
|
"RDMA_CM_EVENT_DISCONNECTED",
|
|
"RDMA_CM_EVENT_DEVICE_REMOVAL",
|
|
"RDMA_CM_EVENT_MULTICAST_JOIN",
|
|
"RDMA_CM_EVENT_MULTICAST_ERROR",
|
|
"RDMA_CM_EVENT_ADDR_CHANGE",
|
|
"RDMA_CM_EVENT_TIMEWAIT_EXIT"
|
|
};
|
|
#endif /* DEBUG */
|
|
|
|
static void
|
|
nvmf_rdma_handle_last_wqe_reached(void *ctx)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair = ctx;
|
|
rqpair->last_wqe_reached = true;
|
|
|
|
nvmf_rdma_destroy_drained_qpair(rqpair);
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_process_cm_event(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn)
|
|
{
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
struct rdma_cm_event *event;
|
|
int rc;
|
|
|
|
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
|
|
|
|
if (rtransport->event_channel == NULL) {
|
|
return;
|
|
}
|
|
|
|
while (1) {
|
|
rc = rdma_get_cm_event(rtransport->event_channel, &event);
|
|
if (rc == 0) {
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Acceptor Event: %s\n", CM_EVENT_STR[event->event]);
|
|
|
|
spdk_trace_record(TRACE_RDMA_CM_ASYNC_EVENT, 0, 0, 0, event->event);
|
|
|
|
switch (event->event) {
|
|
case RDMA_CM_EVENT_ADDR_RESOLVED:
|
|
case RDMA_CM_EVENT_ADDR_ERROR:
|
|
case RDMA_CM_EVENT_ROUTE_RESOLVED:
|
|
case RDMA_CM_EVENT_ROUTE_ERROR:
|
|
/* No action required. The target never attempts to resolve routes. */
|
|
break;
|
|
case RDMA_CM_EVENT_CONNECT_REQUEST:
|
|
rc = nvmf_rdma_connect(transport, event, cb_fn);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Unable to process connect event. rc: %d\n", rc);
|
|
break;
|
|
}
|
|
break;
|
|
case RDMA_CM_EVENT_CONNECT_RESPONSE:
|
|
/* The target never initiates a new connection. So this will not occur. */
|
|
break;
|
|
case RDMA_CM_EVENT_CONNECT_ERROR:
|
|
/* Can this happen? The docs say it can, but not sure what causes it. */
|
|
break;
|
|
case RDMA_CM_EVENT_UNREACHABLE:
|
|
case RDMA_CM_EVENT_REJECTED:
|
|
/* These only occur on the client side. */
|
|
break;
|
|
case RDMA_CM_EVENT_ESTABLISHED:
|
|
/* TODO: Should we be waiting for this event anywhere? */
|
|
break;
|
|
case RDMA_CM_EVENT_DISCONNECTED:
|
|
case RDMA_CM_EVENT_DEVICE_REMOVAL:
|
|
rc = nvmf_rdma_disconnect(event);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Unable to process disconnect event. rc: %d\n", rc);
|
|
break;
|
|
}
|
|
break;
|
|
case RDMA_CM_EVENT_MULTICAST_JOIN:
|
|
case RDMA_CM_EVENT_MULTICAST_ERROR:
|
|
/* Multicast is not used */
|
|
break;
|
|
case RDMA_CM_EVENT_ADDR_CHANGE:
|
|
/* Not utilizing this event */
|
|
break;
|
|
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
|
|
/* For now, do nothing. The target never re-uses queue pairs. */
|
|
break;
|
|
default:
|
|
SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
|
|
break;
|
|
}
|
|
|
|
rdma_ack_cm_event(event);
|
|
} else {
|
|
if (errno != EAGAIN && errno != EWOULDBLOCK) {
|
|
SPDK_ERRLOG("Acceptor Event Error: %s\n", spdk_strerror(errno));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_process_ib_event(struct spdk_nvmf_rdma_device *device)
|
|
{
|
|
int rc;
|
|
struct spdk_nvmf_rdma_qpair *rqpair = NULL;
|
|
struct ibv_async_event event;
|
|
enum ibv_qp_state state;
|
|
|
|
rc = ibv_get_async_event(device->context, &event);
|
|
|
|
if (rc) {
|
|
SPDK_ERRLOG("Failed to get async_event (%d): %s\n",
|
|
errno, spdk_strerror(errno));
|
|
return;
|
|
}
|
|
|
|
switch (event.event_type) {
|
|
case IBV_EVENT_QP_FATAL:
|
|
rqpair = event.element.qp->qp_context;
|
|
SPDK_ERRLOG("Fatal event received for rqpair %p\n", rqpair);
|
|
spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
|
|
(uintptr_t)rqpair->cm_id, event.event_type);
|
|
spdk_nvmf_rdma_update_ibv_state(rqpair);
|
|
spdk_nvmf_rdma_start_disconnect(rqpair);
|
|
break;
|
|
case IBV_EVENT_QP_LAST_WQE_REACHED:
|
|
/* This event only occurs for shared receive queues. */
|
|
rqpair = event.element.qp->qp_context;
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last WQE reached event received for rqpair %p\n", rqpair);
|
|
/* This must be handled on the polling thread if it exists. Otherwise the timeout will catch it. */
|
|
if (rqpair->qpair.group) {
|
|
spdk_thread_send_msg(rqpair->qpair.group->thread, nvmf_rdma_handle_last_wqe_reached, rqpair);
|
|
} else {
|
|
SPDK_ERRLOG("Unable to destroy the qpair %p since it does not have a poll group.\n", rqpair);
|
|
rqpair->last_wqe_reached = true;
|
|
}
|
|
|
|
break;
|
|
case IBV_EVENT_SQ_DRAINED:
|
|
/* This event occurs frequently in both error and non-error states.
|
|
* Check if the qpair is in an error state before sending a message.
|
|
* Note that we're not on the correct thread to access the qpair, but
|
|
* the operations that the below calls make all happen to be thread
|
|
* safe. */
|
|
rqpair = event.element.qp->qp_context;
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Last sq drained event received for rqpair %p\n", rqpair);
|
|
spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
|
|
(uintptr_t)rqpair->cm_id, event.event_type);
|
|
state = spdk_nvmf_rdma_update_ibv_state(rqpair);
|
|
if (state == IBV_QPS_ERR) {
|
|
spdk_nvmf_rdma_start_disconnect(rqpair);
|
|
}
|
|
break;
|
|
case IBV_EVENT_QP_REQ_ERR:
|
|
case IBV_EVENT_QP_ACCESS_ERR:
|
|
case IBV_EVENT_COMM_EST:
|
|
case IBV_EVENT_PATH_MIG:
|
|
case IBV_EVENT_PATH_MIG_ERR:
|
|
SPDK_NOTICELOG("Async event: %s\n",
|
|
ibv_event_type_str(event.event_type));
|
|
rqpair = event.element.qp->qp_context;
|
|
spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0,
|
|
(uintptr_t)rqpair->cm_id, event.event_type);
|
|
spdk_nvmf_rdma_update_ibv_state(rqpair);
|
|
break;
|
|
case IBV_EVENT_CQ_ERR:
|
|
case IBV_EVENT_DEVICE_FATAL:
|
|
case IBV_EVENT_PORT_ACTIVE:
|
|
case IBV_EVENT_PORT_ERR:
|
|
case IBV_EVENT_LID_CHANGE:
|
|
case IBV_EVENT_PKEY_CHANGE:
|
|
case IBV_EVENT_SM_CHANGE:
|
|
case IBV_EVENT_SRQ_ERR:
|
|
case IBV_EVENT_SRQ_LIMIT_REACHED:
|
|
case IBV_EVENT_CLIENT_REREGISTER:
|
|
case IBV_EVENT_GID_CHANGE:
|
|
default:
|
|
SPDK_NOTICELOG("Async event: %s\n",
|
|
ibv_event_type_str(event.event_type));
|
|
spdk_trace_record(TRACE_RDMA_IBV_ASYNC_EVENT, 0, 0, 0, event.event_type);
|
|
break;
|
|
}
|
|
ibv_ack_async_event(&event);
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_rdma_accept(struct spdk_nvmf_transport *transport, new_qpair_fn cb_fn)
|
|
{
|
|
int nfds, i = 0;
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
struct spdk_nvmf_rdma_device *device, *tmp;
|
|
|
|
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
|
|
nfds = poll(rtransport->poll_fds, rtransport->npoll_fds, 0);
|
|
|
|
if (nfds <= 0) {
|
|
return;
|
|
}
|
|
|
|
/* The first poll descriptor is RDMA CM event */
|
|
if (rtransport->poll_fds[i++].revents & POLLIN) {
|
|
spdk_nvmf_process_cm_event(transport, cb_fn);
|
|
nfds--;
|
|
}
|
|
|
|
if (nfds == 0) {
|
|
return;
|
|
}
|
|
|
|
/* Second and subsequent poll descriptors are IB async events */
|
|
TAILQ_FOREACH_SAFE(device, &rtransport->devices, link, tmp) {
|
|
if (rtransport->poll_fds[i++].revents & POLLIN) {
|
|
spdk_nvmf_process_ib_event(device);
|
|
nfds--;
|
|
}
|
|
}
|
|
/* check all flagged fd's have been served */
|
|
assert(nfds == 0);
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_rdma_discover(struct spdk_nvmf_transport *transport,
|
|
struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvmf_discovery_log_page_entry *entry)
|
|
{
|
|
entry->trtype = SPDK_NVMF_TRTYPE_RDMA;
|
|
entry->adrfam = trid->adrfam;
|
|
entry->treq.secure_channel = SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED;
|
|
|
|
spdk_strcpy_pad(entry->trsvcid, trid->trsvcid, sizeof(entry->trsvcid), ' ');
|
|
spdk_strcpy_pad(entry->traddr, trid->traddr, sizeof(entry->traddr), ' ');
|
|
|
|
entry->tsas.rdma.rdma_qptype = SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED;
|
|
entry->tsas.rdma.rdma_prtype = SPDK_NVMF_RDMA_PRTYPE_NONE;
|
|
entry->tsas.rdma.rdma_cms = SPDK_NVMF_RDMA_CMS_RDMA_CM;
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group);
|
|
|
|
static struct spdk_nvmf_transport_poll_group *
|
|
spdk_nvmf_rdma_poll_group_create(struct spdk_nvmf_transport *transport)
|
|
{
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
struct spdk_nvmf_rdma_poll_group *rgroup;
|
|
struct spdk_nvmf_rdma_poller *poller;
|
|
struct spdk_nvmf_rdma_device *device;
|
|
struct ibv_srq_init_attr srq_init_attr;
|
|
struct spdk_nvmf_rdma_resource_opts opts;
|
|
int num_cqe;
|
|
|
|
rtransport = SPDK_CONTAINEROF(transport, struct spdk_nvmf_rdma_transport, transport);
|
|
|
|
rgroup = calloc(1, sizeof(*rgroup));
|
|
if (!rgroup) {
|
|
return NULL;
|
|
}
|
|
|
|
TAILQ_INIT(&rgroup->pollers);
|
|
STAILQ_INIT(&rgroup->retired_bufs);
|
|
|
|
pthread_mutex_lock(&rtransport->lock);
|
|
TAILQ_FOREACH(device, &rtransport->devices, link) {
|
|
poller = calloc(1, sizeof(*poller));
|
|
if (!poller) {
|
|
SPDK_ERRLOG("Unable to allocate memory for new RDMA poller\n");
|
|
spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return NULL;
|
|
}
|
|
|
|
poller->device = device;
|
|
poller->group = rgroup;
|
|
|
|
TAILQ_INIT(&poller->qpairs);
|
|
STAILQ_INIT(&poller->qpairs_pending_send);
|
|
STAILQ_INIT(&poller->qpairs_pending_recv);
|
|
|
|
TAILQ_INSERT_TAIL(&rgroup->pollers, poller, link);
|
|
if (transport->opts.no_srq == false && device->num_srq < device->attr.max_srq) {
|
|
poller->max_srq_depth = transport->opts.max_srq_depth;
|
|
|
|
device->num_srq++;
|
|
memset(&srq_init_attr, 0, sizeof(struct ibv_srq_init_attr));
|
|
srq_init_attr.attr.max_wr = poller->max_srq_depth;
|
|
srq_init_attr.attr.max_sge = spdk_min(device->attr.max_sge, NVMF_DEFAULT_RX_SGE);
|
|
poller->srq = ibv_create_srq(device->pd, &srq_init_attr);
|
|
if (!poller->srq) {
|
|
SPDK_ERRLOG("Unable to create shared receive queue, errno %d\n", errno);
|
|
spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return NULL;
|
|
}
|
|
|
|
opts.qp = poller->srq;
|
|
opts.pd = device->pd;
|
|
opts.qpair = NULL;
|
|
opts.shared = true;
|
|
opts.max_queue_depth = poller->max_srq_depth;
|
|
opts.in_capsule_data_size = transport->opts.in_capsule_data_size;
|
|
|
|
poller->resources = nvmf_rdma_resources_create(&opts);
|
|
if (!poller->resources) {
|
|
SPDK_ERRLOG("Unable to allocate resources for shared receive queue.\n");
|
|
spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When using an srq, we can limit the completion queue at startup.
|
|
* The following formula represents the calculation:
|
|
* num_cqe = num_recv + num_data_wr + num_send_wr.
|
|
* where num_recv=num_data_wr=and num_send_wr=poller->max_srq_depth
|
|
*/
|
|
if (poller->srq) {
|
|
num_cqe = poller->max_srq_depth * 3;
|
|
} else {
|
|
num_cqe = DEFAULT_NVMF_RDMA_CQ_SIZE;
|
|
}
|
|
|
|
poller->cq = ibv_create_cq(device->context, num_cqe, poller, NULL, 0);
|
|
if (!poller->cq) {
|
|
SPDK_ERRLOG("Unable to create completion queue\n");
|
|
spdk_nvmf_rdma_poll_group_destroy(&rgroup->group);
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return NULL;
|
|
}
|
|
poller->num_cqe = num_cqe;
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&rtransport->poll_groups, rgroup, link);
|
|
if (rtransport->conn_sched.next_admin_pg == NULL) {
|
|
rtransport->conn_sched.next_admin_pg = rgroup;
|
|
rtransport->conn_sched.next_io_pg = rgroup;
|
|
}
|
|
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return &rgroup->group;
|
|
}
|
|
|
|
static struct spdk_nvmf_transport_poll_group *
|
|
spdk_nvmf_rdma_get_optimal_poll_group(struct spdk_nvmf_qpair *qpair)
|
|
{
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
struct spdk_nvmf_rdma_poll_group **pg;
|
|
struct spdk_nvmf_transport_poll_group *result;
|
|
|
|
rtransport = SPDK_CONTAINEROF(qpair->transport, struct spdk_nvmf_rdma_transport, transport);
|
|
|
|
pthread_mutex_lock(&rtransport->lock);
|
|
|
|
if (TAILQ_EMPTY(&rtransport->poll_groups)) {
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
return NULL;
|
|
}
|
|
|
|
if (qpair->qid == 0) {
|
|
pg = &rtransport->conn_sched.next_admin_pg;
|
|
} else {
|
|
pg = &rtransport->conn_sched.next_io_pg;
|
|
}
|
|
|
|
assert(*pg != NULL);
|
|
|
|
result = &(*pg)->group;
|
|
|
|
*pg = TAILQ_NEXT(*pg, link);
|
|
if (*pg == NULL) {
|
|
*pg = TAILQ_FIRST(&rtransport->poll_groups);
|
|
}
|
|
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_rdma_poll_group_destroy(struct spdk_nvmf_transport_poll_group *group)
|
|
{
|
|
struct spdk_nvmf_rdma_poll_group *rgroup, *next_rgroup;
|
|
struct spdk_nvmf_rdma_poller *poller, *tmp;
|
|
struct spdk_nvmf_rdma_qpair *qpair, *tmp_qpair;
|
|
struct spdk_nvmf_transport_pg_cache_buf *buf, *tmp_buf;
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
|
|
rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
|
|
rtransport = SPDK_CONTAINEROF(rgroup->group.transport, struct spdk_nvmf_rdma_transport, transport);
|
|
|
|
if (!rgroup) {
|
|
return;
|
|
}
|
|
|
|
/* free all retired buffers back to the transport so we don't short the mempool. */
|
|
STAILQ_FOREACH_SAFE(buf, &rgroup->retired_bufs, link, tmp_buf) {
|
|
STAILQ_REMOVE(&rgroup->retired_bufs, buf, spdk_nvmf_transport_pg_cache_buf, link);
|
|
assert(group->transport != NULL);
|
|
spdk_mempool_put(group->transport->data_buf_pool, buf);
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(poller, &rgroup->pollers, link, tmp) {
|
|
TAILQ_REMOVE(&rgroup->pollers, poller, link);
|
|
|
|
TAILQ_FOREACH_SAFE(qpair, &poller->qpairs, link, tmp_qpair) {
|
|
spdk_nvmf_rdma_qpair_destroy(qpair);
|
|
}
|
|
|
|
if (poller->srq) {
|
|
nvmf_rdma_resources_destroy(poller->resources);
|
|
ibv_destroy_srq(poller->srq);
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "Destroyed RDMA shared queue %p\n", poller->srq);
|
|
}
|
|
|
|
if (poller->cq) {
|
|
ibv_destroy_cq(poller->cq);
|
|
}
|
|
|
|
free(poller);
|
|
}
|
|
|
|
pthread_mutex_lock(&rtransport->lock);
|
|
next_rgroup = TAILQ_NEXT(rgroup, link);
|
|
TAILQ_REMOVE(&rtransport->poll_groups, rgroup, link);
|
|
if (next_rgroup == NULL) {
|
|
next_rgroup = TAILQ_FIRST(&rtransport->poll_groups);
|
|
}
|
|
if (rtransport->conn_sched.next_admin_pg == rgroup) {
|
|
rtransport->conn_sched.next_admin_pg = next_rgroup;
|
|
}
|
|
if (rtransport->conn_sched.next_io_pg == rgroup) {
|
|
rtransport->conn_sched.next_io_pg = next_rgroup;
|
|
}
|
|
pthread_mutex_unlock(&rtransport->lock);
|
|
|
|
free(rgroup);
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_rdma_qpair_reject_connection(struct spdk_nvmf_rdma_qpair *rqpair)
|
|
{
|
|
if (rqpair->cm_id != NULL) {
|
|
spdk_nvmf_rdma_event_reject(rqpair->cm_id, SPDK_NVMF_RDMA_ERROR_NO_RESOURCES);
|
|
}
|
|
spdk_nvmf_rdma_qpair_destroy(rqpair);
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_poll_group_add(struct spdk_nvmf_transport_poll_group *group,
|
|
struct spdk_nvmf_qpair *qpair)
|
|
{
|
|
struct spdk_nvmf_rdma_poll_group *rgroup;
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
struct spdk_nvmf_rdma_device *device;
|
|
struct spdk_nvmf_rdma_poller *poller;
|
|
int rc;
|
|
|
|
rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
|
|
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
|
|
device = rqpair->port->device;
|
|
|
|
TAILQ_FOREACH(poller, &rgroup->pollers, link) {
|
|
if (poller->device == device) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!poller) {
|
|
SPDK_ERRLOG("No poller found for device.\n");
|
|
return -1;
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&poller->qpairs, rqpair, link);
|
|
rqpair->poller = poller;
|
|
rqpair->srq = rqpair->poller->srq;
|
|
|
|
rc = spdk_nvmf_rdma_qpair_initialize(qpair);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Failed to initialize nvmf_rdma_qpair with qpair=%p\n", qpair);
|
|
return -1;
|
|
}
|
|
|
|
rc = spdk_nvmf_rdma_event_accept(rqpair->cm_id, rqpair);
|
|
if (rc) {
|
|
/* Try to reject, but we probably can't */
|
|
spdk_nvmf_rdma_qpair_reject_connection(rqpair);
|
|
return -1;
|
|
}
|
|
|
|
spdk_nvmf_rdma_update_ibv_state(rqpair);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_request_free(struct spdk_nvmf_request *req)
|
|
{
|
|
struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req, struct spdk_nvmf_rdma_request, req);
|
|
struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport,
|
|
struct spdk_nvmf_rdma_transport, transport);
|
|
|
|
nvmf_rdma_request_free(rdma_req, rtransport);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_request_complete(struct spdk_nvmf_request *req)
|
|
{
|
|
struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(req->qpair->transport,
|
|
struct spdk_nvmf_rdma_transport, transport);
|
|
struct spdk_nvmf_rdma_request *rdma_req = SPDK_CONTAINEROF(req,
|
|
struct spdk_nvmf_rdma_request, req);
|
|
struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair,
|
|
struct spdk_nvmf_rdma_qpair, qpair);
|
|
|
|
if (rqpair->ibv_state != IBV_QPS_ERR) {
|
|
/* The connection is alive, so process the request as normal */
|
|
rdma_req->state = RDMA_REQUEST_STATE_EXECUTED;
|
|
} else {
|
|
/* The connection is dead. Move the request directly to the completed state. */
|
|
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
}
|
|
|
|
spdk_nvmf_rdma_request_process(rtransport, rdma_req);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_destroy_defunct_qpair(void *ctx)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair = ctx;
|
|
struct spdk_nvmf_rdma_transport *rtransport = SPDK_CONTAINEROF(rqpair->qpair.transport,
|
|
struct spdk_nvmf_rdma_transport, transport);
|
|
|
|
SPDK_INFOLOG(SPDK_LOG_RDMA, "QP#%d hasn't been drained as expected, manually destroy it\n",
|
|
rqpair->qpair.qid);
|
|
|
|
spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, true);
|
|
spdk_nvmf_rdma_qpair_destroy(rqpair);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_rdma_close_qpair(struct spdk_nvmf_qpair *qpair)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
|
|
if (rqpair->disconnect_flags & RDMA_QP_DISCONNECTING) {
|
|
return;
|
|
}
|
|
|
|
rqpair->disconnect_flags |= RDMA_QP_DISCONNECTING;
|
|
|
|
/* This happens only when the qpair is disconnected before
|
|
* it is added to the poll group. Since there is no poll group,
|
|
* the RDMA qp has not been initialized yet and the RDMA CM
|
|
* event has not yet been acknowledged, so we need to reject it.
|
|
*/
|
|
if (rqpair->qpair.state == SPDK_NVMF_QPAIR_UNINITIALIZED) {
|
|
spdk_nvmf_rdma_qpair_reject_connection(rqpair);
|
|
return;
|
|
}
|
|
|
|
if (rqpair->ibv_state != IBV_QPS_ERR) {
|
|
spdk_nvmf_rdma_set_ibv_state(rqpair, IBV_QPS_ERR);
|
|
}
|
|
|
|
rqpair->destruct_poller = spdk_poller_register(spdk_nvmf_rdma_destroy_defunct_qpair, (void *)rqpair,
|
|
NVMF_RDMA_QPAIR_DESTROY_TIMEOUT_US);
|
|
}
|
|
|
|
static struct spdk_nvmf_rdma_qpair *
|
|
get_rdma_qpair_from_wc(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_wc *wc)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
/* @todo: improve QP search */
|
|
TAILQ_FOREACH(rqpair, &rpoller->qpairs, link) {
|
|
if (wc->qp_num == rqpair->cm_id->qp->qp_num) {
|
|
return rqpair;
|
|
}
|
|
}
|
|
SPDK_ERRLOG("Didn't find QP with qp_num %u\n", wc->qp_num);
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static int
|
|
spdk_nvmf_rdma_req_is_completing(struct spdk_nvmf_rdma_request *rdma_req)
|
|
{
|
|
return rdma_req->state == RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST ||
|
|
rdma_req->state == RDMA_REQUEST_STATE_COMPLETING;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
_poller_reset_failed_recvs(struct spdk_nvmf_rdma_poller *rpoller, struct ibv_recv_wr *bad_recv_wr,
|
|
int rc)
|
|
{
|
|
struct spdk_nvmf_rdma_recv *rdma_recv;
|
|
struct spdk_nvmf_rdma_wr *bad_rdma_wr;
|
|
|
|
SPDK_ERRLOG("Failed to post a recv for the poller %p with errno %d\n", rpoller, -rc);
|
|
while (bad_recv_wr != NULL) {
|
|
bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_recv_wr->wr_id;
|
|
rdma_recv = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
|
|
|
|
rdma_recv->qpair->current_recv_depth++;
|
|
bad_recv_wr = bad_recv_wr->next;
|
|
SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rdma_recv->qpair, -rc);
|
|
spdk_nvmf_rdma_start_disconnect(rdma_recv->qpair);
|
|
}
|
|
}
|
|
|
|
static void
|
|
_qp_reset_failed_recvs(struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_recv_wr *bad_recv_wr, int rc)
|
|
{
|
|
SPDK_ERRLOG("Failed to post a recv for the qpair %p with errno %d\n", rqpair, -rc);
|
|
while (bad_recv_wr != NULL) {
|
|
bad_recv_wr = bad_recv_wr->next;
|
|
rqpair->current_recv_depth++;
|
|
}
|
|
spdk_nvmf_rdma_start_disconnect(rqpair);
|
|
}
|
|
|
|
static void
|
|
_poller_submit_recvs(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_poller *rpoller)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
struct ibv_recv_wr *bad_recv_wr;
|
|
int rc;
|
|
|
|
if (rpoller->srq) {
|
|
if (rpoller->resources->recvs_to_post.first != NULL) {
|
|
rc = ibv_post_srq_recv(rpoller->srq, rpoller->resources->recvs_to_post.first, &bad_recv_wr);
|
|
if (rc) {
|
|
_poller_reset_failed_recvs(rpoller, bad_recv_wr, rc);
|
|
}
|
|
rpoller->resources->recvs_to_post.first = NULL;
|
|
rpoller->resources->recvs_to_post.last = NULL;
|
|
}
|
|
} else {
|
|
while (!STAILQ_EMPTY(&rpoller->qpairs_pending_recv)) {
|
|
rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_recv);
|
|
assert(rqpair->resources->recvs_to_post.first != NULL);
|
|
rc = ibv_post_recv(rqpair->cm_id->qp, rqpair->resources->recvs_to_post.first, &bad_recv_wr);
|
|
if (rc) {
|
|
_qp_reset_failed_recvs(rqpair, bad_recv_wr, rc);
|
|
}
|
|
rqpair->resources->recvs_to_post.first = NULL;
|
|
rqpair->resources->recvs_to_post.last = NULL;
|
|
STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_recv, recv_link);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
_qp_reset_failed_sends(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_qpair *rqpair, struct ibv_send_wr *bad_wr, int rc)
|
|
{
|
|
struct spdk_nvmf_rdma_wr *bad_rdma_wr;
|
|
struct spdk_nvmf_rdma_request *prev_rdma_req = NULL, *cur_rdma_req = NULL;
|
|
|
|
SPDK_ERRLOG("Failed to post a send for the qpair %p with errno %d\n", rqpair, -rc);
|
|
for (; bad_wr != NULL; bad_wr = bad_wr->next) {
|
|
bad_rdma_wr = (struct spdk_nvmf_rdma_wr *)bad_wr->wr_id;
|
|
assert(rqpair->current_send_depth > 0);
|
|
rqpair->current_send_depth--;
|
|
switch (bad_rdma_wr->type) {
|
|
case RDMA_WR_TYPE_DATA:
|
|
cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
|
|
if (bad_wr->opcode == IBV_WR_RDMA_READ) {
|
|
assert(rqpair->current_read_depth > 0);
|
|
rqpair->current_read_depth--;
|
|
}
|
|
break;
|
|
case RDMA_WR_TYPE_SEND:
|
|
cur_rdma_req = SPDK_CONTAINEROF(bad_rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
|
|
break;
|
|
default:
|
|
SPDK_ERRLOG("Found a RECV in the list of pending SEND requests for qpair %p\n", rqpair);
|
|
prev_rdma_req = cur_rdma_req;
|
|
continue;
|
|
}
|
|
|
|
if (prev_rdma_req == cur_rdma_req) {
|
|
/* this request was handled by an earlier wr. i.e. we were performing an nvme read. */
|
|
/* We only have to check against prev_wr since each requests wrs are contiguous in this list. */
|
|
continue;
|
|
}
|
|
|
|
switch (cur_rdma_req->state) {
|
|
case RDMA_REQUEST_STATE_TRANSFERRING_HOST_TO_CONTROLLER:
|
|
cur_rdma_req->req.rsp->nvme_cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
|
|
cur_rdma_req->state = RDMA_REQUEST_STATE_READY_TO_COMPLETE;
|
|
break;
|
|
case RDMA_REQUEST_STATE_TRANSFERRING_CONTROLLER_TO_HOST:
|
|
case RDMA_REQUEST_STATE_COMPLETING:
|
|
cur_rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
break;
|
|
default:
|
|
SPDK_ERRLOG("Found a request in a bad state %d when draining pending SEND requests for qpair %p\n",
|
|
cur_rdma_req->state, rqpair);
|
|
continue;
|
|
}
|
|
|
|
spdk_nvmf_rdma_request_process(rtransport, cur_rdma_req);
|
|
prev_rdma_req = cur_rdma_req;
|
|
}
|
|
|
|
if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
|
|
/* Disconnect the connection. */
|
|
spdk_nvmf_rdma_start_disconnect(rqpair);
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
_poller_submit_sends(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_poller *rpoller)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
struct ibv_send_wr *bad_wr = NULL;
|
|
int rc;
|
|
|
|
while (!STAILQ_EMPTY(&rpoller->qpairs_pending_send)) {
|
|
rqpair = STAILQ_FIRST(&rpoller->qpairs_pending_send);
|
|
assert(rqpair->sends_to_post.first != NULL);
|
|
rc = ibv_post_send(rqpair->cm_id->qp, rqpair->sends_to_post.first, &bad_wr);
|
|
|
|
/* bad wr always points to the first wr that failed. */
|
|
if (rc) {
|
|
_qp_reset_failed_sends(rtransport, rqpair, bad_wr, rc);
|
|
}
|
|
rqpair->sends_to_post.first = NULL;
|
|
rqpair->sends_to_post.last = NULL;
|
|
STAILQ_REMOVE_HEAD(&rpoller->qpairs_pending_send, send_link);
|
|
}
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_poller_poll(struct spdk_nvmf_rdma_transport *rtransport,
|
|
struct spdk_nvmf_rdma_poller *rpoller)
|
|
{
|
|
struct ibv_wc wc[32];
|
|
struct spdk_nvmf_rdma_wr *rdma_wr;
|
|
struct spdk_nvmf_rdma_request *rdma_req;
|
|
struct spdk_nvmf_rdma_recv *rdma_recv;
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
int reaped, i;
|
|
int count = 0;
|
|
bool error = false;
|
|
uint64_t poll_tsc = spdk_get_ticks();
|
|
|
|
/* Poll for completing operations. */
|
|
reaped = ibv_poll_cq(rpoller->cq, 32, wc);
|
|
if (reaped < 0) {
|
|
SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
|
|
errno, spdk_strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
rpoller->stat.polls++;
|
|
rpoller->stat.completions += reaped;
|
|
|
|
for (i = 0; i < reaped; i++) {
|
|
|
|
rdma_wr = (struct spdk_nvmf_rdma_wr *)wc[i].wr_id;
|
|
|
|
switch (rdma_wr->type) {
|
|
case RDMA_WR_TYPE_SEND:
|
|
rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, rsp.rdma_wr);
|
|
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
|
|
if (!wc[i].status) {
|
|
count++;
|
|
assert(wc[i].opcode == IBV_WC_SEND);
|
|
assert(spdk_nvmf_rdma_req_is_completing(rdma_req));
|
|
} else {
|
|
SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
|
|
}
|
|
|
|
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
/* +1 for the response wr */
|
|
rqpair->current_send_depth -= rdma_req->num_outstanding_data_wr + 1;
|
|
rdma_req->num_outstanding_data_wr = 0;
|
|
|
|
spdk_nvmf_rdma_request_process(rtransport, rdma_req);
|
|
break;
|
|
case RDMA_WR_TYPE_RECV:
|
|
/* rdma_recv->qpair will be invalid if using an SRQ. In that case we have to get the qpair from the wc. */
|
|
rdma_recv = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_recv, rdma_wr);
|
|
if (rpoller->srq != NULL) {
|
|
rdma_recv->qpair = get_rdma_qpair_from_wc(rpoller, &wc[i]);
|
|
/* It is possible that there are still some completions for destroyed QP
|
|
* associated with SRQ. We just ignore these late completions and re-post
|
|
* receive WRs back to SRQ.
|
|
*/
|
|
if (spdk_unlikely(NULL == rdma_recv->qpair)) {
|
|
struct ibv_recv_wr *bad_wr;
|
|
int rc;
|
|
|
|
rdma_recv->wr.next = NULL;
|
|
rc = ibv_post_srq_recv(rpoller->srq,
|
|
&rdma_recv->wr,
|
|
&bad_wr);
|
|
if (rc) {
|
|
SPDK_ERRLOG("Failed to re-post recv WR to SRQ, err %d\n", rc);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
rqpair = rdma_recv->qpair;
|
|
|
|
assert(rqpair != NULL);
|
|
if (!wc[i].status) {
|
|
assert(wc[i].opcode == IBV_WC_RECV);
|
|
if (rqpair->current_recv_depth >= rqpair->max_queue_depth) {
|
|
spdk_nvmf_rdma_start_disconnect(rqpair);
|
|
break;
|
|
}
|
|
}
|
|
|
|
rdma_recv->wr.next = NULL;
|
|
rqpair->current_recv_depth++;
|
|
rdma_recv->receive_tsc = poll_tsc;
|
|
rpoller->stat.requests++;
|
|
STAILQ_INSERT_TAIL(&rqpair->resources->incoming_queue, rdma_recv, link);
|
|
break;
|
|
case RDMA_WR_TYPE_DATA:
|
|
rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvmf_rdma_request, data.rdma_wr);
|
|
rqpair = SPDK_CONTAINEROF(rdma_req->req.qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
|
|
assert(rdma_req->num_outstanding_data_wr > 0);
|
|
|
|
rqpair->current_send_depth--;
|
|
rdma_req->num_outstanding_data_wr--;
|
|
if (!wc[i].status) {
|
|
assert(wc[i].opcode == IBV_WC_RDMA_READ);
|
|
rqpair->current_read_depth--;
|
|
/* wait for all outstanding reads associated with the same rdma_req to complete before proceeding. */
|
|
if (rdma_req->num_outstanding_data_wr == 0) {
|
|
rdma_req->state = RDMA_REQUEST_STATE_READY_TO_EXECUTE;
|
|
spdk_nvmf_rdma_request_process(rtransport, rdma_req);
|
|
}
|
|
} else {
|
|
/* If the data transfer fails still force the queue into the error state,
|
|
* if we were performing an RDMA_READ, we need to force the request into a
|
|
* completed state since it wasn't linked to a send. However, in the RDMA_WRITE
|
|
* case, we should wait for the SEND to complete. */
|
|
SPDK_ERRLOG("data=%p length=%u\n", rdma_req->req.data, rdma_req->req.length);
|
|
if (rdma_req->data.wr.opcode == IBV_WR_RDMA_READ) {
|
|
rqpair->current_read_depth--;
|
|
if (rdma_req->num_outstanding_data_wr == 0) {
|
|
rdma_req->state = RDMA_REQUEST_STATE_COMPLETED;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
SPDK_ERRLOG("Received an unknown opcode on the CQ: %d\n", wc[i].opcode);
|
|
continue;
|
|
}
|
|
|
|
/* Handle error conditions */
|
|
if (wc[i].status) {
|
|
SPDK_DEBUGLOG(SPDK_LOG_RDMA, "CQ error on CQ %p, Request 0x%lu (%d): %s\n",
|
|
rpoller->cq, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
|
|
|
|
error = true;
|
|
|
|
if (rqpair->qpair.state == SPDK_NVMF_QPAIR_ACTIVE) {
|
|
/* Disconnect the connection. */
|
|
spdk_nvmf_rdma_start_disconnect(rqpair);
|
|
} else {
|
|
nvmf_rdma_destroy_drained_qpair(rqpair);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
spdk_nvmf_rdma_qpair_process_pending(rtransport, rqpair, false);
|
|
|
|
if (rqpair->qpair.state != SPDK_NVMF_QPAIR_ACTIVE) {
|
|
nvmf_rdma_destroy_drained_qpair(rqpair);
|
|
}
|
|
}
|
|
|
|
if (error == true) {
|
|
return -1;
|
|
}
|
|
|
|
/* submit outstanding work requests. */
|
|
_poller_submit_recvs(rtransport, rpoller);
|
|
_poller_submit_sends(rtransport, rpoller);
|
|
|
|
return count;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_poll_group_poll(struct spdk_nvmf_transport_poll_group *group)
|
|
{
|
|
struct spdk_nvmf_rdma_transport *rtransport;
|
|
struct spdk_nvmf_rdma_poll_group *rgroup;
|
|
struct spdk_nvmf_rdma_poller *rpoller;
|
|
int count, rc;
|
|
|
|
rtransport = SPDK_CONTAINEROF(group->transport, struct spdk_nvmf_rdma_transport, transport);
|
|
rgroup = SPDK_CONTAINEROF(group, struct spdk_nvmf_rdma_poll_group, group);
|
|
|
|
count = 0;
|
|
TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
|
|
rc = spdk_nvmf_rdma_poller_poll(rtransport, rpoller);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
count += rc;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_trid_from_cm_id(struct rdma_cm_id *id,
|
|
struct spdk_nvme_transport_id *trid,
|
|
bool peer)
|
|
{
|
|
struct sockaddr *saddr;
|
|
uint16_t port;
|
|
|
|
trid->trtype = SPDK_NVME_TRANSPORT_RDMA;
|
|
|
|
if (peer) {
|
|
saddr = rdma_get_peer_addr(id);
|
|
} else {
|
|
saddr = rdma_get_local_addr(id);
|
|
}
|
|
switch (saddr->sa_family) {
|
|
case AF_INET: {
|
|
struct sockaddr_in *saddr_in = (struct sockaddr_in *)saddr;
|
|
|
|
trid->adrfam = SPDK_NVMF_ADRFAM_IPV4;
|
|
inet_ntop(AF_INET, &saddr_in->sin_addr,
|
|
trid->traddr, sizeof(trid->traddr));
|
|
if (peer) {
|
|
port = ntohs(rdma_get_dst_port(id));
|
|
} else {
|
|
port = ntohs(rdma_get_src_port(id));
|
|
}
|
|
snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
|
|
break;
|
|
}
|
|
case AF_INET6: {
|
|
struct sockaddr_in6 *saddr_in = (struct sockaddr_in6 *)saddr;
|
|
trid->adrfam = SPDK_NVMF_ADRFAM_IPV6;
|
|
inet_ntop(AF_INET6, &saddr_in->sin6_addr,
|
|
trid->traddr, sizeof(trid->traddr));
|
|
if (peer) {
|
|
port = ntohs(rdma_get_dst_port(id));
|
|
} else {
|
|
port = ntohs(rdma_get_src_port(id));
|
|
}
|
|
snprintf(trid->trsvcid, sizeof(trid->trsvcid), "%u", port);
|
|
break;
|
|
}
|
|
default:
|
|
return -1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_qpair_get_peer_trid(struct spdk_nvmf_qpair *qpair,
|
|
struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
|
|
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
|
|
return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, true);
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_qpair_get_local_trid(struct spdk_nvmf_qpair *qpair,
|
|
struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
|
|
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
|
|
return spdk_nvmf_rdma_trid_from_cm_id(rqpair->cm_id, trid, false);
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_qpair_get_listen_trid(struct spdk_nvmf_qpair *qpair,
|
|
struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct spdk_nvmf_rdma_qpair *rqpair;
|
|
|
|
rqpair = SPDK_CONTAINEROF(qpair, struct spdk_nvmf_rdma_qpair, qpair);
|
|
|
|
return spdk_nvmf_rdma_trid_from_cm_id(rqpair->listen_id, trid, false);
|
|
}
|
|
|
|
void
|
|
spdk_nvmf_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
|
|
{
|
|
g_nvmf_hooks = *hooks;
|
|
}
|
|
|
|
static int
|
|
spdk_nvmf_rdma_poll_group_get_stat(struct spdk_nvmf_tgt *tgt,
|
|
struct spdk_nvmf_transport_poll_group_stat **stat)
|
|
{
|
|
struct spdk_io_channel *ch;
|
|
struct spdk_nvmf_poll_group *group;
|
|
struct spdk_nvmf_transport_poll_group *tgroup;
|
|
struct spdk_nvmf_rdma_poll_group *rgroup;
|
|
struct spdk_nvmf_rdma_poller *rpoller;
|
|
struct spdk_nvmf_rdma_device_stat *device_stat;
|
|
uint64_t num_devices = 0;
|
|
|
|
if (tgt == NULL || stat == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
ch = spdk_get_io_channel(tgt);
|
|
group = spdk_io_channel_get_ctx(ch);;
|
|
spdk_put_io_channel(ch);
|
|
TAILQ_FOREACH(tgroup, &group->tgroups, link) {
|
|
if (SPDK_NVME_TRANSPORT_RDMA == tgroup->transport->ops->type) {
|
|
*stat = calloc(1, sizeof(struct spdk_nvmf_transport_poll_group_stat));
|
|
if (!*stat) {
|
|
SPDK_ERRLOG("Failed to allocate memory for NVMf RDMA statistics\n");
|
|
return -ENOMEM;
|
|
}
|
|
(*stat)->trtype = SPDK_NVME_TRANSPORT_RDMA;
|
|
|
|
rgroup = SPDK_CONTAINEROF(tgroup, struct spdk_nvmf_rdma_poll_group, group);
|
|
/* Count devices to allocate enough memory */
|
|
TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
|
|
++num_devices;
|
|
}
|
|
(*stat)->rdma.devices = calloc(num_devices, sizeof(struct spdk_nvmf_rdma_device_stat));
|
|
if (!(*stat)->rdma.devices) {
|
|
SPDK_ERRLOG("Failed to allocate NVMf RDMA devices statistics\n");
|
|
free(*stat);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
(*stat)->rdma.pending_data_buffer = rgroup->stat.pending_data_buffer;
|
|
(*stat)->rdma.num_devices = num_devices;
|
|
num_devices = 0;
|
|
TAILQ_FOREACH(rpoller, &rgroup->pollers, link) {
|
|
device_stat = &(*stat)->rdma.devices[num_devices++];
|
|
device_stat->name = ibv_get_device_name(rpoller->device->context->device);
|
|
device_stat->polls = rpoller->stat.polls;
|
|
device_stat->completions = rpoller->stat.completions;
|
|
device_stat->requests = rpoller->stat.requests;
|
|
device_stat->request_latency = rpoller->stat.request_latency;
|
|
device_stat->pending_free_request = rpoller->stat.pending_free_request;
|
|
device_stat->pending_rdma_read = rpoller->stat.pending_rdma_read;
|
|
device_stat->pending_rdma_write = rpoller->stat.pending_rdma_write;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
static void
|
|
spdk_nvmf_rdma_poll_group_free_stat(struct spdk_nvmf_transport_poll_group_stat *stat)
|
|
{
|
|
if (stat) {
|
|
free(stat->rdma.devices);
|
|
}
|
|
free(stat);
|
|
}
|
|
|
|
const struct spdk_nvmf_transport_ops spdk_nvmf_transport_rdma = {
|
|
.type = SPDK_NVME_TRANSPORT_RDMA,
|
|
.opts_init = spdk_nvmf_rdma_opts_init,
|
|
.create = spdk_nvmf_rdma_create,
|
|
.destroy = spdk_nvmf_rdma_destroy,
|
|
|
|
.listen = spdk_nvmf_rdma_listen,
|
|
.stop_listen = spdk_nvmf_rdma_stop_listen,
|
|
.accept = spdk_nvmf_rdma_accept,
|
|
|
|
.listener_discover = spdk_nvmf_rdma_discover,
|
|
|
|
.poll_group_create = spdk_nvmf_rdma_poll_group_create,
|
|
.get_optimal_poll_group = spdk_nvmf_rdma_get_optimal_poll_group,
|
|
.poll_group_destroy = spdk_nvmf_rdma_poll_group_destroy,
|
|
.poll_group_add = spdk_nvmf_rdma_poll_group_add,
|
|
.poll_group_poll = spdk_nvmf_rdma_poll_group_poll,
|
|
|
|
.req_free = spdk_nvmf_rdma_request_free,
|
|
.req_complete = spdk_nvmf_rdma_request_complete,
|
|
|
|
.qpair_fini = spdk_nvmf_rdma_close_qpair,
|
|
.qpair_get_peer_trid = spdk_nvmf_rdma_qpair_get_peer_trid,
|
|
.qpair_get_local_trid = spdk_nvmf_rdma_qpair_get_local_trid,
|
|
.qpair_get_listen_trid = spdk_nvmf_rdma_qpair_get_listen_trid,
|
|
|
|
.poll_group_get_stat = spdk_nvmf_rdma_poll_group_get_stat,
|
|
.poll_group_free_stat = spdk_nvmf_rdma_poll_group_free_stat,
|
|
};
|
|
|
|
SPDK_LOG_REGISTER_COMPONENT("rdma", SPDK_LOG_RDMA)
|