numam-spdk/lib/nvme/nvme_tcp.c
Ziye Yang 3a486ab6be nvme/tcp: remove the unnecessary active_r2t_reqs
Change-Id: I3ce4c8cfce5f3e7c2e05b4fa11322805a08ec688
Signed-off-by: Ziye Yang <optimistyzy@gmail.com>
Reviewed-on: https://review.gerrithub.io/c/445240
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Seth Howell <seth.howell5141@gmail.com>
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2019-02-20 21:47:02 +00:00

1896 lines
52 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe/TCP transport
*/
#include "nvme_internal.h"
#include "spdk/endian.h"
#include "spdk/likely.h"
#include "spdk/string.h"
#include "spdk/stdinc.h"
#include "spdk/crc32.h"
#include "spdk/endian.h"
#include "spdk/assert.h"
#include "spdk/string.h"
#include "spdk/thread.h"
#include "spdk/trace.h"
#include "spdk/util.h"
#include "spdk_internal/nvme_tcp.h"
#define NVME_TCP_RW_BUFFER_SIZE 131072
/*
* Maximum number of SGL elements.
* This is chosen to match the current nvme_pcie.c limit.
*/
#define NVME_TCP_MAX_SGL_DESCRIPTORS (253)
#define NVME_TCP_HPDA_DEFAULT 0
#define NVME_TCP_MAX_R2T_DEFAULT 16
#define NVME_TCP_PDU_H2C_MIN_DATA_SIZE 4096
#define NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE 8192
/* NVMe TCP transport extensions for spdk_nvme_ctrlr */
struct nvme_tcp_ctrlr {
struct spdk_nvme_ctrlr ctrlr;
};
/* NVMe TCP qpair extensions for spdk_nvme_qpair */
struct nvme_tcp_qpair {
struct spdk_nvme_qpair qpair;
struct spdk_sock *sock;
TAILQ_HEAD(, nvme_tcp_req) free_reqs;
TAILQ_HEAD(, nvme_tcp_req) outstanding_reqs;
TAILQ_HEAD(, nvme_tcp_pdu) send_queue;
struct nvme_tcp_pdu recv_pdu;
struct nvme_tcp_pdu send_pdu; /* only for error pdu and init pdu */
enum nvme_tcp_pdu_recv_state recv_state;
struct nvme_tcp_req *tcp_reqs;
uint16_t num_entries;
bool host_hdgst_enable;
bool host_ddgst_enable;
/** Specifies the maximum number of PDU-Data bytes per H2C Data Transfer PDU */
uint32_t maxh2cdata;
int32_t max_r2t;
int32_t pending_r2t;
/* 0 based value, which is used to guide the padding */
uint8_t cpda;
enum nvme_tcp_qpair_state state;
};
enum nvme_tcp_req_state {
NVME_TCP_REQ_FREE,
NVME_TCP_REQ_ACTIVE,
NVME_TCP_REQ_ACTIVE_R2T,
};
struct nvme_tcp_req {
struct nvme_request *req;
enum nvme_tcp_req_state state;
uint16_t cid;
uint16_t ttag;
uint32_t datao;
uint32_t r2tl_remain;
bool in_capsule_data;
struct nvme_tcp_pdu send_pdu;
void *buf;
TAILQ_ENTRY(nvme_tcp_req) link;
};
static void spdk_nvme_tcp_send_h2c_data(struct nvme_tcp_req *tcp_req);
static inline struct nvme_tcp_qpair *
nvme_tcp_qpair(struct spdk_nvme_qpair *qpair)
{
assert(qpair->trtype == SPDK_NVME_TRANSPORT_TCP);
return SPDK_CONTAINEROF(qpair, struct nvme_tcp_qpair, qpair);
}
static inline struct nvme_tcp_ctrlr *
nvme_tcp_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP);
return SPDK_CONTAINEROF(ctrlr, struct nvme_tcp_ctrlr, ctrlr);
}
static struct nvme_tcp_req *
nvme_tcp_req_get(struct nvme_tcp_qpair *tqpair)
{
struct nvme_tcp_req *tcp_req;
tcp_req = TAILQ_FIRST(&tqpair->free_reqs);
if (!tcp_req) {
return NULL;
}
assert(tcp_req->state == NVME_TCP_REQ_FREE);
tcp_req->state = NVME_TCP_REQ_ACTIVE;
TAILQ_REMOVE(&tqpair->free_reqs, tcp_req, link);
tcp_req->datao = 0;
tcp_req->req = NULL;
tcp_req->in_capsule_data = false;
tcp_req->r2tl_remain = 0;
tcp_req->buf = NULL;
memset(&tcp_req->send_pdu, 0, sizeof(tcp_req->send_pdu));
TAILQ_INSERT_TAIL(&tqpair->outstanding_reqs, tcp_req, link);
return tcp_req;
}
static void
nvme_tcp_req_put(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req)
{
assert(tcp_req->state != NVME_TCP_REQ_FREE);
tcp_req->state = NVME_TCP_REQ_FREE;
TAILQ_REMOVE(&tqpair->outstanding_reqs, tcp_req, link);
TAILQ_INSERT_TAIL(&tqpair->free_reqs, tcp_req, link);
}
static int
nvme_tcp_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
{
struct addrinfo *res;
struct addrinfo hints;
int ret;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = 0;
ret = getaddrinfo(addr, service, &hints, &res);
if (ret) {
SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
return ret;
}
if (res->ai_addrlen > sizeof(*sa)) {
SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
ret = EINVAL;
} else {
memcpy(sa, res->ai_addr, res->ai_addrlen);
}
freeaddrinfo(res);
return ret;
}
static void
nvme_tcp_free_reqs(struct nvme_tcp_qpair *tqpair)
{
free(tqpair->tcp_reqs);
tqpair->tcp_reqs = NULL;
}
static int
nvme_tcp_alloc_reqs(struct nvme_tcp_qpair *tqpair)
{
int i;
struct nvme_tcp_req *tcp_req;
tqpair->tcp_reqs = calloc(tqpair->num_entries, sizeof(struct nvme_tcp_req));
if (tqpair->tcp_reqs == NULL) {
SPDK_ERRLOG("Failed to allocate tcp_reqs\n");
goto fail;
}
TAILQ_INIT(&tqpair->send_queue);
TAILQ_INIT(&tqpair->free_reqs);
TAILQ_INIT(&tqpair->outstanding_reqs);
for (i = 0; i < tqpair->num_entries; i++) {
tcp_req = &tqpair->tcp_reqs[i];
tcp_req->cid = i;
TAILQ_INSERT_TAIL(&tqpair->free_reqs, tcp_req, link);
}
return 0;
fail:
nvme_tcp_free_reqs(tqpair);
return -ENOMEM;
}
static int
nvme_tcp_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
struct nvme_tcp_qpair *tqpair;
if (!qpair) {
return -1;
}
nvme_tcp_qpair_fail(qpair);
nvme_qpair_deinit(qpair);
tqpair = nvme_tcp_qpair(qpair);
nvme_tcp_free_reqs(tqpair);
spdk_sock_close(&tqpair->sock);
free(tqpair);
return 0;
}
int
nvme_tcp_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
return 0;
}
/* This function must only be called while holding g_spdk_nvme_driver->lock */
int
nvme_tcp_ctrlr_scan(struct spdk_nvme_probe_ctx *probe_ctx,
bool direct_connect)
{
struct spdk_nvme_ctrlr_opts discovery_opts;
struct spdk_nvme_ctrlr *discovery_ctrlr;
union spdk_nvme_cc_register cc;
int rc;
struct nvme_completion_poll_status status;
if (strcmp(probe_ctx->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN) != 0) {
/* Not a discovery controller - connect directly. */
rc = nvme_ctrlr_probe(&probe_ctx->trid, probe_ctx, NULL);
return rc;
}
spdk_nvme_ctrlr_get_default_ctrlr_opts(&discovery_opts, sizeof(discovery_opts));
/* For discovery_ctrlr set the timeout to 0 */
discovery_opts.keep_alive_timeout_ms = 0;
discovery_ctrlr = nvme_tcp_ctrlr_construct(&probe_ctx->trid, &discovery_opts, NULL);
if (discovery_ctrlr == NULL) {
return -1;
}
/* TODO: this should be using the normal NVMe controller initialization process */
cc.raw = 0;
cc.bits.en = 1;
cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
rc = nvme_transport_ctrlr_set_reg_4(discovery_ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
cc.raw);
if (rc < 0) {
SPDK_ERRLOG("Failed to set cc\n");
nvme_ctrlr_destruct(discovery_ctrlr);
return -1;
}
/* get the cdata info */
status.done = false;
rc = nvme_ctrlr_cmd_identify(discovery_ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0,
&discovery_ctrlr->cdata, sizeof(discovery_ctrlr->cdata),
nvme_completion_poll_cb, &status);
if (rc != 0) {
SPDK_ERRLOG("Failed to identify cdata\n");
return rc;
}
while (status.done == false) {
spdk_nvme_qpair_process_completions(discovery_ctrlr->adminq, 0);
}
if (spdk_nvme_cpl_is_error(&status.cpl)) {
SPDK_ERRLOG("nvme_identify_controller failed!\n");
return -ENXIO;
}
/* Direct attach through spdk_nvme_connect() API */
if (direct_connect == true) {
/* Set the ready state to skip the normal init process */
discovery_ctrlr->state = NVME_CTRLR_STATE_READY;
nvme_ctrlr_connected(probe_ctx, discovery_ctrlr);
nvme_ctrlr_add_process(discovery_ctrlr, 0);
return 0;
}
rc = nvme_fabric_ctrlr_discover(discovery_ctrlr, probe_ctx);
nvme_ctrlr_destruct(discovery_ctrlr);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "leave\n");
return rc;
}
int
nvme_tcp_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_tcp_ctrlr *tctrlr = nvme_tcp_ctrlr(ctrlr);
if (ctrlr->adminq) {
nvme_tcp_qpair_destroy(ctrlr->adminq);
}
nvme_ctrlr_destruct_finish(ctrlr);
free(tctrlr);
return 0;
}
int
nvme_tcp_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
return nvme_fabric_ctrlr_set_reg_4(ctrlr, offset, value);
}
int
nvme_tcp_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
return nvme_fabric_ctrlr_set_reg_8(ctrlr, offset, value);
}
int
nvme_tcp_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
return nvme_fabric_ctrlr_get_reg_4(ctrlr, offset, value);
}
int
nvme_tcp_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
return nvme_fabric_ctrlr_get_reg_8(ctrlr, offset, value);
}
static int
nvme_tcp_qpair_process_send_queue(struct nvme_tcp_qpair *tqpair)
{
const int array_size = 32;
struct iovec iovec_array[array_size];
struct iovec *iov = iovec_array;
int iovec_cnt = 0;
int bytes = 0;
uint32_t writev_offset;
struct nvme_tcp_pdu *pdu;
int pdu_length;
TAILQ_HEAD(, nvme_tcp_pdu) completed_pdus_list;
pdu = TAILQ_FIRST(&tqpair->send_queue);
if (pdu == NULL) {
return 0;
}
/*
* Build up a list of iovecs for the first few PDUs in the
* tqpair 's send_queue.
*/
while (pdu != NULL && ((array_size - iovec_cnt) >= 3)) {
iovec_cnt += nvme_tcp_build_iovecs(&iovec_array[iovec_cnt],
pdu, tqpair->host_hdgst_enable,
tqpair->host_ddgst_enable);
pdu = TAILQ_NEXT(pdu, tailq);
}
/*
* Check if the first PDU was partially written out the last time
* this function was called, and if so adjust the iovec array
* accordingly.
*/
writev_offset = TAILQ_FIRST(&tqpair->send_queue)->writev_offset;
while ((writev_offset > 0) && (iovec_cnt > 0)) {
if (writev_offset >= iov->iov_len) {
writev_offset -= iov->iov_len;
iov++;
iovec_cnt--;
} else {
iov->iov_len -= writev_offset;
iov->iov_base = (char *)iov->iov_base + writev_offset;
writev_offset = 0;
}
}
bytes = spdk_sock_writev(tqpair->sock, iov, iovec_cnt);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "bytes=%d are out\n", bytes);
if (bytes == -1) {
if (errno == EWOULDBLOCK || errno == EAGAIN) {
return 1;
} else {
SPDK_ERRLOG("spdk_sock_writev() failed, errno %d: %s\n",
errno, spdk_strerror(errno));
return -1;
}
}
pdu = TAILQ_FIRST(&tqpair->send_queue);
/*
* Free any PDUs that were fully written. If a PDU was only
* partially written, update its writev_offset so that next
* time only the unwritten portion will be sent to writev().
*/
TAILQ_INIT(&completed_pdus_list);
while (bytes > 0) {
pdu_length = pdu->hdr.common.plen - pdu->writev_offset;
assert(pdu_length > 0);
if (bytes >= pdu_length) {
bytes -= pdu_length;
TAILQ_REMOVE(&tqpair->send_queue, pdu, tailq);
TAILQ_INSERT_TAIL(&completed_pdus_list, pdu, tailq);
pdu = TAILQ_FIRST(&tqpair->send_queue);
} else {
pdu->writev_offset += bytes;
bytes = 0;
}
}
while (!TAILQ_EMPTY(&completed_pdus_list)) {
pdu = TAILQ_FIRST(&completed_pdus_list);
TAILQ_REMOVE(&completed_pdus_list, pdu, tailq);
assert(pdu->cb_fn != NULL);
pdu->cb_fn(pdu->cb_arg);
}
return TAILQ_EMPTY(&tqpair->send_queue) ? 0 : 1;
}
static int
nvme_tcp_qpair_write_pdu(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu,
nvme_tcp_qpair_xfer_complete_cb cb_fn,
void *cb_arg)
{
int enable_digest;
int hlen;
uint32_t crc32c;
hlen = pdu->hdr.common.hlen;
enable_digest = 1;
if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_REQ ||
pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ) {
/* this PDU should be sent without digest */
enable_digest = 0;
}
/* Header Digest */
if (enable_digest && tqpair->host_hdgst_enable) {
crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
MAKE_DIGEST_WORD((uint8_t *)pdu->hdr.raw + hlen, crc32c);
}
/* Data Digest */
if (pdu->data_len > 0 && enable_digest && tqpair->host_ddgst_enable) {
crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
MAKE_DIGEST_WORD(pdu->data_digest, crc32c);
}
pdu->cb_fn = cb_fn;
pdu->cb_arg = cb_arg;
TAILQ_INSERT_TAIL(&tqpair->send_queue, pdu, tailq);
return 0;
}
/*
* Build SGL describing contiguous payload buffer.
*/
static int
nvme_tcp_build_contig_request(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req)
{
struct nvme_request *req = tcp_req->req;
tcp_req->buf = req->payload.contig_or_cb_arg + req->payload_offset;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n");
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
return 0;
}
/*
* Build SGL describing scattered payload buffer.
*/
static int
nvme_tcp_build_sgl_request(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_req *tcp_req)
{
int rc;
uint32_t length;
struct nvme_request *req = tcp_req->req;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n");
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
assert(req->payload.next_sge_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
/* TODO: for now, we only support a single SGL entry */
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &tcp_req->buf, &length);
if (rc) {
return -1;
}
if (length < req->payload_size) {
SPDK_ERRLOG("multi-element SGL currently not supported for TCP now\n");
return -1;
}
return 0;
}
static inline uint32_t
nvme_tcp_icdsz_bytes(struct spdk_nvme_ctrlr *ctrlr)
{
return (ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd));
}
static int
nvme_tcp_req_init(struct nvme_tcp_qpair *tqpair, struct nvme_request *req,
struct nvme_tcp_req *tcp_req)
{
struct spdk_nvme_ctrlr *ctrlr = tqpair->qpair.ctrlr;
int rc = 0;
enum spdk_nvme_data_transfer xfer;
uint32_t max_incapsule_data_size;
tcp_req->req = req;
req->cmd.cid = tcp_req->cid;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_TRANSPORT_DATA_BLOCK;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_TRANSPORT;
req->cmd.dptr.sgl1.unkeyed.length = req->payload_size;
if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) {
rc = nvme_tcp_build_contig_request(tqpair, tcp_req);
} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) {
rc = nvme_tcp_build_sgl_request(tqpair, tcp_req);
} else {
rc = -1;
}
if (rc) {
return rc;
}
if (req->cmd.opc == SPDK_NVME_OPC_FABRIC) {
struct spdk_nvmf_capsule_cmd *nvmf_cmd = (struct spdk_nvmf_capsule_cmd *)&req->cmd;
xfer = spdk_nvme_opc_get_data_transfer(nvmf_cmd->fctype);
} else {
xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
}
if (xfer == SPDK_NVME_DATA_HOST_TO_CONTROLLER) {
max_incapsule_data_size = nvme_tcp_icdsz_bytes(ctrlr);
if ((req->cmd.opc == SPDK_NVME_OPC_FABRIC) || nvme_qpair_is_admin_queue(&tqpair->qpair)) {
max_incapsule_data_size = spdk_min(max_incapsule_data_size, NVME_TCP_IN_CAPSULE_DATA_MAX_SIZE);
}
if (req->payload_size <= max_incapsule_data_size) {
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
req->cmd.dptr.sgl1.address = 0;
tcp_req->in_capsule_data = true;
}
}
return 0;
}
static void
nvme_tcp_qpair_cmd_send_complete(void *cb_arg)
{
}
static void
nvme_tcp_pdu_set_data_buf(struct nvme_tcp_pdu *pdu,
struct nvme_tcp_req *tcp_req)
{
pdu->data = (void *)((uint64_t)tcp_req->buf + tcp_req->datao);
}
static int
nvme_tcp_qpair_capsule_cmd_send(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_req *tcp_req)
{
struct nvme_tcp_pdu *pdu;
struct spdk_nvme_tcp_cmd *capsule_cmd;
uint32_t plen = 0, alignment;
uint8_t pdo;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n");
pdu = &tcp_req->send_pdu;
capsule_cmd = &pdu->hdr.capsule_cmd;
capsule_cmd->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_CAPSULE_CMD;
plen = capsule_cmd->common.hlen = sizeof(*capsule_cmd);
capsule_cmd->ccsqe = tcp_req->req->cmd;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "capsule_cmd cid=%u on tqpair(%p)\n", tcp_req->req->cmd.cid, tqpair);
if (tqpair->host_hdgst_enable) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "Header digest is enabled for capsule command on tcp_req=%p\n",
tcp_req);
capsule_cmd->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
plen += SPDK_NVME_TCP_DIGEST_LEN;
}
if ((tcp_req->req->payload_size == 0) || !tcp_req->in_capsule_data) {
goto end;
}
pdo = plen;
pdu->padding_len = 0;
if (tqpair->cpda) {
alignment = (tqpair->cpda + 1) << 2;
if (alignment > plen) {
pdu->padding_len = alignment - plen;
pdo = alignment;
plen = alignment;
}
}
capsule_cmd->common.pdo = pdo;
plen += tcp_req->req->payload_size;
if (tqpair->host_ddgst_enable) {
capsule_cmd->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
plen += SPDK_NVME_TCP_DIGEST_LEN;
}
tcp_req->datao = 0;
nvme_tcp_pdu_set_data_buf(pdu, tcp_req);
pdu->data_len = tcp_req->req->payload_size;
end:
capsule_cmd->common.plen = plen;
return nvme_tcp_qpair_write_pdu(tqpair, pdu, nvme_tcp_qpair_cmd_send_complete, NULL);
}
int
nvme_tcp_qpair_submit_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req)
{
struct nvme_tcp_qpair *tqpair;
struct nvme_tcp_req *tcp_req;
tqpair = nvme_tcp_qpair(qpair);
assert(tqpair != NULL);
assert(req != NULL);
tcp_req = nvme_tcp_req_get(tqpair);
if (!tcp_req) {
/*
* No tcp_req is available. Queue the request to be processed later.
*/
STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
return 0;
}
if (nvme_tcp_req_init(tqpair, req, tcp_req)) {
SPDK_ERRLOG("nvme_tcp_req_init() failed\n");
nvme_tcp_req_put(tqpair, tcp_req);
return -1;
}
req->timed_out = false;
if (spdk_unlikely(tqpair->qpair.ctrlr->timeout_enabled)) {
req->submit_tick = spdk_get_ticks();
} else {
req->submit_tick = 0;
}
return nvme_tcp_qpair_capsule_cmd_send(tqpair, tcp_req);
}
int
nvme_tcp_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
return nvme_tcp_qpair_destroy(qpair);
}
int
nvme_tcp_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
return -1;
}
int
nvme_tcp_qpair_enable(struct spdk_nvme_qpair *qpair)
{
return 0;
}
int
nvme_tcp_qpair_disable(struct spdk_nvme_qpair *qpair)
{
return 0;
}
int
nvme_tcp_qpair_reset(struct spdk_nvme_qpair *qpair)
{
return 0;
}
static void
nvme_tcp_req_complete(struct nvme_request *req,
struct spdk_nvme_cpl *rsp)
{
nvme_complete_request(req, rsp);
nvme_free_request(req);
}
int
nvme_tcp_qpair_fail(struct spdk_nvme_qpair *qpair)
{
/*
* If the qpair is really failed, the connection is broken
* and we need to flush back all I/O
*/
struct nvme_tcp_req *tcp_req, *tmp;
struct nvme_request *req;
struct spdk_nvme_cpl cpl;
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
cpl.status.sct = SPDK_NVME_SCT_GENERIC;
TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) {
assert(tcp_req->req != NULL);
req = tcp_req->req;
nvme_tcp_req_complete(req, &cpl);
nvme_tcp_req_put(tqpair, tcp_req);
}
return 0;
}
static void
nvme_tcp_qpair_set_recv_state(struct nvme_tcp_qpair *tqpair,
enum nvme_tcp_pdu_recv_state state)
{
if (tqpair->recv_state == state) {
SPDK_ERRLOG("The recv state of tqpair=%p is same with the state(%d) to be set\n",
tqpair, state);
return;
}
tqpair->recv_state = state;
switch (state) {
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
case NVME_TCP_PDU_RECV_STATE_ERROR:
memset(&tqpair->recv_pdu, 0, sizeof(struct nvme_tcp_pdu));
break;
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
default:
break;
}
}
static void
nvme_tcp_qpair_send_h2c_term_req_complete(void *cb_arg)
{
struct nvme_tcp_qpair *tqpair = cb_arg;
tqpair->state = NVME_TCP_QPAIR_STATE_EXITING;
}
static void
nvme_tcp_qpair_send_h2c_term_req(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
enum spdk_nvme_tcp_term_req_fes fes, uint32_t error_offset)
{
struct nvme_tcp_pdu *rsp_pdu;
struct spdk_nvme_tcp_term_req_hdr *h2c_term_req;
uint32_t h2c_term_req_hdr_len = sizeof(*h2c_term_req);
uint8_t copy_len;
rsp_pdu = &tqpair->send_pdu;
memset(rsp_pdu, 0, sizeof(*rsp_pdu));
h2c_term_req = &rsp_pdu->hdr.term_req;
h2c_term_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_H2C_TERM_REQ;
h2c_term_req->common.hlen = h2c_term_req_hdr_len;
if ((fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
(fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
DSET32(&h2c_term_req->fei, error_offset);
}
rsp_pdu->data = (uint8_t *)rsp_pdu->hdr.raw + h2c_term_req_hdr_len;
copy_len = pdu->hdr.common.hlen;
if (copy_len > SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE) {
copy_len = SPDK_NVME_TCP_TERM_REQ_ERROR_DATA_MAX_SIZE;
}
/* Copy the error info into the buffer */
memcpy((uint8_t *)rsp_pdu->data, pdu->hdr.raw, copy_len);
rsp_pdu->data_len = copy_len;
/* Contain the header len of the wrong received pdu */
h2c_term_req->common.plen = h2c_term_req->common.hlen + copy_len;
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
nvme_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvme_tcp_qpair_send_h2c_term_req_complete, NULL);
}
static void
nvme_tcp_pdu_ch_handle(struct nvme_tcp_qpair *tqpair)
{
struct nvme_tcp_pdu *pdu;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
uint32_t expected_hlen, hd_len = 0;
bool plen_error = false;
pdu = &tqpair->recv_pdu;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "pdu type = %d\n", pdu->hdr.common.pdu_type);
if (pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_IC_RESP) {
if (tqpair->state != NVME_TCP_QPAIR_STATE_INVALID) {
SPDK_ERRLOG("Already received IC_RESP PDU, and we should reject this pdu=%p\n", pdu);
fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
goto err;
}
expected_hlen = sizeof(struct spdk_nvme_tcp_ic_resp);
if (pdu->hdr.common.plen != expected_hlen) {
plen_error = true;
}
} else {
if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
SPDK_ERRLOG("The TCP/IP tqpair connection is not negotitated\n");
fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
goto err;
}
switch (pdu->hdr.common.pdu_type) {
case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP:
expected_hlen = sizeof(struct spdk_nvme_tcp_rsp);
if (pdu->hdr.common.flags & SPDK_NVME_TCP_CH_FLAGS_HDGSTF) {
hd_len = SPDK_NVME_TCP_DIGEST_LEN;
}
if (pdu->hdr.common.plen != (expected_hlen + hd_len)) {
plen_error = true;
}
break;
case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA:
expected_hlen = sizeof(struct spdk_nvme_tcp_c2h_data_hdr);
if (pdu->hdr.common.plen < pdu->hdr.common.pdo) {
plen_error = true;
}
break;
case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ:
expected_hlen = sizeof(struct spdk_nvme_tcp_term_req_hdr);
if ((pdu->hdr.common.plen <= expected_hlen) ||
(pdu->hdr.common.plen > SPDK_NVME_TCP_TERM_REQ_PDU_MAX_SIZE)) {
plen_error = true;
}
break;
case SPDK_NVME_TCP_PDU_TYPE_R2T:
expected_hlen = sizeof(struct spdk_nvme_tcp_r2t_hdr);
if (pdu->hdr.common.flags & SPDK_NVME_TCP_CH_FLAGS_HDGSTF) {
hd_len = SPDK_NVME_TCP_DIGEST_LEN;
}
if (pdu->hdr.common.plen != (expected_hlen + hd_len)) {
plen_error = true;
}
break;
default:
SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->recv_pdu.hdr.common.pdu_type);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, pdu_type);
goto err;
}
}
if (pdu->hdr.common.hlen != expected_hlen) {
SPDK_ERRLOG("Expected PDU header length %u, got %u\n",
expected_hlen, pdu->hdr.common.hlen);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, hlen);
goto err;
} else if (plen_error) {
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_common_pdu_hdr, plen);
goto err;
} else {
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
return;
}
err:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
}
static struct nvme_tcp_req *
get_nvme_active_req_by_cid(struct nvme_tcp_qpair *tqpair, uint32_t cid)
{
assert(tqpair != NULL);
if ((cid >= tqpair->num_entries) || (tqpair->tcp_reqs[cid].state == NVME_TCP_REQ_FREE)) {
return NULL;
}
return &tqpair->tcp_reqs[cid];
}
static void
nvme_tcp_free_and_handle_queued_req(struct spdk_nvme_qpair *qpair)
{
struct nvme_request *req;
if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) {
req = STAILQ_FIRST(&qpair->queued_req);
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
nvme_qpair_submit_request(qpair, req);
}
}
static void
nvme_tcp_c2h_data_payload_handle(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu, uint32_t *reaped)
{
struct nvme_tcp_req *tcp_req;
struct spdk_nvme_tcp_c2h_data_hdr *c2h_data;
struct spdk_nvme_cpl cpl = {};
uint8_t flags;
tcp_req = pdu->ctx;
assert(tcp_req != NULL);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n");
c2h_data = &pdu->hdr.c2h_data;
tcp_req->datao += pdu->data_len;
flags = c2h_data->common.flags;
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
if (flags & SPDK_NVME_TCP_C2H_DATA_FLAGS_SUCCESS) {
if (tcp_req->datao == tcp_req->req->payload_size) {
cpl.status.p = 0;
} else {
cpl.status.p = 1;
}
cpl.cid = tcp_req->cid;
cpl.sqid = tqpair->qpair.id;
nvme_tcp_req_complete(tcp_req->req, &cpl);
nvme_tcp_req_put(tqpair, tcp_req);
(*reaped)++;
nvme_tcp_free_and_handle_queued_req(&tqpair->qpair);
}
}
static const char *spdk_nvme_tcp_term_req_fes_str[] = {
"Invalid PDU Header Field",
"PDU Sequence Error",
"Header Digest Error",
"Data Transfer Out of Range",
"Data Transfer Limit Exceeded",
"Unsupported parameter",
};
static void
nvme_tcp_c2h_term_req_dump(struct spdk_nvme_tcp_term_req_hdr *c2h_term_req)
{
SPDK_ERRLOG("Error info of pdu(%p): %s\n", c2h_term_req,
spdk_nvme_tcp_term_req_fes_str[c2h_term_req->fes]);
if ((c2h_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD) ||
(c2h_term_req->fes == SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER)) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "The offset from the start of the PDU header is %u\n",
DGET32(c2h_term_req->fei));
}
/* we may also need to dump some other info here */
}
static void
nvme_tcp_c2h_term_req_payload_handle(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
nvme_tcp_c2h_term_req_dump(&pdu->hdr.term_req);
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
}
static void
nvme_tcp_pdu_payload_handle(struct nvme_tcp_qpair *tqpair,
uint32_t *reaped)
{
int rc = 0;
struct nvme_tcp_pdu *pdu;
uint32_t crc32c, error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
pdu = &tqpair->recv_pdu;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n");
/* check data digest if need */
if (pdu->ddigest_valid_bytes) {
crc32c = nvme_tcp_pdu_calc_data_digest(pdu);
rc = MATCH_DIGEST_WORD(pdu->data_digest, crc32c);
if (rc == 0) {
SPDK_ERRLOG("data digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
return;
}
}
switch (pdu->hdr.common.pdu_type) {
case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA:
nvme_tcp_c2h_data_payload_handle(tqpair, pdu, reaped);
break;
case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ:
nvme_tcp_c2h_term_req_payload_handle(tqpair, pdu);
break;
default:
/* The code should not go to here */
SPDK_ERRLOG("The code should not go to here\n");
break;
}
}
static void
nvme_tcp_send_icreq_complete(void *cb_arg)
{
SPDK_DEBUGLOG(SPDK_LOG_NVME, "Complete the icreq send for tqpair=%p\n",
(struct nvme_tcp_qpair *)cb_arg);
}
static void
nvme_tcp_icresp_handle(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
struct spdk_nvme_tcp_ic_resp *ic_resp = &pdu->hdr.ic_resp;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
/* Only PFV 0 is defined currently */
if (ic_resp->pfv != 0) {
SPDK_ERRLOG("Expected ICResp PFV %u, got %u\n", 0u, ic_resp->pfv);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, pfv);
goto end;
}
if (ic_resp->maxh2cdata < NVME_TCP_PDU_H2C_MIN_DATA_SIZE) {
SPDK_ERRLOG("Expected ICResp maxh2cdata >=%u, got %u\n", NVME_TCP_PDU_H2C_MIN_DATA_SIZE,
ic_resp->maxh2cdata);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, maxh2cdata);
goto end;
}
tqpair->maxh2cdata = ic_resp->maxh2cdata;
if (ic_resp->cpda > SPDK_NVME_TCP_CPDA_MAX) {
SPDK_ERRLOG("Expected ICResp cpda <=%u, got %u\n", SPDK_NVME_TCP_CPDA_MAX, ic_resp->cpda);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_ic_resp, cpda);
goto end;
}
tqpair->cpda = ic_resp->cpda;
tqpair->host_hdgst_enable = ic_resp->dgst.bits.hdgst_enable ? true : false;
tqpair->host_ddgst_enable = ic_resp->dgst.bits.ddgst_enable ? true : false;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "host_hdgst_enable: %u\n", tqpair->host_hdgst_enable);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "host_ddgst_enable: %u\n", tqpair->host_ddgst_enable);
tqpair->state = NVME_TCP_QPAIR_STATE_RUNNING;
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
return;
end:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
return;
}
static void
nvme_tcp_capsule_resp_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu,
uint32_t *reaped)
{
struct nvme_tcp_req *tcp_req;
struct spdk_nvme_tcp_rsp *capsule_resp = &pdu->hdr.capsule_resp;
uint32_t cid, error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
struct spdk_nvme_cpl cpl;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n");
cpl = capsule_resp->rccqe;
cid = cpl.cid;
/* Recv the pdu again */
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
tcp_req = get_nvme_active_req_by_cid(tqpair, cid);
if (!tcp_req) {
SPDK_ERRLOG("no tcp_req is found with cid=%u for tqpair=%p\n", cid, tqpair);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_rsp, rccqe);
goto end;
}
assert(tcp_req->req != NULL);
assert(tcp_req->state == NVME_TCP_REQ_ACTIVE);
nvme_tcp_req_complete(tcp_req->req, &cpl);
nvme_tcp_req_put(tqpair, tcp_req);
(*reaped)++;
nvme_tcp_free_and_handle_queued_req(&tqpair->qpair);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "complete tcp_req(%p) on tqpair=%p\n", tcp_req, tqpair);
return;
end:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
return;
}
static void
nvme_tcp_c2h_term_req_hdr_handle(struct nvme_tcp_qpair *tqpair,
struct nvme_tcp_pdu *pdu)
{
struct spdk_nvme_tcp_term_req_hdr *c2h_term_req = &pdu->hdr.term_req;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
if (c2h_term_req->fes > SPDK_NVME_TCP_TERM_REQ_FES_INVALID_DATA_UNSUPPORTED_PARAMETER) {
SPDK_ERRLOG("Fatal Error Stauts(FES) is unknown for c2h_term_req pdu=%p\n", pdu);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_term_req_hdr, fes);
goto end;
}
/* set the data buffer */
pdu->data = (uint8_t *)pdu->hdr.raw + c2h_term_req->common.hlen;
pdu->data_len = c2h_term_req->common.plen - c2h_term_req->common.hlen;
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
return;
end:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
return;
}
static void
nvme_tcp_c2h_data_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
{
struct nvme_tcp_req *tcp_req;
struct spdk_nvme_tcp_c2h_data_hdr *c2h_data = &pdu->hdr.c2h_data;
uint32_t error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n");
SPDK_DEBUGLOG(SPDK_LOG_NVME, "c2h_data info on tqpair(%p): datao=%u, datal=%u, cccid=%d\n",
tqpair, c2h_data->datao, c2h_data->datal, c2h_data->cccid);
tcp_req = get_nvme_active_req_by_cid(tqpair, c2h_data->cccid);
if (!tcp_req) {
SPDK_ERRLOG("no tcp_req found for c2hdata cid=%d\n", c2h_data->cccid);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, cccid);
goto end;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "tcp_req(%p) on tqpair(%p): datao=%u, payload_size=%u\n",
tcp_req, tqpair, tcp_req->datao, tcp_req->req->payload_size);
if (c2h_data->datal > tcp_req->req->payload_size) {
SPDK_ERRLOG("Invalid datal for tcp_req(%p), datal(%u) exceeds payload_size(%u)\n",
tcp_req, c2h_data->datal, tcp_req->req->payload_size);
fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
goto end;
}
if (tcp_req->datao != c2h_data->datao) {
SPDK_ERRLOG("Invalid datao for tcp_req(%p), received datal(%u) != datao(%u) in tcp_req\n",
tcp_req, c2h_data->datao, tcp_req->datao);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, datao);
goto end;
}
if ((c2h_data->datao + c2h_data->datal) > tcp_req->req->payload_size) {
SPDK_ERRLOG("Invalid data range for tcp_req(%p), received (datao(%u) + datal(%u)) > datao(%u) in tcp_req\n",
tcp_req, c2h_data->datao, c2h_data->datal, tcp_req->req->payload_size);
fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
error_offset = offsetof(struct spdk_nvme_tcp_c2h_data_hdr, datal);
goto end;
}
nvme_tcp_pdu_set_data_buf(pdu, tcp_req);
pdu->data_len = c2h_data->datal;
pdu->ctx = tcp_req;
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD);
return;
end:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
return;
}
static void
nvme_tcp_qpair_h2c_data_send_complete(void *cb_arg)
{
struct nvme_tcp_req *tcp_req = cb_arg;
assert(tcp_req != NULL);
if (tcp_req->r2tl_remain) {
spdk_nvme_tcp_send_h2c_data(tcp_req);
}
}
static void
spdk_nvme_tcp_send_h2c_data(struct nvme_tcp_req *tcp_req)
{
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(tcp_req->req->qpair);
struct nvme_tcp_pdu *rsp_pdu;
struct spdk_nvme_tcp_h2c_data_hdr *h2c_data;
uint32_t plen, pdo, alignment;
rsp_pdu = &tcp_req->send_pdu;
memset(rsp_pdu, 0, sizeof(*rsp_pdu));
nvme_tcp_pdu_set_data_buf(rsp_pdu, tcp_req);
h2c_data = &rsp_pdu->hdr.h2c_data;
h2c_data->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_H2C_DATA;
plen = h2c_data->common.hlen = sizeof(*h2c_data);
h2c_data->cccid = tcp_req->cid;
h2c_data->ttag = tcp_req->ttag;
h2c_data->datao = tcp_req->datao;
h2c_data->datal = spdk_min(tcp_req->r2tl_remain, tqpair->maxh2cdata);
rsp_pdu->data_len = h2c_data->datal;
tcp_req->r2tl_remain -= h2c_data->datal;
if (tqpair->host_hdgst_enable) {
h2c_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_HDGSTF;
plen += SPDK_NVME_TCP_DIGEST_LEN;
}
rsp_pdu->padding_len = 0;
pdo = plen;
if (tqpair->cpda) {
alignment = (tqpair->cpda + 1) << 2;
if (alignment > plen) {
rsp_pdu->padding_len = alignment - plen;
pdo = plen = alignment;
}
}
h2c_data->common.pdo = pdo;
plen += h2c_data->datal;
if (tqpair->host_ddgst_enable) {
h2c_data->common.flags |= SPDK_NVME_TCP_CH_FLAGS_DDGSTF;
plen += SPDK_NVME_TCP_DIGEST_LEN;
}
h2c_data->common.plen = plen;
tcp_req->datao += h2c_data->datal;
if (!tcp_req->r2tl_remain) {
tqpair->pending_r2t--;
assert(tqpair->pending_r2t >= 0);
tcp_req->state = NVME_TCP_REQ_ACTIVE;
h2c_data->common.flags |= SPDK_NVME_TCP_H2C_DATA_FLAGS_LAST_PDU;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "h2c_data info: datao=%u, datal=%u, pdu_len=%u for tqpair=%p\n",
h2c_data->datao, h2c_data->datal, h2c_data->common.plen, tqpair);
nvme_tcp_qpair_write_pdu(tqpair, rsp_pdu, nvme_tcp_qpair_h2c_data_send_complete, tcp_req);
}
static void
nvme_tcp_r2t_hdr_handle(struct nvme_tcp_qpair *tqpair, struct nvme_tcp_pdu *pdu)
{
struct nvme_tcp_req *tcp_req;
struct spdk_nvme_tcp_r2t_hdr *r2t = &pdu->hdr.r2t;
uint32_t cid, error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter\n");
cid = r2t->cccid;
tcp_req = get_nvme_active_req_by_cid(tqpair, cid);
if (!tcp_req) {
SPDK_ERRLOG("Cannot find tcp_req for tqpair=%p\n", tqpair);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, cccid);
goto end;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "r2t info: r2to=%u, r2tl=%u for tqpair=%p\n", r2t->r2to, r2t->r2tl,
tqpair);
if (tcp_req->state != NVME_TCP_REQ_ACTIVE_R2T) {
if (tqpair->pending_r2t >= tqpair->max_r2t) {
fes = SPDK_NVME_TCP_TERM_REQ_FES_PDU_SEQUENCE_ERROR;
SPDK_ERRLOG("Invalid R2T: it exceeds the R2T maixmal=%u for tqpair=%p\n", tqpair->max_r2t, tqpair);
goto end;
}
tcp_req->state = NVME_TCP_REQ_ACTIVE_R2T;
tqpair->pending_r2t++;
}
if (tcp_req->datao != r2t->r2to) {
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, r2to);
goto end;
}
if ((r2t->r2tl + r2t->r2to) > tcp_req->req->payload_size) {
SPDK_ERRLOG("Invalid R2T info for tcp_req=%p: (r2to(%u) + r2tl(%u)) exceeds payload_size(%u)\n",
tcp_req, r2t->r2to, r2t->r2tl, tqpair->maxh2cdata);
fes = SPDK_NVME_TCP_TERM_REQ_FES_DATA_TRANSFER_OUT_OF_RANGE;
error_offset = offsetof(struct spdk_nvme_tcp_r2t_hdr, r2tl);
goto end;
}
tcp_req->ttag = r2t->ttag;
tcp_req->r2tl_remain = r2t->r2tl;
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY);
spdk_nvme_tcp_send_h2c_data(tcp_req);
return;
end:
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
return;
}
static void
nvme_tcp_pdu_psh_handle(struct nvme_tcp_qpair *tqpair, uint32_t *reaped)
{
struct nvme_tcp_pdu *pdu;
int rc;
uint32_t crc32c, error_offset = 0;
enum spdk_nvme_tcp_term_req_fes fes;
assert(tqpair->recv_state == NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH);
pdu = &tqpair->recv_pdu;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "enter: pdu type =%u\n", pdu->hdr.common.pdu_type);
/* check header digest if needed */
if (pdu->has_hdgst) {
crc32c = nvme_tcp_pdu_calc_header_digest(pdu);
rc = MATCH_DIGEST_WORD((uint8_t *)pdu->hdr.raw + pdu->hdr.common.hlen, crc32c);
if (rc == 0) {
SPDK_ERRLOG("header digest error on tqpair=(%p) with pdu=%p\n", tqpair, pdu);
fes = SPDK_NVME_TCP_TERM_REQ_FES_HDGST_ERROR;
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
return;
}
}
switch (pdu->hdr.common.pdu_type) {
case SPDK_NVME_TCP_PDU_TYPE_IC_RESP:
nvme_tcp_icresp_handle(tqpair, pdu);
break;
case SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP:
nvme_tcp_capsule_resp_hdr_handle(tqpair, pdu, reaped);
break;
case SPDK_NVME_TCP_PDU_TYPE_C2H_DATA:
nvme_tcp_c2h_data_hdr_handle(tqpair, pdu);
break;
case SPDK_NVME_TCP_PDU_TYPE_C2H_TERM_REQ:
nvme_tcp_c2h_term_req_hdr_handle(tqpair, pdu);
break;
case SPDK_NVME_TCP_PDU_TYPE_R2T:
nvme_tcp_r2t_hdr_handle(tqpair, pdu);
break;
default:
SPDK_ERRLOG("Unexpected PDU type 0x%02x\n", tqpair->recv_pdu.hdr.common.pdu_type);
fes = SPDK_NVME_TCP_TERM_REQ_FES_INVALID_HEADER_FIELD;
error_offset = 1;
nvme_tcp_qpair_send_h2c_term_req(tqpair, pdu, fes, error_offset);
break;
}
}
static int
nvme_tcp_read_pdu(struct nvme_tcp_qpair *tqpair, uint32_t *reaped)
{
int rc = 0;
struct nvme_tcp_pdu *pdu;
uint32_t data_len;
uint8_t psh_len, pdo;
int8_t padding_len;
enum nvme_tcp_pdu_recv_state prev_state;
/* The loop here is to allow for several back-to-back state changes. */
do {
prev_state = tqpair->recv_state;
switch (tqpair->recv_state) {
/* If in a new state */
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_READY:
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH);
break;
/* common header */
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_CH:
pdu = &tqpair->recv_pdu;
if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
rc = nvme_tcp_read_data(tqpair->sock,
sizeof(struct spdk_nvme_tcp_common_pdu_hdr) - pdu->ch_valid_bytes,
(uint8_t *)&pdu->hdr.common + pdu->ch_valid_bytes);
if (rc < 0) {
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
break;
}
pdu->ch_valid_bytes += rc;
if (pdu->ch_valid_bytes < sizeof(struct spdk_nvme_tcp_common_pdu_hdr)) {
return NVME_TCP_PDU_IN_PROGRESS;
}
}
/* The command header of this PDU has now been read from the socket. */
nvme_tcp_pdu_ch_handle(tqpair);
break;
/* Wait for the pdu specific header */
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PSH:
pdu = &tqpair->recv_pdu;
psh_len = pdu->hdr.common.hlen;
/* The following pdus can have digest */
if (((pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_CAPSULE_RESP) ||
(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_DATA) ||
(pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_R2T)) &&
tqpair->host_hdgst_enable) {
pdu->has_hdgst = true;
psh_len += SPDK_NVME_TCP_DIGEST_LEN;
if (pdu->hdr.common.plen > psh_len) {
pdo = pdu->hdr.common.pdo;
padding_len = pdo - psh_len;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "padding length is =%d for pdu=%p on tqpair=%p\n", padding_len,
pdu, tqpair);
if (padding_len > 0) {
psh_len = pdo;
}
}
}
psh_len -= sizeof(struct spdk_nvme_tcp_common_pdu_hdr);
/* The following will read psh + hdgest (if possbile) + padding (if posssible) */
if (pdu->psh_valid_bytes < psh_len) {
rc = nvme_tcp_read_data(tqpair->sock,
psh_len - pdu->psh_valid_bytes,
(uint8_t *)&pdu->hdr.raw + sizeof(struct spdk_nvme_tcp_common_pdu_hdr) + pdu->psh_valid_bytes);
if (rc < 0) {
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
break;
}
pdu->psh_valid_bytes += rc;
if (pdu->psh_valid_bytes < psh_len) {
return NVME_TCP_PDU_IN_PROGRESS;
}
}
/* All header(ch, psh, head digist) of this PDU has now been read from the socket. */
nvme_tcp_pdu_psh_handle(tqpair, reaped);
break;
case NVME_TCP_PDU_RECV_STATE_AWAIT_PDU_PAYLOAD:
pdu = &tqpair->recv_pdu;
/* check whether the data is valid, if not we just return */
if (!pdu->data) {
return NVME_TCP_PDU_IN_PROGRESS;
}
data_len = pdu->data_len;
/* data len */
if (pdu->data_valid_bytes < data_len) {
rc = nvme_tcp_read_data(tqpair->sock,
data_len - pdu->data_valid_bytes,
(uint8_t *)pdu->data + pdu->data_valid_bytes);
if (rc < 0) {
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
break;
}
pdu->data_valid_bytes += rc;
if (pdu->data_valid_bytes < data_len) {
return NVME_TCP_PDU_IN_PROGRESS;
}
}
/* data digest */
if ((pdu->hdr.common.pdu_type == SPDK_NVME_TCP_PDU_TYPE_C2H_DATA) &&
tqpair->host_ddgst_enable && (pdu->ddigest_valid_bytes < SPDK_NVME_TCP_DIGEST_LEN)) {
rc = nvme_tcp_read_data(tqpair->sock,
SPDK_NVME_TCP_DIGEST_LEN - pdu->ddigest_valid_bytes,
pdu->data_digest + pdu->ddigest_valid_bytes);
if (rc < 0) {
nvme_tcp_qpair_set_recv_state(tqpair, NVME_TCP_PDU_RECV_STATE_ERROR);
break;
}
pdu->ddigest_valid_bytes += rc;
if (pdu->ddigest_valid_bytes < SPDK_NVME_TCP_DIGEST_LEN) {
return NVME_TCP_PDU_IN_PROGRESS;
}
}
/* All of this PDU has now been read from the socket. */
nvme_tcp_pdu_payload_handle(tqpair, reaped);
break;
case NVME_TCP_PDU_RECV_STATE_ERROR:
rc = NVME_TCP_PDU_FATAL;
break;
default:
assert(0);
break;
}
} while (prev_state != tqpair->recv_state);
return rc;
}
static void
nvme_tcp_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
{
uint64_t t02;
struct nvme_tcp_req *tcp_req, *tmp;
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct spdk_nvme_ctrlr_process *active_proc;
/* Don't check timeouts during controller initialization. */
if (ctrlr->state != NVME_CTRLR_STATE_READY) {
return;
}
if (nvme_qpair_is_admin_queue(qpair)) {
active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
} else {
active_proc = qpair->active_proc;
}
/* Only check timeouts if the current process has a timeout callback. */
if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
return;
}
t02 = spdk_get_ticks();
TAILQ_FOREACH_SAFE(tcp_req, &tqpair->outstanding_reqs, link, tmp) {
assert(tcp_req->req != NULL);
if (nvme_request_check_timeout(tcp_req->req, tcp_req->cid, active_proc, t02)) {
/*
* The requests are in order, so as soon as one has not timed out,
* stop iterating.
*/
break;
}
}
}
int
nvme_tcp_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
struct nvme_tcp_qpair *tqpair = nvme_tcp_qpair(qpair);
uint32_t reaped;
int rc;
rc = nvme_tcp_qpair_process_send_queue(tqpair);
if (rc) {
return 0;
}
if (max_completions == 0) {
max_completions = tqpair->num_entries;
} else {
max_completions = spdk_min(max_completions, tqpair->num_entries);
}
reaped = 0;
do {
rc = nvme_tcp_read_pdu(tqpair, &reaped);
if (rc < 0) {
SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
errno, spdk_strerror(errno));
return -1;
} else if (rc == 0) {
/* Partial PDU is read */
break;
}
} while (reaped < max_completions);
if (spdk_unlikely(tqpair->qpair.ctrlr->timeout_enabled)) {
nvme_tcp_qpair_check_timeout(qpair);
}
return reaped;
}
static int
nvme_tcp_qpair_icreq_send(struct nvme_tcp_qpair *tqpair)
{
struct spdk_nvme_tcp_ic_req *ic_req;
struct nvme_tcp_pdu *pdu;
pdu = &tqpair->send_pdu;
memset(&tqpair->send_pdu, 0, sizeof(tqpair->send_pdu));
ic_req = &pdu->hdr.ic_req;
ic_req->common.pdu_type = SPDK_NVME_TCP_PDU_TYPE_IC_REQ;
ic_req->common.hlen = ic_req->common.plen = sizeof(*ic_req);
ic_req->pfv = 0;
ic_req->maxr2t = NVME_TCP_MAX_R2T_DEFAULT - 1;
ic_req->hpda = NVME_TCP_HPDA_DEFAULT;
ic_req->dgst.bits.hdgst_enable = tqpair->qpair.ctrlr->opts.header_digest;
ic_req->dgst.bits.ddgst_enable = tqpair->qpair.ctrlr->opts.data_digest;
nvme_tcp_qpair_write_pdu(tqpair, pdu, nvme_tcp_send_icreq_complete, tqpair);
while (tqpair->state == NVME_TCP_QPAIR_STATE_INVALID) {
nvme_tcp_qpair_process_completions(&tqpair->qpair, 0);
}
if (tqpair->state != NVME_TCP_QPAIR_STATE_RUNNING) {
SPDK_ERRLOG("Failed to construct the tqpair=%p via correct icresp\n", tqpair);
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "Succesfully construct the tqpair=%p via correct icresp\n", tqpair);
return 0;
}
static int
nvme_tcp_qpair_connect(struct nvme_tcp_qpair *tqpair)
{
struct sockaddr_storage dst_addr;
struct sockaddr_storage src_addr;
int rc;
struct spdk_nvme_ctrlr *ctrlr;
int family;
long int port;
ctrlr = tqpair->qpair.ctrlr;
switch (ctrlr->trid.adrfam) {
case SPDK_NVMF_ADRFAM_IPV4:
family = AF_INET;
break;
case SPDK_NVMF_ADRFAM_IPV6:
family = AF_INET6;
break;
default:
SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
memset(&dst_addr, 0, sizeof(dst_addr));
SPDK_DEBUGLOG(SPDK_LOG_NVME, "trsvcid is %s\n", ctrlr->trid.trsvcid);
rc = nvme_tcp_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
if (rc != 0) {
SPDK_ERRLOG("dst_addr nvme_tcp_parse_addr() failed\n");
return -1;
}
if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
memset(&src_addr, 0, sizeof(src_addr));
rc = nvme_tcp_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid);
if (rc != 0) {
SPDK_ERRLOG("src_addr nvme_tcp_parse_addr() failed\n");
return -1;
}
}
port = spdk_strtol(ctrlr->trid.trsvcid, 10);
if (port <= 0 || port >= INT_MAX) {
SPDK_ERRLOG("Invalid port: %s\n", ctrlr->trid.trsvcid);
return -1;
}
tqpair->sock = spdk_sock_connect(ctrlr->trid.traddr, port);
if (!tqpair->sock) {
SPDK_ERRLOG("sock connection error of tqpair=%p with addr=%s, port=%ld\n",
tqpair, ctrlr->trid.traddr, port);
return -1;
}
tqpair->max_r2t = NVME_TCP_MAX_R2T_DEFAULT;
rc = nvme_tcp_alloc_reqs(tqpair);
SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
if (rc) {
SPDK_ERRLOG("Unable to allocate tqpair tcp requests\n");
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "TCP requests allocated\n");
rc = nvme_tcp_qpair_icreq_send(tqpair);
if (rc != 0) {
SPDK_ERRLOG("Unable to connect the tqpair\n");
return -1;
}
rc = nvme_fabric_qpair_connect(&tqpair->qpair, tqpair->num_entries);
if (rc < 0) {
SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
return -1;
}
return 0;
}
static struct spdk_nvme_qpair *
nvme_tcp_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
uint16_t qid, uint32_t qsize,
enum spdk_nvme_qprio qprio,
uint32_t num_requests)
{
struct nvme_tcp_qpair *tqpair;
struct spdk_nvme_qpair *qpair;
int rc;
tqpair = calloc(1, sizeof(struct nvme_tcp_qpair));
if (!tqpair) {
SPDK_ERRLOG("failed to get create tqpair\n");
return NULL;
}
tqpair->num_entries = qsize;
qpair = &tqpair->qpair;
rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests);
if (rc != 0) {
free(tqpair);
return NULL;
}
rc = nvme_tcp_qpair_connect(tqpair);
if (rc < 0) {
nvme_tcp_qpair_destroy(qpair);
return NULL;
}
return qpair;
}
struct spdk_nvme_qpair *
nvme_tcp_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
const struct spdk_nvme_io_qpair_opts *opts)
{
return nvme_tcp_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
opts->io_queue_requests);
}
struct spdk_nvme_ctrlr *nvme_tcp_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
struct nvme_tcp_ctrlr *tctrlr;
union spdk_nvme_cap_register cap;
union spdk_nvme_vs_register vs;
int rc;
tctrlr = calloc(1, sizeof(*tctrlr));
if (tctrlr == NULL) {
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
tctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_TCP;
tctrlr->ctrlr.opts = *opts;
tctrlr->ctrlr.trid = *trid;
rc = nvme_ctrlr_construct(&tctrlr->ctrlr);
if (rc != 0) {
free(tctrlr);
return NULL;
}
tctrlr->ctrlr.adminq = nvme_tcp_ctrlr_create_qpair(&tctrlr->ctrlr, 0,
SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES, 0, SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES);
if (!tctrlr->ctrlr.adminq) {
SPDK_ERRLOG("failed to create admin qpair\n");
nvme_tcp_ctrlr_destruct(&tctrlr->ctrlr);
return NULL;
}
if (nvme_ctrlr_get_cap(&tctrlr->ctrlr, &cap)) {
SPDK_ERRLOG("get_cap() failed\n");
nvme_ctrlr_destruct(&tctrlr->ctrlr);
return NULL;
}
if (nvme_ctrlr_get_vs(&tctrlr->ctrlr, &vs)) {
SPDK_ERRLOG("get_vs() failed\n");
nvme_ctrlr_destruct(&tctrlr->ctrlr);
return NULL;
}
if (nvme_ctrlr_add_process(&tctrlr->ctrlr, 0) != 0) {
SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
nvme_ctrlr_destruct(&tctrlr->ctrlr);
return NULL;
}
nvme_ctrlr_init_cap(&tctrlr->ctrlr, &cap, &vs);
return &tctrlr->ctrlr;
}
uint32_t
nvme_tcp_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
return NVME_TCP_RW_BUFFER_SIZE;
}
uint16_t
nvme_tcp_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
/*
* We do not support >1 SGE in the initiator currently,
* so we can only return 1 here. Once that support is
* added, this should return ctrlr->cdata.nvmf_specific.msdbd
* instead.
*/
return 1;
}
void *
nvme_tcp_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size)
{
return NULL;
}
int
nvme_tcp_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size)
{
return 0;
}