numam-spdk/lib/ftl/ftl_restore.c
Tomasz Zawadzki 2172c432cf log: simplify SPDK_LOG_REGISTER_COMPONENT
This patch removes the string from register component.
Removed are all instances in libs or hardcoded in apps.

Starting with this patch literal passed to register,
serves as name for the flag.

All instances of SPDK_LOG_* were replaced with just *
in lowercase.
No actual name change for flags occur in this patch.

Affected are SPDK_LOG_REGISTER_COMPONENT() and
SPDK_*LOG() macros.

Signed-off-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com>
Change-Id: I002b232fde57ecf9c6777726b181fc0341f1bb17
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/4495
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Mellanox Build Bot
Reviewed-by: Anil Veerabhadrappa <anil.veerabhadrappa@broadcom.com>
Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Community-CI: Broadcom CI
2020-10-14 08:00:35 +00:00

1351 lines
37 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/ftl.h"
#include "spdk/util.h"
#include "spdk/likely.h"
#include "spdk/string.h"
#include "spdk/crc32.h"
#include "ftl_core.h"
#include "ftl_band.h"
#include "ftl_io.h"
struct ftl_restore_band {
struct ftl_restore *parent;
/* Associated band */
struct ftl_band *band;
/* Status of retrieving this band's metadata */
enum ftl_md_status md_status;
/* Padded queue link */
STAILQ_ENTRY(ftl_restore_band) stailq;
};
struct ftl_nv_cache_restore;
/* Describes single phase to be restored from non-volatile cache */
struct ftl_nv_cache_range {
struct ftl_nv_cache_restore *parent;
/* Start offset */
uint64_t start_addr;
/* Last block's address */
uint64_t last_addr;
/*
* Number of blocks (can be smaller than the difference between the last
* and the starting block due to range overlap)
*/
uint64_t num_blocks;
/* Number of blocks already recovered */
uint64_t num_recovered;
/* Current address during recovery */
uint64_t current_addr;
/* Phase of the range */
unsigned int phase;
/* Indicates whether the data from this range needs to be recovered */
bool recovery;
};
struct ftl_nv_cache_block {
struct ftl_nv_cache_restore *parent;
/* Data buffer */
void *buf;
/* Metadata buffer */
void *md_buf;
/* Block offset within the cache */
uint64_t offset;
};
struct ftl_nv_cache_restore {
struct ftl_nv_cache *nv_cache;
/* IO channel to use */
struct spdk_io_channel *ioch;
/*
* Non-volatile cache ranges. The ranges can overlap, as we have no
* control over the order of completions. The phase of the range is the
* index within the table. The range with index 0 marks blocks that were
* never written.
*/
struct ftl_nv_cache_range range[FTL_NV_CACHE_PHASE_COUNT];
#define FTL_NV_CACHE_RESTORE_DEPTH 128
/* Non-volatile cache buffers */
struct ftl_nv_cache_block block[FTL_NV_CACHE_RESTORE_DEPTH];
/* Current address */
uint64_t current_addr;
/* Number of outstanding requests */
size_t num_outstanding;
/* Recovery/scan status */
int status;
/* Current phase of the recovery */
unsigned int phase;
};
struct ftl_restore {
struct spdk_ftl_dev *dev;
/* Completion callback (called for each phase of the restoration) */
ftl_restore_fn cb;
/* Completion callback context */
void *cb_arg;
/* Number of inflight IOs */
unsigned int num_ios;
/* Current band number (index in the below bands array) */
unsigned int current;
/* Array of bands */
struct ftl_restore_band *bands;
/* Queue of bands to be padded (due to unsafe shutdown) */
STAILQ_HEAD(, ftl_restore_band) pad_bands;
/* Status of the padding */
int pad_status;
/* Metadata buffer */
void *md_buf;
/* LBA map buffer */
void *lba_map;
/* Indicates we're in the final phase of the restoration */
bool final_phase;
/* Non-volatile cache recovery */
struct ftl_nv_cache_restore nv_cache;
};
static int
ftl_restore_tail_md(struct ftl_restore_band *rband);
static void
ftl_pad_zone_cb(struct ftl_io *io, void *arg, int status);
static void
ftl_restore_pad_band(struct ftl_restore_band *rband);
static void
ftl_restore_free(struct ftl_restore *restore)
{
unsigned int i;
if (!restore) {
return;
}
for (i = 0; i < FTL_NV_CACHE_RESTORE_DEPTH; ++i) {
spdk_dma_free(restore->nv_cache.block[i].buf);
}
spdk_dma_free(restore->md_buf);
free(restore->bands);
free(restore);
}
static struct ftl_restore *
ftl_restore_init(struct spdk_ftl_dev *dev, ftl_restore_fn cb, void *cb_arg)
{
struct ftl_restore *restore;
struct ftl_restore_band *rband;
size_t i;
restore = calloc(1, sizeof(*restore));
if (!restore) {
goto error;
}
restore->dev = dev;
restore->cb = cb;
restore->cb_arg = cb_arg;
restore->final_phase = false;
restore->bands = calloc(ftl_get_num_bands(dev), sizeof(*restore->bands));
if (!restore->bands) {
goto error;
}
STAILQ_INIT(&restore->pad_bands);
for (i = 0; i < ftl_get_num_bands(dev); ++i) {
rband = &restore->bands[i];
rband->band = &dev->bands[i];
rband->parent = restore;
rband->md_status = FTL_MD_NO_MD;
}
/* Allocate buffer capable of holding head mds of all bands */
restore->md_buf = spdk_dma_zmalloc(ftl_get_num_bands(dev) * ftl_head_md_num_blocks(dev) *
FTL_BLOCK_SIZE, 0, NULL);
if (!restore->md_buf) {
goto error;
}
return restore;
error:
ftl_restore_free(restore);
return NULL;
}
static void
ftl_restore_complete(struct ftl_restore *restore, int status)
{
struct ftl_restore *ctx = status ? NULL : restore;
bool final_phase = restore->final_phase;
restore->cb(ctx, status, restore->cb_arg);
if (status || final_phase) {
ftl_restore_free(restore);
}
}
static int
ftl_band_cmp(const void *lband, const void *rband)
{
uint64_t lseq = ((struct ftl_restore_band *)lband)->band->seq;
uint64_t rseq = ((struct ftl_restore_band *)rband)->band->seq;
if (lseq < rseq) {
return -1;
} else {
return 1;
}
}
static int
ftl_restore_check_seq(const struct ftl_restore *restore)
{
const struct spdk_ftl_dev *dev = restore->dev;
const struct ftl_restore_band *rband;
const struct ftl_band *next_band;
size_t i;
for (i = 0; i < ftl_get_num_bands(dev); ++i) {
rband = &restore->bands[i];
if (rband->md_status != FTL_MD_SUCCESS) {
continue;
}
next_band = LIST_NEXT(rband->band, list_entry);
if (next_band && rband->band->seq == next_band->seq) {
return -1;
}
}
return 0;
}
static bool
ftl_restore_head_valid(struct spdk_ftl_dev *dev, struct ftl_restore *restore, size_t *num_valid)
{
struct ftl_restore_band *rband;
size_t i;
for (i = 0; i < ftl_get_num_bands(dev); ++i) {
rband = &restore->bands[i];
if (rband->md_status != FTL_MD_SUCCESS &&
rband->md_status != FTL_MD_NO_MD &&
rband->md_status != FTL_MD_IO_FAILURE) {
SPDK_ERRLOG("Inconsistent head metadata found on band %u\n",
rband->band->id);
return false;
}
if (rband->md_status == FTL_MD_SUCCESS) {
(*num_valid)++;
}
}
return true;
}
static void
ftl_restore_head_complete(struct ftl_restore *restore)
{
struct spdk_ftl_dev *dev = restore->dev;
size_t num_valid = 0;
int status = -EIO;
if (!ftl_restore_head_valid(dev, restore, &num_valid)) {
goto out;
}
if (num_valid == 0) {
SPDK_ERRLOG("Couldn't find any valid bands\n");
goto out;
}
/* Sort bands in sequence number ascending order */
qsort(restore->bands, ftl_get_num_bands(dev), sizeof(struct ftl_restore_band),
ftl_band_cmp);
if (ftl_restore_check_seq(restore)) {
SPDK_ERRLOG("Band sequence consistency failed\n");
goto out;
}
dev->num_lbas = dev->global_md.num_lbas;
status = 0;
out:
ftl_restore_complete(restore, status);
}
static void
ftl_restore_head_cb(struct ftl_io *io, void *ctx, int status)
{
struct ftl_restore_band *rband = ctx;
struct ftl_restore *restore = rband->parent;
unsigned int num_ios;
rband->md_status = status;
num_ios = __atomic_fetch_sub(&restore->num_ios, 1, __ATOMIC_SEQ_CST);
assert(num_ios > 0);
if (num_ios == 1) {
ftl_restore_head_complete(restore);
}
}
static void
ftl_restore_head_md(void *ctx)
{
struct ftl_restore *restore = ctx;
struct spdk_ftl_dev *dev = restore->dev;
struct ftl_restore_band *rband;
struct ftl_lba_map *lba_map;
unsigned int num_failed = 0, num_ios;
size_t i;
restore->num_ios = ftl_get_num_bands(dev);
for (i = 0; i < ftl_get_num_bands(dev); ++i) {
rband = &restore->bands[i];
lba_map = &rband->band->lba_map;
lba_map->dma_buf = restore->md_buf + i * ftl_head_md_num_blocks(dev) * FTL_BLOCK_SIZE;
if (ftl_band_read_head_md(rband->band, ftl_restore_head_cb, rband)) {
if (spdk_likely(rband->band->num_zones)) {
SPDK_ERRLOG("Failed to read metadata on band %zu\n", i);
rband->md_status = FTL_MD_INVALID_CRC;
/* If the first IO fails, don't bother sending anything else */
if (i == 0) {
ftl_restore_complete(restore, -EIO);
}
}
num_failed++;
}
}
if (spdk_unlikely(num_failed > 0)) {
num_ios = __atomic_fetch_sub(&restore->num_ios, num_failed, __ATOMIC_SEQ_CST);
if (num_ios == num_failed) {
ftl_restore_complete(restore, -EIO);
}
}
}
int
ftl_restore_md(struct spdk_ftl_dev *dev, ftl_restore_fn cb, void *cb_arg)
{
struct ftl_restore *restore;
restore = ftl_restore_init(dev, cb, cb_arg);
if (!restore) {
return -ENOMEM;
}
spdk_thread_send_msg(ftl_get_core_thread(dev), ftl_restore_head_md, restore);
return 0;
}
static int
ftl_restore_l2p(struct ftl_band *band)
{
struct spdk_ftl_dev *dev = band->dev;
struct ftl_addr addr;
uint64_t lba;
size_t i;
for (i = 0; i < ftl_get_num_blocks_in_band(band->dev); ++i) {
if (!spdk_bit_array_get(band->lba_map.vld, i)) {
continue;
}
lba = band->lba_map.map[i];
if (lba >= dev->num_lbas) {
return -1;
}
addr = ftl_l2p_get(dev, lba);
if (!ftl_addr_invalid(addr)) {
ftl_invalidate_addr(dev, addr);
}
addr = ftl_band_addr_from_block_offset(band, i);
ftl_band_set_addr(band, lba, addr);
ftl_l2p_set(dev, lba, addr);
}
return 0;
}
static struct ftl_restore_band *
ftl_restore_next_band(struct ftl_restore *restore)
{
struct ftl_restore_band *rband;
for (; restore->current < ftl_get_num_bands(restore->dev); ++restore->current) {
rband = &restore->bands[restore->current];
if (spdk_likely(rband->band->num_zones) &&
rband->md_status == FTL_MD_SUCCESS) {
restore->current++;
return rband;
}
}
return NULL;
}
static void
ftl_nv_cache_restore_complete(struct ftl_nv_cache_restore *restore, int status)
{
struct ftl_restore *ftl_restore = SPDK_CONTAINEROF(restore, struct ftl_restore, nv_cache);
restore->status = restore->status ? : status;
if (restore->num_outstanding == 0) {
ftl_restore_complete(ftl_restore, restore->status);
}
}
static void ftl_nv_cache_block_read_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg);
static void
ftl_nv_cache_restore_done(struct ftl_nv_cache_restore *restore, uint64_t current_addr)
{
struct ftl_nv_cache *nv_cache = restore->nv_cache;
pthread_spin_lock(&nv_cache->lock);
nv_cache->current_addr = current_addr;
nv_cache->ready = true;
pthread_spin_unlock(&nv_cache->lock);
SPDK_DEBUGLOG(ftl_init, "Enabling non-volatile cache (phase: %u, addr: %"
PRIu64")\n", nv_cache->phase, current_addr);
ftl_nv_cache_restore_complete(restore, 0);
}
static void
ftl_nv_cache_write_header_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct ftl_nv_cache_restore *restore = cb_arg;
spdk_bdev_free_io(bdev_io);
if (spdk_unlikely(!success)) {
SPDK_ERRLOG("Unable to write the non-volatile cache metadata header\n");
ftl_nv_cache_restore_complete(restore, -EIO);
return;
}
ftl_nv_cache_restore_done(restore, FTL_NV_CACHE_DATA_OFFSET);
}
static void
ftl_nv_cache_scrub_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct ftl_nv_cache_restore *restore = cb_arg;
struct ftl_nv_cache *nv_cache = restore->nv_cache;
int rc;
spdk_bdev_free_io(bdev_io);
if (spdk_unlikely(!success)) {
SPDK_ERRLOG("Scrubbing non-volatile cache failed\n");
ftl_nv_cache_restore_complete(restore, -EIO);
return;
}
nv_cache->phase = 1;
rc = ftl_nv_cache_write_header(nv_cache, false, ftl_nv_cache_write_header_cb, restore);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Unable to write the non-volatile cache metadata header: %s\n",
spdk_strerror(-rc));
ftl_nv_cache_restore_complete(restore, -EIO);
}
}
static void
ftl_nv_cache_scrub_header_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct ftl_nv_cache_restore *restore = cb_arg;
struct ftl_nv_cache *nv_cache = restore->nv_cache;
int rc;
spdk_bdev_free_io(bdev_io);
if (spdk_unlikely(!success)) {
SPDK_ERRLOG("Unable to write non-volatile cache metadata header\n");
ftl_nv_cache_restore_complete(restore, -EIO);
return;
}
rc = ftl_nv_cache_scrub(nv_cache, ftl_nv_cache_scrub_cb, restore);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Unable to scrub the non-volatile cache: %s\n", spdk_strerror(-rc));
ftl_nv_cache_restore_complete(restore, rc);
}
}
static void
ftl_nv_cache_band_flush_cb(void *ctx, int status)
{
struct ftl_nv_cache_restore *restore = ctx;
struct ftl_nv_cache *nv_cache = restore->nv_cache;
int rc;
if (spdk_unlikely(status != 0)) {
SPDK_ERRLOG("Flushing active bands failed: %s\n", spdk_strerror(-status));
ftl_nv_cache_restore_complete(restore, status);
return;
}
/*
* Use phase 0 to indicate that the cache is being scrubbed. If the power is lost during
* this process, we'll know it needs to be resumed.
*/
nv_cache->phase = 0;
rc = ftl_nv_cache_write_header(nv_cache, false, ftl_nv_cache_scrub_header_cb, restore);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Unable to write non-volatile cache metadata header: %s\n",
spdk_strerror(-rc));
ftl_nv_cache_restore_complete(restore, rc);
}
}
static void
ftl_nv_cache_wbuf_flush_cb(void *ctx, int status)
{
struct ftl_nv_cache_restore *restore = ctx;
struct ftl_nv_cache *nv_cache = restore->nv_cache;
struct spdk_ftl_dev *dev = SPDK_CONTAINEROF(nv_cache, struct spdk_ftl_dev, nv_cache);
int rc;
if (spdk_unlikely(status != 0)) {
SPDK_ERRLOG("Flushing the write buffer failed: %s\n", spdk_strerror(-status));
ftl_nv_cache_restore_complete(restore, status);
return;
}
rc = ftl_flush_active_bands(dev, ftl_nv_cache_band_flush_cb, restore);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Unable to flush active bands: %s\n", spdk_strerror(-rc));
ftl_nv_cache_restore_complete(restore, rc);
}
}
static void
ftl_nv_cache_recovery_done(struct ftl_nv_cache_restore *restore)
{
struct ftl_nv_cache *nv_cache = restore->nv_cache;
struct ftl_nv_cache_range *range_prev, *range_current;
struct spdk_ftl_dev *dev = SPDK_CONTAINEROF(nv_cache, struct spdk_ftl_dev, nv_cache);
struct spdk_bdev *bdev;
uint64_t current_addr;
int rc;
range_prev = &restore->range[ftl_nv_cache_prev_phase(nv_cache->phase)];
range_current = &restore->range[nv_cache->phase];
bdev = spdk_bdev_desc_get_bdev(nv_cache->bdev_desc);
/*
* If there are more than two ranges or the ranges overlap, scrub the non-volatile cache to
* make sure that any subsequent power loss will find the cache in usable state
*/
if ((range_prev->num_blocks + range_current->num_blocks < nv_cache->num_data_blocks) ||
(range_prev->start_addr < range_current->last_addr &&
range_current->start_addr < range_prev->last_addr)) {
SPDK_DEBUGLOG(ftl_init, "Non-volatile cache inconsistency detected\n");
rc = ftl_flush_wbuf(dev, ftl_nv_cache_wbuf_flush_cb, restore);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Unable to flush the write buffer: %s\n", spdk_strerror(-rc));
ftl_nv_cache_restore_complete(restore, rc);
}
return;
}
/* The latest phase is the one written in the header (set in nvc_cache->phase) */
current_addr = range_current->last_addr + 1;
/*
* The first range might be empty (only the header was written) or the range might
* end at the last available address, in which case set current address to the
* beginning of the device.
*/
if (range_current->num_blocks == 0 || current_addr >= spdk_bdev_get_num_blocks(bdev)) {
current_addr = FTL_NV_CACHE_DATA_OFFSET;
}
ftl_nv_cache_restore_done(restore, current_addr);
}
static void
ftl_nv_cache_recover_block(struct ftl_nv_cache_block *block)
{
struct ftl_nv_cache_restore *restore = block->parent;
struct ftl_nv_cache *nv_cache = restore->nv_cache;
struct ftl_nv_cache_range *range = &restore->range[restore->phase];
int rc;
assert(range->current_addr <= range->last_addr);
restore->num_outstanding++;
block->offset = range->current_addr++;
rc = spdk_bdev_read_blocks_with_md(nv_cache->bdev_desc, restore->ioch,
block->buf, block->md_buf,
block->offset, 1, ftl_nv_cache_block_read_cb,
block);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Non-volatile cache restoration failed on block %"PRIu64" (%s)\n",
block->offset, spdk_strerror(-rc));
restore->num_outstanding--;
ftl_nv_cache_restore_complete(restore, rc);
}
}
static void
ftl_nv_cache_recover_range(struct ftl_nv_cache_restore *restore)
{
struct ftl_nv_cache_range *range;
unsigned int phase = restore->phase;
do {
/* Find first range with non-zero number of blocks that is marked for recovery */
range = &restore->range[phase];
if (range->recovery && range->num_recovered < range->num_blocks) {
break;
}
phase = ftl_nv_cache_next_phase(phase);
} while (phase != restore->phase);
/* There are no ranges to be recovered, we're done */
if (range->num_recovered == range->num_blocks || !range->recovery) {
SPDK_DEBUGLOG(ftl_init, "Non-volatile cache recovery done\n");
ftl_nv_cache_recovery_done(restore);
return;
}
range->current_addr = range->start_addr;
restore->phase = phase;
SPDK_DEBUGLOG(ftl_init, "Recovering range %u %"PRIu64"-%"PRIu64" (%"PRIu64")\n",
phase, range->start_addr, range->last_addr, range->num_blocks);
ftl_nv_cache_recover_block(&restore->block[0]);
}
static void
ftl_nv_cache_write_cb(struct ftl_io *io, void *cb_arg, int status)
{
struct ftl_nv_cache_block *block = cb_arg;
struct ftl_nv_cache_restore *restore = block->parent;
struct ftl_nv_cache_range *range = &restore->range[restore->phase];
restore->num_outstanding--;
if (status != 0) {
SPDK_ERRLOG("Non-volatile cache restoration failed on block %"PRIu64" (%s)\n",
block->offset, spdk_strerror(-status));
ftl_nv_cache_restore_complete(restore, -ENOMEM);
return;
}
range->num_recovered++;
if (range->current_addr <= range->last_addr) {
ftl_nv_cache_recover_block(block);
} else if (restore->num_outstanding == 0) {
assert(range->num_recovered == range->num_blocks);
ftl_nv_cache_recover_range(restore);
}
}
static struct ftl_io *
ftl_nv_cache_alloc_io(struct ftl_nv_cache_block *block, uint64_t lba)
{
struct ftl_restore *restore = SPDK_CONTAINEROF(block->parent, struct ftl_restore, nv_cache);
struct ftl_io_init_opts opts = {
.dev = restore->dev,
.io = NULL,
.flags = FTL_IO_BYPASS_CACHE,
.type = FTL_IO_WRITE,
.num_blocks = 1,
.cb_fn = ftl_nv_cache_write_cb,
.cb_ctx = block,
.iovs = {
{
.iov_base = block->buf,
.iov_len = FTL_BLOCK_SIZE,
}
},
.iovcnt = 1,
};
struct ftl_io *io;
io = ftl_io_init_internal(&opts);
if (spdk_unlikely(!io)) {
return NULL;
}
io->lba.single = lba;
return io;
}
static void
ftl_nv_cache_block_read_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct ftl_nv_cache_block *block = cb_arg;
struct ftl_nv_cache_restore *restore = block->parent;
struct ftl_nv_cache_range *range = &restore->range[restore->phase];
struct ftl_io *io;
unsigned int phase;
uint64_t lba;
spdk_bdev_free_io(bdev_io);
restore->num_outstanding--;
if (!success) {
SPDK_ERRLOG("Non-volatile cache restoration failed on block %"PRIu64"\n",
block->offset);
ftl_nv_cache_restore_complete(restore, -EIO);
return;
}
ftl_nv_cache_unpack_lba(*(uint64_t *)block->md_buf, &lba, &phase);
if (spdk_unlikely(phase != restore->phase)) {
if (range->current_addr < range->last_addr) {
ftl_nv_cache_recover_block(block);
} else if (restore->num_outstanding == 0) {
ftl_nv_cache_recover_range(restore);
}
return;
}
io = ftl_nv_cache_alloc_io(block, lba);
if (spdk_unlikely(!io)) {
SPDK_ERRLOG("Failed to allocate ftl_io during non-volatile cache recovery\n");
ftl_nv_cache_restore_complete(restore, -ENOMEM);
return;
}
restore->num_outstanding++;
ftl_io_write(io);
}
/*
* Since we have no control over the order in which the requests complete in regards to their
* submission, the cache can be in either of the following states:
* - [1 1 1 1 1 1 1 1 1 1]: simplest case, whole cache contains single phase (although it should be
* very rare),
* - [1 1 1 1 3 3 3 3 3 3]: two phases, changing somewhere in the middle with no overlap. This is
* the state left by clean shutdown,
* - [1 1 1 1 3 1 3 3 3 3]: similar to the above, but this time the two ranges overlap. This
* happens when completions are reordered during unsafe shutdown,
* - [2 1 2 1 1 1 1 3 1 3]: three different phases, each one of which can overlap with
* previous/next one. The data from the oldest phase doesn't need to be
* recovered, as it was already being written to, which means it's
* already on the main storage.
*/
static void
ftl_nv_cache_scan_done(struct ftl_nv_cache_restore *restore)
{
struct ftl_nv_cache *nv_cache = restore->nv_cache;
#if defined(DEBUG)
struct ftl_nv_cache_range *range;
uint64_t i, num_blocks = 0;
for (i = 0; i < FTL_NV_CACHE_PHASE_COUNT; ++i) {
range = &restore->range[i];
SPDK_DEBUGLOG(ftl_init, "Range %"PRIu64": %"PRIu64"-%"PRIu64" (%" PRIu64
")\n", i, range->start_addr, range->last_addr, range->num_blocks);
num_blocks += range->num_blocks;
}
assert(num_blocks == nv_cache->num_data_blocks);
#endif
restore->phase = ftl_nv_cache_prev_phase(nv_cache->phase);
/*
* Only the latest two phases need to be recovered. The third one, even if present,
* already has to be stored on the main storage, as it's already started to be
* overwritten (only present here because of reordering of requests' completions).
*/
restore->range[nv_cache->phase].recovery = true;
restore->range[restore->phase].recovery = true;
ftl_nv_cache_recover_range(restore);
}
static int ftl_nv_cache_scan_block(struct ftl_nv_cache_block *block);
static void
ftl_nv_cache_scan_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct ftl_nv_cache_block *block = cb_arg;
struct ftl_nv_cache_restore *restore = block->parent;
struct ftl_nv_cache_range *range;
struct spdk_bdev *bdev;
unsigned int phase;
uint64_t lba;
restore->num_outstanding--;
bdev = spdk_bdev_desc_get_bdev(restore->nv_cache->bdev_desc);
spdk_bdev_free_io(bdev_io);
if (!success) {
SPDK_ERRLOG("Non-volatile cache scan failed on block %"PRIu64"\n",
block->offset);
ftl_nv_cache_restore_complete(restore, -EIO);
return;
}
/* If we've already hit an error, don't bother with scanning anything else */
if (spdk_unlikely(restore->status != 0)) {
ftl_nv_cache_restore_complete(restore, restore->status);
return;
}
ftl_nv_cache_unpack_lba(*(uint64_t *)block->md_buf, &lba, &phase);
range = &restore->range[phase];
range->num_blocks++;
if (range->start_addr == FTL_LBA_INVALID || range->start_addr > block->offset) {
range->start_addr = block->offset;
}
if (range->last_addr == FTL_LBA_INVALID || range->last_addr < block->offset) {
range->last_addr = block->offset;
}
/* All the blocks were read, once they're all completed and we're finished */
if (restore->current_addr == spdk_bdev_get_num_blocks(bdev)) {
if (restore->num_outstanding == 0) {
ftl_nv_cache_scan_done(restore);
}
return;
}
ftl_nv_cache_scan_block(block);
}
static int
ftl_nv_cache_scan_block(struct ftl_nv_cache_block *block)
{
struct ftl_nv_cache_restore *restore = block->parent;
struct ftl_nv_cache *nv_cache = restore->nv_cache;
int rc;
restore->num_outstanding++;
block->offset = restore->current_addr++;
rc = spdk_bdev_read_blocks_with_md(nv_cache->bdev_desc, restore->ioch,
block->buf, block->md_buf,
block->offset, 1, ftl_nv_cache_scan_cb,
block);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Non-volatile cache scan failed on block %"PRIu64" (%s)\n",
block->offset, spdk_strerror(-rc));
restore->num_outstanding--;
ftl_nv_cache_restore_complete(restore, rc);
return rc;
}
return 0;
}
static void
ftl_nv_cache_clean_header_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct ftl_nv_cache_restore *restore = cb_arg;
spdk_bdev_free_io(bdev_io);
if (spdk_unlikely(!success)) {
SPDK_ERRLOG("Unable to write the non-volatile cache metadata header\n");
ftl_nv_cache_restore_complete(restore, -EIO);
return;
}
ftl_nv_cache_restore_done(restore, restore->current_addr);
}
static bool
ftl_nv_cache_header_valid(struct spdk_ftl_dev *dev, const struct ftl_nv_cache_header *hdr)
{
struct spdk_bdev *bdev = spdk_bdev_desc_get_bdev(dev->nv_cache.bdev_desc);
uint32_t checksum;
checksum = spdk_crc32c_update(hdr, offsetof(struct ftl_nv_cache_header, checksum), 0);
if (checksum != hdr->checksum) {
SPDK_ERRLOG("Invalid header checksum (found: %"PRIu32", expected: %"PRIu32")\n",
checksum, hdr->checksum);
return false;
}
if (hdr->version != FTL_NV_CACHE_HEADER_VERSION) {
SPDK_ERRLOG("Invalid header version (found: %"PRIu32", expected: %"PRIu32")\n",
hdr->version, FTL_NV_CACHE_HEADER_VERSION);
return false;
}
if (hdr->size != spdk_bdev_get_num_blocks(bdev)) {
SPDK_ERRLOG("Unexpected size of the non-volatile cache bdev (%"PRIu64", expected: %"
PRIu64")\n", hdr->size, spdk_bdev_get_num_blocks(bdev));
return false;
}
if (spdk_uuid_compare(&hdr->uuid, &dev->uuid)) {
SPDK_ERRLOG("Invalid device UUID\n");
return false;
}
if (!ftl_nv_cache_phase_is_valid(hdr->phase) && hdr->phase != 0) {
return false;
}
if ((hdr->current_addr >= spdk_bdev_get_num_blocks(bdev) ||
hdr->current_addr < FTL_NV_CACHE_DATA_OFFSET) &&
(hdr->current_addr != FTL_LBA_INVALID)) {
SPDK_ERRLOG("Unexpected value of non-volatile cache's current address: %"PRIu64"\n",
hdr->current_addr);
return false;
}
return true;
}
static void
ftl_nv_cache_read_header_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct ftl_restore *restore = cb_arg;
struct spdk_ftl_dev *dev = restore->dev;
struct ftl_nv_cache *nv_cache = &dev->nv_cache;
struct ftl_nv_cache_header *hdr;
struct iovec *iov = NULL;
int iov_cnt = 0, i, rc;
if (!success) {
SPDK_ERRLOG("Unable to read non-volatile cache metadata header\n");
ftl_restore_complete(restore, -ENOTRECOVERABLE);
goto out;
}
spdk_bdev_io_get_iovec(bdev_io, &iov, &iov_cnt);
assert(iov != NULL);
hdr = iov[0].iov_base;
if (!ftl_nv_cache_header_valid(dev, hdr)) {
ftl_restore_complete(restore, -ENOTRECOVERABLE);
goto out;
}
/* Remember the latest phase */
nv_cache->phase = hdr->phase;
/* If the phase equals zero, we lost power during recovery. We need to finish it up
* by scrubbing the device once again.
*/
if (hdr->phase == 0) {
SPDK_DEBUGLOG(ftl_init, "Detected phase 0, restarting scrub\n");
rc = ftl_nv_cache_scrub(nv_cache, ftl_nv_cache_scrub_cb, restore);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Unable to scrub the non-volatile cache: %s\n",
spdk_strerror(-rc));
ftl_restore_complete(restore, -ENOTRECOVERABLE);
}
goto out;
}
/* Valid current_addr means that the shutdown was clean, so we just need to overwrite the
* header to make sure that any power loss occurring before the cache is wrapped won't be
* mistaken for a clean shutdown.
*/
if (hdr->current_addr != FTL_LBA_INVALID) {
restore->nv_cache.current_addr = hdr->current_addr;
rc = ftl_nv_cache_write_header(nv_cache, false, ftl_nv_cache_clean_header_cb,
&restore->nv_cache);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Failed to overwrite the non-volatile cache header: %s\n",
spdk_strerror(-rc));
ftl_restore_complete(restore, -ENOTRECOVERABLE);
}
goto out;
}
/* Otherwise the shutdown was unexpected, so we need to recover the data from the cache */
restore->nv_cache.current_addr = FTL_NV_CACHE_DATA_OFFSET;
for (i = 0; i < FTL_NV_CACHE_RESTORE_DEPTH; ++i) {
if (ftl_nv_cache_scan_block(&restore->nv_cache.block[i])) {
break;
}
}
out:
spdk_bdev_free_io(bdev_io);
}
void
ftl_restore_nv_cache(struct ftl_restore *restore, ftl_restore_fn cb, void *cb_arg)
{
struct spdk_ftl_dev *dev = restore->dev;
struct spdk_bdev *bdev;
struct ftl_nv_cache *nv_cache = &dev->nv_cache;
struct ftl_io_channel *ioch;
struct ftl_nv_cache_restore *nvc_restore = &restore->nv_cache;
struct ftl_nv_cache_block *block;
size_t alignment;
int rc, i;
ioch = ftl_io_channel_get_ctx(ftl_get_io_channel(dev));
bdev = spdk_bdev_desc_get_bdev(nv_cache->bdev_desc);
alignment = spdk_max(spdk_bdev_get_buf_align(bdev), sizeof(uint64_t));
nvc_restore->nv_cache = nv_cache;
nvc_restore->ioch = ioch->cache_ioch;
restore->final_phase = true;
restore->cb = cb;
restore->cb_arg = cb_arg;
for (i = 0; i < FTL_NV_CACHE_RESTORE_DEPTH; ++i) {
block = &nvc_restore->block[i];
block->parent = nvc_restore;
block->buf = spdk_dma_zmalloc(spdk_bdev_get_block_size(bdev) +
spdk_bdev_get_md_size(bdev),
alignment, NULL);
if (!block->buf) {
/* The memory will be freed in ftl_restore_free */
SPDK_ERRLOG("Unable to allocate memory\n");
ftl_restore_complete(restore, -ENOMEM);
return;
}
block->md_buf = (char *)block->buf + spdk_bdev_get_block_size(bdev);
}
for (i = 0; i < FTL_NV_CACHE_PHASE_COUNT; ++i) {
nvc_restore->range[i].parent = nvc_restore;
nvc_restore->range[i].start_addr = FTL_LBA_INVALID;
nvc_restore->range[i].last_addr = FTL_LBA_INVALID;
nvc_restore->range[i].num_blocks = 0;
nvc_restore->range[i].recovery = false;
nvc_restore->range[i].phase = i;
}
rc = spdk_bdev_read_blocks(nv_cache->bdev_desc, ioch->cache_ioch, nv_cache->dma_buf,
0, FTL_NV_CACHE_DATA_OFFSET, ftl_nv_cache_read_header_cb, restore);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Failed to read non-volatile cache metadata header: %s\n",
spdk_strerror(-rc));
ftl_restore_complete(restore, rc);
}
}
static bool
ftl_pad_zone_pad_finish(struct ftl_restore_band *rband, bool direct_access)
{
struct ftl_restore *restore = rband->parent;
struct ftl_restore_band *next_band;
size_t i, num_pad_zones = 0;
if (spdk_unlikely(restore->pad_status && !restore->num_ios)) {
if (direct_access) {
/* In case of any errors found we want to clear direct access. */
/* Direct access bands have their own allocated md, which would be lost */
/* on restore complete otherwise. */
rband->band->state = FTL_BAND_STATE_CLOSED;
ftl_band_set_direct_access(rband->band, false);
}
ftl_restore_complete(restore, restore->pad_status);
return true;
}
for (i = 0; i < rband->band->num_zones; ++i) {
if (rband->band->zone_buf[i].info.state != SPDK_BDEV_ZONE_STATE_FULL) {
num_pad_zones++;
}
}
/* Finished all zones in a band, check if all bands are done */
if (num_pad_zones == 0) {
if (direct_access) {
rband->band->state = FTL_BAND_STATE_CLOSED;
ftl_band_set_direct_access(rband->band, false);
}
next_band = STAILQ_NEXT(rband, stailq);
if (!next_band) {
ftl_restore_complete(restore, restore->pad_status);
return true;
} else {
/* Start off padding in the next band */
ftl_restore_pad_band(next_band);
return true;
}
}
return false;
}
static struct ftl_io *
ftl_restore_init_pad_io(struct ftl_restore_band *rband, void *buffer,
struct ftl_addr addr)
{
struct ftl_band *band = rband->band;
struct spdk_ftl_dev *dev = band->dev;
int flags = FTL_IO_PAD | FTL_IO_INTERNAL | FTL_IO_PHYSICAL_MODE | FTL_IO_MD |
FTL_IO_DIRECT_ACCESS;
struct ftl_io_init_opts opts = {
.dev = dev,
.io = NULL,
.band = band,
.size = sizeof(struct ftl_io),
.flags = flags,
.type = FTL_IO_WRITE,
.num_blocks = dev->xfer_size,
.cb_fn = ftl_pad_zone_cb,
.cb_ctx = rband,
.iovs = {
{
.iov_base = buffer,
.iov_len = dev->xfer_size * FTL_BLOCK_SIZE,
}
},
.iovcnt = 1,
.parent = NULL,
};
struct ftl_io *io;
io = ftl_io_init_internal(&opts);
if (spdk_unlikely(!io)) {
return NULL;
}
io->addr = addr;
rband->parent->num_ios++;
return io;
}
static void
ftl_pad_zone_cb(struct ftl_io *io, void *arg, int status)
{
struct ftl_restore_band *rband = arg;
struct ftl_restore *restore = rband->parent;
struct ftl_band *band = io->band;
struct ftl_zone *zone;
struct ftl_io *new_io;
uint64_t offset;
restore->num_ios--;
/* TODO check for next unit error vs early close error */
if (status) {
restore->pad_status = status;
goto end;
}
offset = io->addr.offset % ftl_get_num_blocks_in_zone(restore->dev);
if (offset + io->num_blocks == ftl_get_num_blocks_in_zone(restore->dev)) {
zone = ftl_band_zone_from_addr(band, io->addr);
zone->info.state = SPDK_BDEV_ZONE_STATE_FULL;
} else {
struct ftl_addr addr = io->addr;
addr.offset += io->num_blocks;
new_io = ftl_restore_init_pad_io(rband, io->iov[0].iov_base, addr);
if (spdk_unlikely(!new_io)) {
restore->pad_status = -ENOMEM;
goto end;
}
ftl_io_write(new_io);
return;
}
end:
spdk_dma_free(io->iov[0].iov_base);
ftl_pad_zone_pad_finish(rband, true);
}
static void
ftl_restore_pad_band(struct ftl_restore_band *rband)
{
struct ftl_restore *restore = rband->parent;
struct ftl_band *band = rband->band;
struct spdk_ftl_dev *dev = band->dev;
void *buffer = NULL;
struct ftl_io *io;
struct ftl_addr addr;
size_t i;
int rc = 0;
/* Check if some zones are not closed */
if (ftl_pad_zone_pad_finish(rband, false)) {
/*
* If we're here, end meta wasn't recognized, but the whole band is written
* Assume the band was padded and ignore it
*/
return;
}
band->state = FTL_BAND_STATE_OPEN;
rc = ftl_band_set_direct_access(band, true);
if (rc) {
ftl_restore_complete(restore, rc);
return;
}
for (i = 0; i < band->num_zones; ++i) {
if (band->zone_buf[i].info.state == SPDK_BDEV_ZONE_STATE_FULL) {
continue;
}
addr.offset = band->zone_buf[i].info.write_pointer;
buffer = spdk_dma_zmalloc(FTL_BLOCK_SIZE * dev->xfer_size, 0, NULL);
if (spdk_unlikely(!buffer)) {
rc = -ENOMEM;
goto error;
}
io = ftl_restore_init_pad_io(rband, buffer, addr);
if (spdk_unlikely(!io)) {
rc = -ENOMEM;
spdk_dma_free(buffer);
goto error;
}
ftl_io_write(io);
}
return;
error:
restore->pad_status = rc;
ftl_pad_zone_pad_finish(rband, true);
}
static void
ftl_restore_pad_open_bands(void *ctx)
{
struct ftl_restore *restore = ctx;
ftl_restore_pad_band(STAILQ_FIRST(&restore->pad_bands));
}
static void
ftl_restore_tail_md_cb(struct ftl_io *io, void *ctx, int status)
{
struct ftl_restore_band *rband = ctx;
struct ftl_restore *restore = rband->parent;
struct spdk_ftl_dev *dev = restore->dev;
if (status) {
if (!dev->conf.allow_open_bands) {
SPDK_ERRLOG("%s while restoring tail md in band %u.\n",
spdk_strerror(-status), rband->band->id);
ftl_band_release_lba_map(rband->band);
ftl_restore_complete(restore, status);
return;
} else {
SPDK_ERRLOG("%s while restoring tail md. Will attempt to pad band %u.\n",
spdk_strerror(-status), rband->band->id);
STAILQ_INSERT_TAIL(&restore->pad_bands, rband, stailq);
}
}
if (!status && ftl_restore_l2p(rband->band)) {
ftl_band_release_lba_map(rband->band);
ftl_restore_complete(restore, -ENOTRECOVERABLE);
return;
}
ftl_band_release_lba_map(rband->band);
rband = ftl_restore_next_band(restore);
if (!rband) {
if (!STAILQ_EMPTY(&restore->pad_bands)) {
spdk_thread_send_msg(ftl_get_core_thread(dev), ftl_restore_pad_open_bands,
restore);
} else {
ftl_restore_complete(restore, 0);
}
return;
}
ftl_restore_tail_md(rband);
}
static int
ftl_restore_tail_md(struct ftl_restore_band *rband)
{
struct ftl_restore *restore = rband->parent;
struct ftl_band *band = rband->band;
if (ftl_band_alloc_lba_map(band)) {
SPDK_ERRLOG("Failed to allocate lba map\n");
ftl_restore_complete(restore, -ENOMEM);
return -ENOMEM;
}
if (ftl_band_read_tail_md(band, band->tail_md_addr, ftl_restore_tail_md_cb, rband)) {
SPDK_ERRLOG("Failed to send tail metadata read\n");
ftl_restore_complete(restore, -EIO);
return -EIO;
}
return 0;
}
int
ftl_restore_device(struct ftl_restore *restore, ftl_restore_fn cb, void *cb_arg)
{
struct spdk_ftl_dev *dev = restore->dev;
struct ftl_restore_band *rband;
restore->current = 0;
restore->cb = cb;
restore->cb_arg = cb_arg;
restore->final_phase = dev->nv_cache.bdev_desc == NULL;
/* If restore_device is called, there must be at least one valid band */
rband = ftl_restore_next_band(restore);
assert(rband);
return ftl_restore_tail_md(rband);
}