numam-spdk/lib/nvme/nvme.c
Ben Walker bfdc02ab48 nvme: Eliminate nvme_impl.h and use the swappable env lib.
Change-Id: Ibbc557b732d5b0858a2922a7a442c4b17a0d579a
Signed-off-by: Ben Walker <benjamin.walker@intel.com>
2016-10-11 13:34:09 -07:00

350 lines
9.9 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "nvme_internal.h"
struct nvme_driver _g_nvme_driver = {
.lock = PTHREAD_MUTEX_INITIALIZER,
.init_ctrlrs = TAILQ_HEAD_INITIALIZER(_g_nvme_driver.init_ctrlrs),
.attached_ctrlrs = TAILQ_HEAD_INITIALIZER(_g_nvme_driver.attached_ctrlrs),
.request_mempool = NULL,
};
struct nvme_driver *g_spdk_nvme_driver = &_g_nvme_driver;
int32_t spdk_nvme_retry_count;
static struct spdk_nvme_ctrlr *
nvme_attach(void *devhandle)
{
struct spdk_nvme_ctrlr *ctrlr;
int status;
uint64_t phys_addr = 0;
ctrlr = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr),
64, &phys_addr);
if (ctrlr == NULL) {
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
status = nvme_ctrlr_construct(ctrlr, devhandle);
if (status != 0) {
spdk_free(ctrlr);
return NULL;
}
return ctrlr;
}
int
spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
{
pthread_mutex_lock(&g_spdk_nvme_driver->lock);
nvme_ctrlr_destruct(ctrlr);
TAILQ_REMOVE(&g_spdk_nvme_driver->attached_ctrlrs, ctrlr, tailq);
spdk_free(ctrlr);
pthread_mutex_unlock(&g_spdk_nvme_driver->lock);
return 0;
}
void
nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_completion_poll_status *status = arg;
/*
* Copy status into the argument passed by the caller, so that
* the caller can check the status to determine if the
* the request passed or failed.
*/
memcpy(&status->cpl, cpl, sizeof(*cpl));
status->done = true;
}
struct nvme_request *
nvme_allocate_request(const struct nvme_payload *payload, uint32_t payload_size,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req = NULL;
req = spdk_mempool_get(g_spdk_nvme_driver->request_mempool);
if (req == NULL) {
return req;
}
/*
* Only memset up to (but not including) the children
* TAILQ_ENTRY. children, and following members, are
* only used as part of I/O splitting so we avoid
* memsetting them until it is actually needed.
* They will be initialized in nvme_request_add_child()
* if the request is split.
*/
memset(req, 0, offsetof(struct nvme_request, children));
req->cb_fn = cb_fn;
req->cb_arg = cb_arg;
req->payload = *payload;
req->payload_size = payload_size;
return req;
}
struct nvme_request *
nvme_allocate_request_contig(void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
void *cb_arg)
{
struct nvme_payload payload;
payload.type = NVME_PAYLOAD_TYPE_CONTIG;
payload.u.contig = buffer;
payload.md = NULL;
return nvme_allocate_request(&payload, payload_size, cb_fn, cb_arg);
}
struct nvme_request *
nvme_allocate_request_null(spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
return nvme_allocate_request_contig(NULL, 0, cb_fn, cb_arg);
}
static void
nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
{
struct nvme_request *req = arg;
enum spdk_nvme_data_transfer xfer;
if (req->user_buffer && req->payload_size) {
/* Copy back to the user buffer and free the contig buffer */
assert(req->payload.type == NVME_PAYLOAD_TYPE_CONTIG);
xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
memcpy(req->user_buffer, req->payload.u.contig, req->payload_size);
}
spdk_free(req->payload.u.contig);
}
/* Call the user's original callback now that the buffer has been copied */
req->user_cb_fn(req->user_cb_arg, cpl);
}
/**
* Allocate a request as well as a physically contiguous buffer to copy to/from the user's buffer.
*
* This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
* where the overhead of a copy is not a problem.
*/
struct nvme_request *
nvme_allocate_request_user_copy(void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
void *cb_arg, bool host_to_controller)
{
struct nvme_request *req;
void *contig_buffer = NULL;
uint64_t phys_addr;
if (buffer && payload_size) {
contig_buffer = spdk_zmalloc(payload_size, 4096, &phys_addr);
if (!contig_buffer) {
return NULL;
}
if (host_to_controller) {
memcpy(contig_buffer, buffer, payload_size);
}
}
req = nvme_allocate_request_contig(contig_buffer, payload_size, nvme_user_copy_cmd_complete, NULL);
if (!req) {
spdk_free(buffer);
return NULL;
}
req->user_cb_fn = cb_fn;
req->user_cb_arg = cb_arg;
req->user_buffer = buffer;
req->cb_arg = req;
return req;
}
void
nvme_free_request(struct nvme_request *req)
{
assert(req != NULL);
assert(req->num_children == 0);
spdk_mempool_put(g_spdk_nvme_driver->request_mempool, req);
}
int
nvme_mutex_init_shared(pthread_mutex_t *mtx)
{
pthread_mutexattr_t attr;
int rc = 0;
if (pthread_mutexattr_init(&attr)) {
return -1;
}
if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
pthread_mutex_init(mtx, &attr)) {
rc = -1;
}
pthread_mutexattr_destroy(&attr);
return rc;
}
struct nvme_enum_ctx {
spdk_nvme_probe_cb probe_cb;
void *cb_ctx;
};
/* This function must only be called while holding g_spdk_nvme_driver->lock */
static int
nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
{
struct nvme_enum_ctx *enum_ctx = ctx;
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ctrlr_opts opts;
/* Verify that this controller is not already attached */
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->attached_ctrlrs, tailq) {
/* NOTE: This assumes that the PCI abstraction layer will use the same device handle
* across enumerations; we could compare by BDF instead if this is not true.
*/
if (pci_dev == ctrlr->devhandle) {
return 0;
}
}
spdk_nvme_ctrlr_opts_set_defaults(&opts);
if (enum_ctx->probe_cb(enum_ctx->cb_ctx, pci_dev, &opts)) {
ctrlr = nvme_attach(pci_dev);
if (ctrlr == NULL) {
SPDK_ERRLOG("nvme_attach() failed\n");
return -1;
}
ctrlr->opts = opts;
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq);
}
return 0;
}
int
spdk_nvme_probe(void *cb_ctx, spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
spdk_nvme_remove_cb remove_cb)
{
int rc, start_rc;
struct nvme_enum_ctx enum_ctx;
struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
pthread_mutex_lock(&g_spdk_nvme_driver->lock);
if (g_spdk_nvme_driver->request_mempool == NULL) {
g_spdk_nvme_driver->request_mempool = spdk_mempool_create("nvme_request", 8192,
sizeof(struct nvme_request), -1);
if (g_spdk_nvme_driver->request_mempool == NULL) {
SPDK_ERRLOG("Unable to allocate pool of requests\n");
pthread_mutex_unlock(&g_spdk_nvme_driver->lock);
return -1;
}
}
enum_ctx.probe_cb = probe_cb;
enum_ctx.cb_ctx = cb_ctx;
rc = spdk_pci_enumerate(SPDK_PCI_DEVICE_NVME, nvme_enum_cb, &enum_ctx);
/*
* Keep going even if one or more nvme_attach() calls failed,
* but maintain the value of rc to signal errors when we return.
*/
/* Initialize all new controllers in the init_ctrlrs list in parallel. */
while (!TAILQ_EMPTY(&g_spdk_nvme_driver->init_ctrlrs)) {
TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->init_ctrlrs, tailq, ctrlr_tmp) {
/* Drop the driver lock while calling nvme_ctrlr_process_init()
* since it needs to acquire the driver lock internally when calling
* nvme_ctrlr_start().
*
* TODO: Rethink the locking - maybe reset should take the lock so that start() and
* the functions it calls (in particular nvme_ctrlr_set_num_qpairs())
* can assume it is held.
*/
pthread_mutex_unlock(&g_spdk_nvme_driver->lock);
start_rc = nvme_ctrlr_process_init(ctrlr);
pthread_mutex_lock(&g_spdk_nvme_driver->lock);
if (start_rc) {
/* Controller failed to initialize. */
TAILQ_REMOVE(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq);
nvme_ctrlr_destruct(ctrlr);
spdk_free(ctrlr);
rc = -1;
break;
}
if (ctrlr->state == NVME_CTRLR_STATE_READY) {
/*
* Controller has been initialized.
* Move it to the attached_ctrlrs list.
*/
TAILQ_REMOVE(&g_spdk_nvme_driver->init_ctrlrs, ctrlr, tailq);
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->attached_ctrlrs, ctrlr, tailq);
/*
* Unlock while calling attach_cb() so the user can call other functions
* that may take the driver lock, like nvme_detach().
*/
pthread_mutex_unlock(&g_spdk_nvme_driver->lock);
attach_cb(cb_ctx, ctrlr->devhandle, ctrlr, &ctrlr->opts);
pthread_mutex_lock(&g_spdk_nvme_driver->lock);
break;
}
}
}
pthread_mutex_unlock(&g_spdk_nvme_driver->lock);
return rc;
}
SPDK_LOG_REGISTER_TRACE_FLAG("nvme", SPDK_TRACE_NVME)