numam-spdk/lib/nvme/nvme_internal.h
Daniel Verkamp 87844a30ef nvme: move struct pci_id into nvme_internal.h
This doesn't need to be part of the public API. It is only used by the
NVMe quirk lookup tables.

Change-Id: I7662e333c70b7c5f814bd7c8a528b6bff1f0732e
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
2016-02-08 14:00:16 -07:00

469 lines
13 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __NVME_INTERNAL_H__
#define __NVME_INTERNAL_H__
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <x86intrin.h>
#include <sys/user.h>
#include "spdk/nvme.h"
#include "spdk/queue.h"
#include "spdk/barrier.h"
#include "spdk/mmio.h"
#include "spdk/pci_ids.h"
#include "spdk/nvme_intel.h"
#include "spdk/pci_ids.h"
/*
* Some Intel devices support vendor-unique read latency log page even
* though the log page directory says otherwise.
*/
#define NVME_INTEL_QUIRK_READ_LATENCY 0x1
/*
* Some Intel devices support vendor-unique write latency log page even
* though the log page directory says otherwise.
*/
#define NVME_INTEL_QUIRK_WRITE_LATENCY 0x2
#define NVME_MAX_PRP_LIST_ENTRIES (32)
/*
* For commands requiring more than 2 PRP entries, one PRP will be
* embedded in the command (prp1), and the rest of the PRP entries
* will be in a list pointed to by the command (prp2). This means
* that real max number of PRP entries we support is 32+1, which
* results in a max xfer size of 32*PAGE_SIZE.
*/
#define NVME_MAX_XFER_SIZE NVME_MAX_PRP_LIST_ENTRIES * PAGE_SIZE
#define NVME_ADMIN_TRACKERS (16)
#define NVME_ADMIN_ENTRIES (128)
/* min and max are defined in admin queue attributes section of spec */
#define NVME_MIN_ADMIN_ENTRIES (2)
#define NVME_MAX_ADMIN_ENTRIES (4096)
/*
* NVME_IO_ENTRIES defines the size of an I/O qpair's submission and completion
* queues, while NVME_IO_TRACKERS defines the maximum number of I/O that we
* will allow outstanding on an I/O qpair at any time. The only advantage in
* having IO_ENTRIES > IO_TRACKERS is for debugging purposes - when dumping
* the contents of the submission and completion queues, it will show a longer
* history of data.
*/
#define NVME_IO_ENTRIES (256)
#define NVME_IO_TRACKERS (128)
#define NVME_MIN_IO_TRACKERS (4)
#define NVME_MAX_IO_TRACKERS (1024)
/*
* NVME_MAX_IO_ENTRIES is not defined, since it is specified in CC.MQES
* for each controller.
*/
#define NVME_MAX_ASYNC_EVENTS (8)
#define NVME_MIN_TIMEOUT_PERIOD (5)
#define NVME_MAX_TIMEOUT_PERIOD (120)
/* Maximum log page size to fetch for AERs. */
#define NVME_MAX_AER_LOG_SIZE (4096)
/*
* NVME_MAX_IO_QUEUES in nvme_spec.h defines the 64K spec-limit, but this
* define specifies the maximum number of queues this driver will actually
* try to configure, if available.
*/
#define DEFAULT_MAX_IO_QUEUES (1024)
enum nvme_payload_type {
NVME_PAYLOAD_TYPE_INVALID = 0,
/** nvme_request::u.payload.contig_buffer is valid for this request */
NVME_PAYLOAD_TYPE_CONTIG,
/** nvme_request::u.sgl is valid for this request */
NVME_PAYLOAD_TYPE_SGL,
};
/**
* Descriptor for a request data payload.
*
* This struct is arranged so that it fits nicely in struct nvme_request.
*/
struct __attribute__((packed)) nvme_payload {
union {
/** Virtual memory address of a single physically contiguous buffer */
void *contig;
/**
* Functions for retrieving physical addresses for scattered payloads.
*/
struct {
nvme_req_reset_sgl_fn_t reset_sgl_fn;
nvme_req_next_sge_fn_t next_sge_fn;
} sgl;
} u;
/** \ref nvme_payload_type */
uint8_t type;
};
struct nvme_request {
struct nvme_command cmd;
/**
* Data payload for this request's command.
*/
struct nvme_payload payload;
uint8_t timeout;
uint8_t retries;
/**
* Number of children requests still outstanding for this
* request which was split into multiple child requests.
*/
uint8_t num_children;
uint32_t payload_size;
/**
* Offset in bytes from the beginning of payload for this request.
* This is used for I/O commands that are split into multiple requests.
*/
uint32_t payload_offset;
nvme_cb_fn_t cb_fn;
void *cb_arg;
STAILQ_ENTRY(nvme_request) stailq;
/**
* The following members should not be reordered with members
* above. These members are only needed when splitting
* requests which is done rarely, and the driver is careful
* to not touch the following fields until a split operation is
* needed, to avoid touching an extra cacheline.
*/
/**
* Points to the outstanding child requests for a parent request.
* Only valid if a request was split into multiple children
* requests, and is not initialized for non-split requests.
*/
TAILQ_HEAD(, nvme_request) children;
/**
* Linked-list pointers for a child request in its parent's list.
*/
TAILQ_ENTRY(nvme_request) child_tailq;
/**
* Points to a parent request if part of a split request,
* NULL otherwise.
*/
struct nvme_request *parent;
/**
* Completion status for a parent request. Initialized to all 0's
* (SUCCESS) before child requests are submitted. If a child
* request completes with error, the error status is copied here,
* to ensure that the parent request is also completed with error
* status once all child requests are completed.
*/
struct nvme_completion parent_status;
};
struct nvme_completion_poll_status {
struct nvme_completion cpl;
bool done;
};
struct nvme_async_event_request {
struct nvme_controller *ctrlr;
struct nvme_request *req;
struct nvme_completion cpl;
};
struct nvme_tracker {
LIST_ENTRY(nvme_tracker) list;
struct nvme_request *req;
uint16_t cid;
uint64_t prp_bus_addr;
uint64_t prp[NVME_MAX_PRP_LIST_ENTRIES];
};
struct nvme_qpair {
volatile uint32_t *sq_tdbl;
volatile uint32_t *cq_hdbl;
/**
* Submission queue
*/
struct nvme_command *cmd;
/**
* Completion queue
*/
struct nvme_completion *cpl;
LIST_HEAD(, nvme_tracker) free_tr;
LIST_HEAD(, nvme_tracker) outstanding_tr;
STAILQ_HEAD(, nvme_request) queued_req;
struct nvme_tracker **act_tr;
uint16_t id;
uint16_t num_entries;
uint16_t sq_tail;
uint16_t cq_head;
uint8_t phase;
bool is_enabled;
/*
* Fields below this point should not be touched on the normal I/O happy path.
*/
struct nvme_controller *ctrlr;
uint64_t cmd_bus_addr;
uint64_t cpl_bus_addr;
};
struct nvme_namespace {
struct nvme_controller *ctrlr;
uint32_t stripe_size;
uint32_t sector_size;
uint32_t sectors_per_max_io;
uint32_t sectors_per_stripe;
uint16_t id;
uint16_t flags;
};
/*
* One of these per allocated PCI device.
*/
struct nvme_controller {
/* Hot data (accessed in I/O path) starts here. */
/** NVMe MMIO register space */
volatile struct nvme_registers *regs;
/** I/O queue pairs */
struct nvme_qpair *ioq;
/** Array of namespaces indexed by nsid - 1 */
struct nvme_namespace *ns;
uint32_t num_ns;
bool is_resetting;
bool is_failed;
/* Cold data (not accessed in normal I/O path) is after this point. */
TAILQ_ENTRY(nvme_controller) tailq;
/** All the log pages supported */
bool log_page_supported[256];
/** All the features supported */
bool feature_supported[256];
/* Opaque handle to associated PCI device. */
struct spdk_pci_device *devhandle;
uint32_t num_io_queues;
/** maximum i/o size in bytes */
uint32_t max_xfer_size;
/** minimum page size supported by this controller in bytes */
uint32_t min_page_size;
/** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
uint32_t doorbell_stride_u32;
uint32_t num_aers;
struct nvme_async_event_request aer[NVME_MAX_ASYNC_EVENTS];
nvme_aer_cb_fn_t aer_cb_fn;
void *aer_cb_arg;
/** guards access to the controller itself, including admin queues */
nvme_mutex_t ctrlr_lock;
struct nvme_qpair adminq;
/**
* Identify Controller data.
*/
struct nvme_controller_data cdata;
/**
* Array of Identify Namespace data.
*
* Stored separately from ns since nsdata should not normally be accessed during I/O.
*/
struct nvme_namespace_data *nsdata;
};
extern __thread int nvme_thread_ioq_index;
struct nvme_driver {
nvme_mutex_t lock;
uint16_t *ioq_index_pool;
uint32_t max_io_queues;
uint16_t ioq_index_pool_next;
TAILQ_HEAD(, nvme_controller) init_ctrlrs;
TAILQ_HEAD(, nvme_controller) attached_ctrlrs;
};
struct pci_id {
uint16_t vendor_id;
uint16_t dev_id;
uint16_t sub_vendor_id;
uint16_t sub_dev_id;
};
extern struct nvme_driver g_nvme_driver;
#define nvme_min(a,b) (((a)<(b))?(a):(b))
#define INTEL_DC_P3X00_DEVID 0x09538086
#define nvme_mmio_read_4(sc, reg) \
spdk_mmio_read_4(&(sc)->regs->reg)
#define nvme_mmio_write_4(sc, reg, val) \
spdk_mmio_write_4(&(sc)->regs->reg, val)
#define nvme_mmio_write_8(sc, reg, val) \
spdk_mmio_write_8(&(sc)->regs->reg, val)
#define nvme_delay usleep
static inline uint32_t
nvme_u32log2(uint32_t x)
{
if (x == 0) {
/* __builtin_clz(0) is undefined, so just bail */
return 0;
}
return 31u - __builtin_clz(x);
}
static inline uint32_t
nvme_align32pow2(uint32_t x)
{
return 1u << (1 + nvme_u32log2(x - 1));
}
/* Admin functions */
void nvme_ctrlr_cmd_identify_controller(struct nvme_controller *ctrlr,
void *payload,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_identify_namespace(struct nvme_controller *ctrlr,
uint16_t nsid, void *payload,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_create_io_cq(struct nvme_controller *ctrlr,
struct nvme_qpair *io_que,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_create_io_sq(struct nvme_controller *ctrlr,
struct nvme_qpair *io_que,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_set_num_queues(struct nvme_controller *ctrlr,
uint32_t num_queues, nvme_cb_fn_t cb_fn,
void *cb_arg);
void nvme_ctrlr_cmd_set_async_event_config(struct nvme_controller *ctrlr,
union nvme_critical_warning_state state,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_abort(struct nvme_controller *ctrlr, uint16_t cid,
uint16_t sqid, nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_completion_poll_cb(void *arg, const struct nvme_completion *cpl);
int nvme_ctrlr_construct(struct nvme_controller *ctrlr, void *devhandle);
void nvme_ctrlr_destruct(struct nvme_controller *ctrlr);
int nvme_ctrlr_start(struct nvme_controller *ctrlr);
void nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
struct nvme_request *req);
void nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
struct nvme_request *req);
void nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
struct nvme_request *req);
int nvme_qpair_construct(struct nvme_qpair *qpair, uint16_t id,
uint16_t num_entries,
uint16_t num_trackers,
struct nvme_controller *ctrlr);
void nvme_qpair_destroy(struct nvme_qpair *qpair);
void nvme_qpair_enable(struct nvme_qpair *qpair);
void nvme_qpair_disable(struct nvme_qpair *qpair);
int32_t nvme_qpair_process_completions(struct nvme_qpair *qpair, uint32_t max_completions);
void nvme_qpair_submit_request(struct nvme_qpair *qpair,
struct nvme_request *req);
void nvme_qpair_reset(struct nvme_qpair *qpair);
void nvme_qpair_fail(struct nvme_qpair *qpair);
int nvme_ns_construct(struct nvme_namespace *ns, uint16_t id,
struct nvme_controller *ctrlr);
void nvme_ns_destruct(struct nvme_namespace *ns);
struct nvme_request *nvme_allocate_request(const struct nvme_payload *payload,
uint32_t payload_size, nvme_cb_fn_t cb_fn, void *cb_arg);
struct nvme_request *nvme_allocate_request_null(nvme_cb_fn_t cb_fn, void *cb_arg);
struct nvme_request *nvme_allocate_request_contig(void *buffer, uint32_t payload_size,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_free_request(struct nvme_request *req);
bool nvme_intel_has_quirk(struct pci_id *id, uint64_t quirk);
#endif /* __NVME_INTERNAL_H__ */