numam-spdk/lib/nvme/nvme_ns_cmd.c
Liang Yan ee292e4b55 spdk: Add callback NULL check for readv and writev command
Change-Id: I04286c97ff0536127dbbc4bd1d65ee44a128ecf5
Signed-off-by: Liang Yan <liangx.yan@intel.com>
2016-02-08 12:33:34 -07:00

478 lines
12 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "nvme_internal.h"
/**
* \file
*
*/
static struct nvme_request *_nvme_ns_cmd_rw(struct nvme_namespace *ns,
const struct nvme_payload *payload, uint64_t lba,
uint32_t lba_count, nvme_cb_fn_t cb_fn,
void *cb_arg, uint32_t opc, uint32_t io_flags);
static void
nvme_cb_complete_child(void *child_arg, const struct nvme_completion *cpl)
{
struct nvme_request *child = child_arg;
struct nvme_request *parent = child->parent;
parent->num_children--;
TAILQ_REMOVE(&parent->children, child, child_tailq);
if (nvme_completion_is_error(cpl)) {
memcpy(&parent->parent_status, cpl, sizeof(*cpl));
}
if (parent->num_children == 0) {
if (parent->cb_fn) {
parent->cb_fn(parent->cb_arg, &parent->parent_status);
}
nvme_free_request(parent);
}
}
static void
nvme_request_add_child(struct nvme_request *parent, struct nvme_request *child)
{
if (parent->num_children == 0) {
/*
* Defer initialization of the children TAILQ since it falls
* on a separate cacheline. This ensures we do not touch this
* cacheline except on request splitting cases, which are
* relatively rare.
*/
TAILQ_INIT(&parent->children);
parent->parent = NULL;
memset(&parent->parent_status, 0, sizeof(struct nvme_completion));
}
parent->num_children++;
TAILQ_INSERT_TAIL(&parent->children, child, child_tailq);
child->parent = parent;
child->cb_fn = nvme_cb_complete_child;
child->cb_arg = child;
}
static struct nvme_request *
_nvme_ns_cmd_split_request(struct nvme_namespace *ns,
const struct nvme_payload *payload,
uint64_t lba, uint32_t lba_count,
nvme_cb_fn_t cb_fn, void *cb_arg, uint32_t opc,
uint32_t io_flags, struct nvme_request *req,
uint32_t sectors_per_max_io, uint32_t sector_mask)
{
uint32_t sector_size = ns->sector_size;
uint32_t remaining_lba_count = lba_count;
uint32_t offset = 0;
struct nvme_request *child;
while (remaining_lba_count > 0) {
lba_count = sectors_per_max_io - (lba & sector_mask);
lba_count = nvme_min(remaining_lba_count, lba_count);
child = _nvme_ns_cmd_rw(ns, payload, lba, lba_count, cb_fn,
cb_arg, opc, io_flags);
if (child == NULL) {
nvme_free_request(req);
return NULL;
}
child->payload_offset = offset;
nvme_request_add_child(req, child);
remaining_lba_count -= lba_count;
lba += lba_count;
offset += lba_count * sector_size;
}
return req;
}
static struct nvme_request *
_nvme_ns_cmd_rw(struct nvme_namespace *ns, const struct nvme_payload *payload,
uint64_t lba, uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg, uint32_t opc,
uint32_t io_flags)
{
struct nvme_request *req;
struct nvme_command *cmd;
uint64_t *tmp_lba;
uint32_t sector_size;
uint32_t sectors_per_max_io;
uint32_t sectors_per_stripe;
if (io_flags & 0xFFFF) {
/* The bottom 16 bits must be empty */
return NULL;
}
sector_size = ns->sector_size;
sectors_per_max_io = ns->sectors_per_max_io;
sectors_per_stripe = ns->sectors_per_stripe;
req = nvme_allocate_request(payload, lba_count * sector_size, cb_fn, cb_arg);
if (req == NULL) {
return NULL;
}
/*
* Intel DC P3*00 NVMe controllers benefit from driver-assisted striping.
* If this controller defines a stripe boundary and this I/O spans a stripe
* boundary, split the request into multiple requests and submit each
* separately to hardware.
*/
if (sectors_per_stripe > 0 &&
(((lba & (sectors_per_stripe - 1)) + lba_count) > sectors_per_stripe)) {
return _nvme_ns_cmd_split_request(ns, payload, lba, lba_count, cb_fn, cb_arg, opc,
io_flags, req, sectors_per_stripe, sectors_per_stripe - 1);
} else if (lba_count > sectors_per_max_io) {
return _nvme_ns_cmd_split_request(ns, payload, lba, lba_count, cb_fn, cb_arg, opc,
io_flags, req, sectors_per_max_io, 0);
} else {
cmd = &req->cmd;
cmd->opc = opc;
cmd->nsid = ns->id;
tmp_lba = (uint64_t *)&cmd->cdw10;
*tmp_lba = lba;
cmd->cdw12 = lba_count - 1;
cmd->cdw12 |= io_flags;
}
return req;
}
int
nvme_ns_cmd_read(struct nvme_namespace *ns, void *buffer, uint64_t lba,
uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg,
uint32_t io_flags)
{
struct nvme_request *req;
struct nvme_payload payload;
payload.type = NVME_PAYLOAD_TYPE_CONTIG;
payload.u.contig = buffer;
req = _nvme_ns_cmd_rw(ns, &payload, lba, lba_count, cb_fn, cb_arg, NVME_OPC_READ, io_flags);
if (req != NULL) {
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
} else {
return ENOMEM;
}
}
int
nvme_ns_cmd_readv(struct nvme_namespace *ns, uint64_t lba, uint32_t lba_count,
nvme_cb_fn_t cb_fn, void *cb_arg, uint32_t io_flags,
nvme_req_reset_sgl_fn_t reset_sgl_fn,
nvme_req_next_sge_fn_t next_sge_fn)
{
struct nvme_request *req;
struct nvme_payload payload;
if (reset_sgl_fn == NULL || next_sge_fn == NULL)
return EINVAL;
payload.type = NVME_PAYLOAD_TYPE_SGL;
payload.u.sgl.reset_sgl_fn = reset_sgl_fn;
payload.u.sgl.next_sge_fn = next_sge_fn;
req = _nvme_ns_cmd_rw(ns, &payload, lba, lba_count, cb_fn, cb_arg, NVME_OPC_READ, io_flags);
if (req != NULL) {
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
} else {
return ENOMEM;
}
}
int
nvme_ns_cmd_write(struct nvme_namespace *ns, void *buffer, uint64_t lba,
uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg,
uint32_t io_flags)
{
struct nvme_request *req;
struct nvme_payload payload;
payload.type = NVME_PAYLOAD_TYPE_CONTIG;
payload.u.contig = buffer;
req = _nvme_ns_cmd_rw(ns, &payload, lba, lba_count, cb_fn, cb_arg, NVME_OPC_WRITE, io_flags);
if (req != NULL) {
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
} else {
return ENOMEM;
}
}
int
nvme_ns_cmd_writev(struct nvme_namespace *ns, uint64_t lba, uint32_t lba_count,
nvme_cb_fn_t cb_fn, void *cb_arg, uint32_t io_flags,
nvme_req_reset_sgl_fn_t reset_sgl_fn,
nvme_req_next_sge_fn_t next_sge_fn)
{
struct nvme_request *req;
struct nvme_payload payload;
if (reset_sgl_fn == NULL || next_sge_fn == NULL)
return EINVAL;
payload.type = NVME_PAYLOAD_TYPE_SGL;
payload.u.sgl.reset_sgl_fn = reset_sgl_fn;
payload.u.sgl.next_sge_fn = next_sge_fn;
req = _nvme_ns_cmd_rw(ns, &payload, lba, lba_count, cb_fn, cb_arg, NVME_OPC_WRITE, io_flags);
if (req != NULL) {
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
} else {
return ENOMEM;
}
}
int
nvme_ns_cmd_write_zeroes(struct nvme_namespace *ns, uint64_t lba,
uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg,
uint32_t io_flags)
{
struct nvme_request *req;
struct nvme_command *cmd;
uint64_t *tmp_lba;
if (lba_count == 0) {
return EINVAL;
}
req = nvme_allocate_request_null(cb_fn, cb_arg);
if (req == NULL) {
return ENOMEM;
}
cmd = &req->cmd;
cmd->opc = NVME_OPC_WRITE_ZEROES;
cmd->nsid = ns->id;
tmp_lba = (uint64_t *)&cmd->cdw10;
*tmp_lba = lba;
cmd->cdw12 = lba_count - 1;
cmd->cdw12 |= io_flags;
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
}
int
nvme_ns_cmd_deallocate(struct nvme_namespace *ns, void *payload,
uint16_t num_ranges, nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct nvme_command *cmd;
if (num_ranges == 0 || num_ranges > NVME_DATASET_MANAGEMENT_MAX_RANGES) {
return EINVAL;
}
req = nvme_allocate_request_contig(payload,
num_ranges * sizeof(struct nvme_dsm_range),
cb_fn, cb_arg);
if (req == NULL) {
return ENOMEM;
}
cmd = &req->cmd;
cmd->opc = NVME_OPC_DATASET_MANAGEMENT;
cmd->nsid = ns->id;
/* TODO: create a delete command data structure */
cmd->cdw10 = num_ranges - 1;
cmd->cdw11 = NVME_DSM_ATTR_DEALLOCATE;
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
}
int
nvme_ns_cmd_flush(struct nvme_namespace *ns, nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct nvme_command *cmd;
req = nvme_allocate_request_null(cb_fn, cb_arg);
if (req == NULL) {
return ENOMEM;
}
cmd = &req->cmd;
cmd->opc = NVME_OPC_FLUSH;
cmd->nsid = ns->id;
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
}
int
nvme_ns_cmd_reservation_register(struct nvme_namespace *ns,
struct nvme_reservation_register_data *payload,
bool ignore_key,
enum nvme_reservation_register_action action,
enum nvme_reservation_register_cptpl cptpl,
nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct nvme_command *cmd;
req = nvme_allocate_request_contig(payload,
sizeof(struct nvme_reservation_register_data),
cb_fn, cb_arg);
if (req == NULL) {
return ENOMEM;
}
cmd = &req->cmd;
cmd->opc = NVME_OPC_RESERVATION_REGISTER;
cmd->nsid = ns->id;
/* Bits 0-2 */
cmd->cdw10 = action;
/* Bit 3 */
cmd->cdw10 |= ignore_key ? 1 << 3 : 0;
/* Bits 30-31 */
cmd->cdw10 |= (uint32_t)cptpl << 30;
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
}
int
nvme_ns_cmd_reservation_release(struct nvme_namespace *ns,
struct nvme_reservation_key_data *payload,
bool ignore_key,
enum nvme_reservation_release_action action,
enum nvme_reservation_type type,
nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct nvme_command *cmd;
req = nvme_allocate_request_contig(payload, sizeof(struct nvme_reservation_key_data), cb_fn,
cb_arg);
if (req == NULL) {
return ENOMEM;
}
cmd = &req->cmd;
cmd->opc = NVME_OPC_RESERVATION_RELEASE;
cmd->nsid = ns->id;
/* Bits 0-2 */
cmd->cdw10 = action;
/* Bit 3 */
cmd->cdw10 |= ignore_key ? 1 << 3 : 0;
/* Bits 8-15 */
cmd->cdw10 |= (uint32_t)type << 8;
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
}
int
nvme_ns_cmd_reservation_acquire(struct nvme_namespace *ns,
struct nvme_reservation_acquire_data *payload,
bool ignore_key,
enum nvme_reservation_acquire_action action,
enum nvme_reservation_type type,
nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct nvme_command *cmd;
req = nvme_allocate_request_contig(payload,
sizeof(struct nvme_reservation_acquire_data),
cb_fn, cb_arg);
if (req == NULL) {
return ENOMEM;
}
cmd = &req->cmd;
cmd->opc = NVME_OPC_RESERVATION_ACQUIRE;
cmd->nsid = ns->id;
/* Bits 0-2 */
cmd->cdw10 = action;
/* Bit 3 */
cmd->cdw10 |= ignore_key ? 1 << 3 : 0;
/* Bits 8-15 */
cmd->cdw10 |= (uint32_t)type << 8;
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
}
int
nvme_ns_cmd_reservation_report(struct nvme_namespace *ns, void *payload,
uint32_t len, nvme_cb_fn_t cb_fn, void *cb_arg)
{
uint32_t num_dwords;
struct nvme_request *req;
struct nvme_command *cmd;
if (len % 4)
return EINVAL;
num_dwords = len / 4;
req = nvme_allocate_request(payload, num_dwords, cb_fn, cb_arg);
if (req == NULL) {
return ENOMEM;
}
cmd = &req->cmd;
cmd->opc = NVME_OPC_RESERVATION_REPORT;
cmd->nsid = ns->id;
cmd->cdw10 = num_dwords;
nvme_ctrlr_submit_io_request(ns->ctrlr, req);
return 0;
}