Daniel Verkamp f0242ce745 nvmf: remove bb pools and replace with rte_malloc
The mempool functionality is never used at runtime - all bounce buffers
were immediately assigned to a rx_desc.

Change-Id: Ie2195059858e34b30b07e104739f046c13abc335
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
2016-06-27 09:13:34 -07:00

322 lines
9.7 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <arpa/inet.h>
#include <rte_config.h>
#include <rte_mempool.h>
#include "spdk/log.h"
#include "spdk/conf.h"
#include "nvmf.h"
#include "conf.h"
#include "conn.h"
#include "controller.h"
#include "port.h"
#include "host.h"
#include "rdma.h"
#include "subsystem_grp.h"
#include "spdk/trace.h"
SPDK_LOG_REGISTER_TRACE_FLAG("nvmf", SPDK_TRACE_NVMF)
#define MAX_SUBSYSTEMS 4
/*
* Define the global pool sizes for the maximum possible
* requests across all target connection queues.
*
* SPDK_NVMF_ADMINQ_POOL_SIZE: There is a single admin queue
* for each subsystem session.
*
* SPDK_NVMF_IOQ_POOL_SIZE: MaxConnectionsPerSession is config
* option that defines the total connection queues per session,
* so we -1 here to not account for the admin queue.
*
* SPDK_NVMF_DESC_POOL_SIZE: The total number of RDMA descriptors
* needed for all possible admin and I/O queue requests.
*/
#define SPDK_NVMF_ADMINQ_POOL_SIZE(spdk) (MAX_SUBSYSTEMS * \
(spdk->MaxSessionsPerSubsystem) * \
spdk->MaxQueueDepth)
#define SPDK_NVMF_IOQ_POOL_SIZE(spdk) (MAX_SUBSYSTEMS * \
(spdk->MaxSessionsPerSubsystem) * \
(spdk->MaxConnectionsPerSession - 1) * \
spdk->MaxQueueDepth)
#define SPDK_NVMF_DESC_POOL_SIZE(spdk) (SPDK_NVMF_ADMINQ_POOL_SIZE(spdk) + \
SPDK_NVMF_IOQ_POOL_SIZE(spdk))
#define SPDK_NVMF_MAX_CONNECTIONS(spdk) (MAX_SUBSYSTEMS * \
((spdk)->MaxSessionsPerSubsystem) * \
((spdk)->MaxConnectionsPerSession))
struct spdk_nvmf_globals g_nvmf_tgt;
extern struct rte_mempool *request_mempool;
static int
spdk_nvmf_initialize_pools(struct spdk_nvmf_globals *spdk_nvmf)
{
SPDK_NOTICELOG("\n*** NVMf Pool Creation ***\n");
/* create NVMe backend request pool */
spdk_nvmf->nvme_request_pool = rte_mempool_create("NVMe_Pool",
SPDK_NVMF_DESC_POOL_SIZE(spdk_nvmf),
spdk_nvme_request_size(),
128, 0,
NULL, NULL, NULL, NULL,
SOCKET_ID_ANY, 0);
if (!spdk_nvmf->nvme_request_pool) {
SPDK_ERRLOG("create NVMe request pool failed\n");
return -1;
}
/* set global pointer for this pool referenced by libraries */
request_mempool = spdk_nvmf->nvme_request_pool;
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "NVMe request_mempool %p, size 0x%u bytes\n",
request_mempool,
(unsigned int)(SPDK_NVMF_DESC_POOL_SIZE(spdk_nvmf) * spdk_nvme_request_size()));
return 0;
}
static int spdk_nvmf_check_pool(struct rte_mempool *pool, uint32_t count)
{
if (rte_mempool_count(pool) != count) {
SPDK_ERRLOG("rte_mempool_count(%s) == %d, should be %d\n",
pool->name, rte_mempool_count(pool), count);
return -1;
} else {
return 0;
}
}
int
spdk_nvmf_check_pools(void)
{
struct spdk_nvmf_globals *spdk_nvmf = &g_nvmf_tgt;
int rc = 0;
rc += spdk_nvmf_check_pool(spdk_nvmf->nvme_request_pool, SPDK_NVMF_DESC_POOL_SIZE(spdk_nvmf));
if (rc == 0) {
return 0;
} else {
return -1;
}
}
int
nvmf_tgt_init(char *nodebase, int max_in_capsule_data,
int max_sessions_per_subsystem,
int max_queue_depth, int max_conn_per_sess, int max_recv_seg_len, int listen_port)
{
int rc;
g_nvmf_tgt.nodebase = strdup(nodebase);
if (!g_nvmf_tgt.nodebase) {
SPDK_ERRLOG("No NodeBase provided\n");
return -EINVAL;
}
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "NodeBase: %s\n", g_nvmf_tgt.nodebase);
if (max_in_capsule_data >= 16 &&
max_in_capsule_data % 16 == 0 &&
max_in_capsule_data <= SPDK_NVMF_MAX_RECV_DATA_TRANSFER_SIZE) {
g_nvmf_tgt.MaxInCapsuleData = max_in_capsule_data;
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "MaxInCapsuleData: to %d\n",
g_nvmf_tgt.MaxInCapsuleData);
} else {
SPDK_ERRLOG("Invalid MaxInCapsuleData: %d\n", max_in_capsule_data);
return -EINVAL;
}
if (max_sessions_per_subsystem >= 1 &&
max_sessions_per_subsystem <= SPDK_NVMF_DEFAULT_MAX_SESSIONS_PER_SUBSYSTEM) {
g_nvmf_tgt.MaxSessionsPerSubsystem = max_sessions_per_subsystem;
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "MaxSessionsPerSubsystem: %d\n",
g_nvmf_tgt.MaxSessionsPerSubsystem);
} else {
SPDK_ERRLOG("Invalid MaxSessionsPerSubsystem: %d\n", max_sessions_per_subsystem);
return -EINVAL;
}
if (max_queue_depth >= 1 &&
max_queue_depth <= SPDK_NVMF_DEFAULT_MAX_QUEUE_DEPTH) {
g_nvmf_tgt.MaxQueueDepth = max_queue_depth;
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "MaxQueueDepth: %d\n",
g_nvmf_tgt.MaxQueueDepth);
} else {
SPDK_ERRLOG("Invalid MaxQueueDepth: %d\n", max_queue_depth);
return -EINVAL;
}
if (max_conn_per_sess >= 1 &&
max_conn_per_sess <= SPDK_NVMF_DEFAULT_MAX_CONNECTIONS_PER_SESSION) {
g_nvmf_tgt.MaxConnectionsPerSession = max_conn_per_sess;
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "MaxConnectionsPerSession: %d\n",
g_nvmf_tgt.MaxConnectionsPerSession);
} else {
SPDK_ERRLOG("Invalid MaxConnectionsPerSession: %d\n", max_conn_per_sess);
return -EINVAL;
}
g_nvmf_tgt.MaxRecvDataSegmentLength = max_recv_seg_len;
SPDK_TRACELOG(SPDK_TRACE_DEBUG, "MaxRecvDataSegmentLength %d\n",
g_nvmf_tgt.MaxRecvDataSegmentLength);
rc = pthread_mutex_init(&g_nvmf_tgt.mutex, NULL);
if (rc != 0) {
SPDK_ERRLOG("mutex_init() failed\n");
return -1;
}
/* init nvmf specific config options */
if (!g_nvmf_tgt.sin_port) {
g_nvmf_tgt.sin_port = htons(SPDK_NVMF_DEFAULT_SIN_PORT);
}
rc = spdk_nvmf_initialize_pools(&g_nvmf_tgt);
if (rc != 0) {
SPDK_ERRLOG("spdk_nvmf_initialize_pools() failed\n");
return rc;
}
return 0;
}
static int
nvmf_tgt_subsystem_initialize(void)
{
int rc;
/* initialize from configuration file */
rc = spdk_nvmf_parse_conf();
if (rc < 0) {
SPDK_ERRLOG("spdk_nvmf_parse_conf() failed\n");
return rc;
}
/* initialize with the NVMf transport */
rc = nvmf_rdma_init();
if (rc <= 0) {
SPDK_ERRLOG("nvmf_rdma_init() failed\n");
return rc;
}
/* initialize NVMe/NVMf backend */
SPDK_NOTICELOG("\n*** NVMf Library Init ***\n");
rc = nvmf_initialize();
if (rc < 0) {
SPDK_ERRLOG("nvmf_initialize() failed\n");
return rc;
}
rc = spdk_nvmf_init_nvme();
if (rc < 0) {
fprintf(stderr, "NVMf could not initialize NVMe devices.\n");
return -1;
}
rc = spdk_initialize_nvmf_subsystems();
if (rc < 0) {
SPDK_ERRLOG("spdk_initialize_nvmf_subsystems failed\n");
return rc;
}
rc = spdk_initialize_nvmf_conns(SPDK_NVMF_MAX_CONNECTIONS(&g_nvmf_tgt));
if (rc < 0) {
SPDK_ERRLOG("spdk_initialize_nvmf_conns() failed\n");
return rc;
}
return rc;
}
static int
nvmf_tgt_subsystem_fini(void)
{
spdk_shutdown_nvmf_subsystems();
nvmf_shutdown();
spdk_nvmf_host_destroy_all();
spdk_nvmf_port_destroy_all();
free(g_nvmf_tgt.nodebase);
pthread_mutex_destroy(&g_nvmf_tgt.mutex);
return 0;
}
int
nvmf_initialize(void)
{
if (request_mempool == NULL) {
fprintf(stderr, "NVMf application has not created request mempool!\n");
return -1;
}
return 0;
}
void
nvmf_shutdown(void)
{
SPDK_TRACELOG(SPDK_TRACE_NVMF, "nvmf_shutdown\n");
spdk_nvmf_shutdown_nvme();
}
SPDK_SUBSYSTEM_REGISTER(nvmf, nvmf_tgt_subsystem_initialize, nvmf_tgt_subsystem_fini, NULL)
SPDK_TRACE_REGISTER_FN(nvmf_trace)
{
spdk_trace_register_object(OBJECT_NVMF_IO, 'r');
spdk_trace_register_description("NVMF_IO_START", "", TRACE_NVMF_IO_START,
OWNER_NONE, OBJECT_NVMF_IO, 1, 0, 0, "");
spdk_trace_register_description("NVMF_RDMA_READ_START", "", TRACE_RDMA_READ_START,
OWNER_NONE, OBJECT_NVMF_IO, 0, 0, 0, "");
spdk_trace_register_description("NVMF_RDMA_WRITE_START", "", TRACE_RDMA_WRITE_START,
OWNER_NONE, OBJECT_NVMF_IO, 0, 0, 0, "");
spdk_trace_register_description("NVMF_RDMA_READ_COMPLETE", "", TRACE_RDMA_READ_COMPLETE,
OWNER_NONE, OBJECT_NVMF_IO, 0, 0, 0, "");
spdk_trace_register_description("NVMF_RDMA_WRITE_COMPLETE", "", TRACE_RDMA_WRITE_COMPLETE,
OWNER_NONE, OBJECT_NVMF_IO, 0, 0, 0, "");
spdk_trace_register_description("NVMF_LIB_READ_START", "", TRACE_NVMF_LIB_READ_START,
OWNER_NONE, OBJECT_NVMF_IO, 0, 0, 0, "");
spdk_trace_register_description("NVMF_LIB_WRITE_START", "", TRACE_NVMF_LIB_WRITE_START,
OWNER_NONE, OBJECT_NVMF_IO, 0, 0, 0, "");
spdk_trace_register_description("NVMF_LIB_COMPLETE", "", TRACE_NVMF_LIB_COMPLETE,
OWNER_NONE, OBJECT_NVMF_IO, 0, 0, 0, "");
spdk_trace_register_description("NVMF_IO_COMPLETION_DONE", "", TRACE_NVMF_IO_COMPLETE,
OWNER_NONE, OBJECT_NVMF_IO, 0, 0, 0, "");
}