b10fbdf58f
Since the connect will be completed asynchronously, we need to keep the pointer around so we can access (and free it!) later when the command completes. Also change the code to poll on the status using the new nvme_wait_for_completion_poll(), as prep for upcoming patches. Signed-off-by: Jim Harris <james.r.harris@intel.com> Signed-off-by: Konrad Sztyber <konrad.sztyber@intel.com> Change-Id: I28add8f967fd000afed1e50e491a16ea9da16c22 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/8603 Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com> Community-CI: Mellanox Build Bot Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com>
1587 lines
41 KiB
C
1587 lines
41 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/nvmf_spec.h"
|
|
#include "spdk/string.h"
|
|
#include "spdk/env.h"
|
|
#include "nvme_internal.h"
|
|
#include "nvme_io_msg.h"
|
|
|
|
#define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"
|
|
|
|
struct nvme_driver *g_spdk_nvme_driver;
|
|
pid_t g_spdk_nvme_pid;
|
|
|
|
/* gross timeout of 180 seconds in milliseconds */
|
|
static int g_nvme_driver_timeout_ms = 3 * 60 * 1000;
|
|
|
|
/* Per-process attached controller list */
|
|
static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_attached_ctrlrs =
|
|
TAILQ_HEAD_INITIALIZER(g_nvme_attached_ctrlrs);
|
|
|
|
/* Returns true if ctrlr should be stored on the multi-process shared_attached_ctrlrs list */
|
|
static bool
|
|
nvme_ctrlr_shared(const struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE;
|
|
}
|
|
|
|
void
|
|
nvme_ctrlr_connected(struct spdk_nvme_probe_ctx *probe_ctx,
|
|
struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_detach_async_finish(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
if (nvme_ctrlr_shared(ctrlr)) {
|
|
TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
|
|
} else {
|
|
TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq);
|
|
}
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_detach_async(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct nvme_ctrlr_detach_ctx **_ctx)
|
|
{
|
|
struct nvme_ctrlr_detach_ctx *ctx;
|
|
int ref_count;
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
ref_count = nvme_ctrlr_get_ref_count(ctrlr);
|
|
assert(ref_count > 0);
|
|
|
|
if (ref_count == 1) {
|
|
/* This is the last reference to the controller, so we need to
|
|
* allocate a context to destruct it.
|
|
*/
|
|
ctx = calloc(1, sizeof(*ctx));
|
|
if (ctx == NULL) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
ctx->ctrlr = ctrlr;
|
|
ctx->cb_fn = nvme_ctrlr_detach_async_finish;
|
|
|
|
nvme_ctrlr_proc_put_ref(ctrlr);
|
|
|
|
nvme_io_msg_ctrlr_detach(ctrlr);
|
|
|
|
nvme_ctrlr_destruct_async(ctrlr, ctx);
|
|
|
|
*_ctx = ctx;
|
|
} else {
|
|
nvme_ctrlr_proc_put_ref(ctrlr);
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_ctrlr_detach_poll_async(struct nvme_ctrlr_detach_ctx *ctx)
|
|
{
|
|
int rc;
|
|
|
|
rc = nvme_ctrlr_destruct_poll_async(ctx->ctrlr, ctx);
|
|
if (rc == -EAGAIN) {
|
|
return -EAGAIN;
|
|
}
|
|
|
|
free(ctx);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
struct nvme_ctrlr_detach_ctx *ctx = NULL;
|
|
int rc;
|
|
|
|
rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
|
|
if (rc != 0) {
|
|
return rc;
|
|
} else if (ctx == NULL) {
|
|
/* ctrlr was detached from the caller process but any other process
|
|
* still attaches it.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
while (1) {
|
|
rc = nvme_ctrlr_detach_poll_async(ctx);
|
|
if (rc != -EAGAIN) {
|
|
break;
|
|
}
|
|
nvme_delay(1000);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_detach_async(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_detach_ctx **_detach_ctx)
|
|
{
|
|
struct spdk_nvme_detach_ctx *detach_ctx;
|
|
struct nvme_ctrlr_detach_ctx *ctx = NULL;
|
|
int rc;
|
|
|
|
if (ctrlr == NULL || _detach_ctx == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Use a context header to poll detachement for multiple controllers.
|
|
* Allocate an new one if not allocated yet, or use the passed one otherwise.
|
|
*/
|
|
detach_ctx = *_detach_ctx;
|
|
if (detach_ctx == NULL) {
|
|
detach_ctx = calloc(1, sizeof(*detach_ctx));
|
|
if (detach_ctx == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
TAILQ_INIT(&detach_ctx->head);
|
|
}
|
|
|
|
rc = nvme_ctrlr_detach_async(ctrlr, &ctx);
|
|
if (rc != 0 || ctx == NULL) {
|
|
/* If this detach failed and the context header is empty, it means we just
|
|
* allocated the header and need to free it before returning.
|
|
*/
|
|
if (TAILQ_EMPTY(&detach_ctx->head)) {
|
|
free(detach_ctx);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Append a context for this detachment to the context header. */
|
|
TAILQ_INSERT_TAIL(&detach_ctx->head, ctx, link);
|
|
|
|
*_detach_ctx = detach_ctx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_detach_poll_async(struct spdk_nvme_detach_ctx *detach_ctx)
|
|
{
|
|
struct nvme_ctrlr_detach_ctx *ctx, *tmp_ctx;
|
|
int rc;
|
|
|
|
if (detach_ctx == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(ctx, &detach_ctx->head, link, tmp_ctx) {
|
|
TAILQ_REMOVE(&detach_ctx->head, ctx, link);
|
|
|
|
rc = nvme_ctrlr_detach_poll_async(ctx);
|
|
if (rc == -EAGAIN) {
|
|
/* If not -EAGAIN, ctx was freed by nvme_ctrlr_detach_poll_async(). */
|
|
TAILQ_INSERT_HEAD(&detach_ctx->head, ctx, link);
|
|
}
|
|
}
|
|
|
|
if (!TAILQ_EMPTY(&detach_ctx->head)) {
|
|
return -EAGAIN;
|
|
}
|
|
|
|
free(detach_ctx);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
spdk_nvme_detach_poll(struct spdk_nvme_detach_ctx *detach_ctx)
|
|
{
|
|
while (detach_ctx && spdk_nvme_detach_poll_async(detach_ctx) == -EAGAIN) {
|
|
;
|
|
}
|
|
}
|
|
|
|
void
|
|
nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_completion_poll_status *status = arg;
|
|
|
|
if (status->timed_out) {
|
|
/* There is no routine waiting for the completion of this request, free allocated memory */
|
|
spdk_free(status->dma_data);
|
|
free(status);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Copy status into the argument passed by the caller, so that
|
|
* the caller can check the status to determine if the
|
|
* the request passed or failed.
|
|
*/
|
|
memcpy(&status->cpl, cpl, sizeof(*cpl));
|
|
status->done = true;
|
|
}
|
|
|
|
static void
|
|
dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
|
|
{
|
|
}
|
|
|
|
int
|
|
nvme_wait_for_completion_robust_lock_timeout_poll(struct spdk_nvme_qpair *qpair,
|
|
struct nvme_completion_poll_status *status,
|
|
pthread_mutex_t *robust_mutex)
|
|
{
|
|
int rc;
|
|
|
|
if (robust_mutex) {
|
|
nvme_robust_mutex_lock(robust_mutex);
|
|
}
|
|
|
|
if (qpair->poll_group) {
|
|
rc = (int)spdk_nvme_poll_group_process_completions(qpair->poll_group->group, 0,
|
|
dummy_disconnected_qpair_cb);
|
|
} else {
|
|
rc = spdk_nvme_qpair_process_completions(qpair, 0);
|
|
}
|
|
|
|
if (robust_mutex) {
|
|
nvme_robust_mutex_unlock(robust_mutex);
|
|
}
|
|
|
|
if (rc < 0) {
|
|
status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
|
|
status->cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
|
|
goto error;
|
|
}
|
|
|
|
if (!status->done && status->timeout_tsc && spdk_get_ticks() > status->timeout_tsc) {
|
|
goto error;
|
|
}
|
|
|
|
if (qpair->ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
union spdk_nvme_csts_register csts = spdk_nvme_ctrlr_get_regs_csts(qpair->ctrlr);
|
|
if (csts.raw == SPDK_NVME_INVALID_REGISTER_VALUE) {
|
|
status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
|
|
status->cpl.status.sc = SPDK_NVME_SC_INTERNAL_DEVICE_ERROR;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (!status->done) {
|
|
return -EAGAIN;
|
|
} else if (spdk_nvme_cpl_is_error(&status->cpl)) {
|
|
return -EIO;
|
|
} else {
|
|
return 0;
|
|
}
|
|
error:
|
|
/* Either transport error occurred or we've timed out. Either way, if the response hasn't
|
|
* been received yet, mark the command as timed out, so the status gets freed when the
|
|
* command is completed or aborted.
|
|
*/
|
|
if (!status->done) {
|
|
status->timed_out = true;
|
|
}
|
|
|
|
return -ECANCELED;
|
|
}
|
|
|
|
/**
|
|
* Poll qpair for completions until a command completes.
|
|
*
|
|
* \param qpair queue to poll
|
|
* \param status completion status. The user must fill this structure with zeroes before calling
|
|
* this function
|
|
* \param robust_mutex optional robust mutex to lock while polling qpair
|
|
* \param timeout_in_usecs optional timeout
|
|
*
|
|
* \return 0 if command completed without error,
|
|
* -EIO if command completed with error,
|
|
* -ECANCELED if command is not completed due to transport/device error or time expired
|
|
*
|
|
* The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
|
|
* and status as the callback argument.
|
|
*/
|
|
int
|
|
nvme_wait_for_completion_robust_lock_timeout(
|
|
struct spdk_nvme_qpair *qpair,
|
|
struct nvme_completion_poll_status *status,
|
|
pthread_mutex_t *robust_mutex,
|
|
uint64_t timeout_in_usecs)
|
|
{
|
|
int rc;
|
|
|
|
if (timeout_in_usecs) {
|
|
status->timeout_tsc = spdk_get_ticks() + timeout_in_usecs *
|
|
spdk_get_ticks_hz() / SPDK_SEC_TO_USEC;
|
|
} else {
|
|
status->timeout_tsc = 0;
|
|
}
|
|
|
|
status->cpl.status_raw = 0;
|
|
do {
|
|
rc = nvme_wait_for_completion_robust_lock_timeout_poll(qpair, status, robust_mutex);
|
|
} while (rc == -EAGAIN);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Poll qpair for completions until a command completes.
|
|
*
|
|
* \param qpair queue to poll
|
|
* \param status completion status. The user must fill this structure with zeroes before calling
|
|
* this function
|
|
* \param robust_mutex optional robust mutex to lock while polling qpair
|
|
*
|
|
* \return 0 if command completed without error,
|
|
* -EIO if command completed with error,
|
|
* -ECANCELED if command is not completed due to transport/device error
|
|
*
|
|
* The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
|
|
* and status as the callback argument.
|
|
*/
|
|
int
|
|
nvme_wait_for_completion_robust_lock(
|
|
struct spdk_nvme_qpair *qpair,
|
|
struct nvme_completion_poll_status *status,
|
|
pthread_mutex_t *robust_mutex)
|
|
{
|
|
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, robust_mutex, 0);
|
|
}
|
|
|
|
int
|
|
nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
|
|
struct nvme_completion_poll_status *status)
|
|
{
|
|
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* Poll qpair for completions until a command completes.
|
|
*
|
|
* \param qpair queue to poll
|
|
* \param status completion status. The user must fill this structure with zeroes before calling
|
|
* this function
|
|
* \param timeout_in_usecs optional timeout
|
|
*
|
|
* \return 0 if command completed without error,
|
|
* -EIO if command completed with error,
|
|
* -ECANCELED if command is not completed due to transport/device error or time expired
|
|
*
|
|
* The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
|
|
* and status as the callback argument.
|
|
*/
|
|
int
|
|
nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
|
|
struct nvme_completion_poll_status *status,
|
|
uint64_t timeout_in_usecs)
|
|
{
|
|
return nvme_wait_for_completion_robust_lock_timeout(qpair, status, NULL, timeout_in_usecs);
|
|
}
|
|
|
|
static void
|
|
nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_request *req = arg;
|
|
enum spdk_nvme_data_transfer xfer;
|
|
|
|
if (req->user_buffer && req->payload_size) {
|
|
/* Copy back to the user buffer and free the contig buffer */
|
|
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
|
|
xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
|
|
if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
|
|
xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
|
|
assert(req->pid == getpid());
|
|
memcpy(req->user_buffer, req->payload.contig_or_cb_arg, req->payload_size);
|
|
}
|
|
|
|
spdk_free(req->payload.contig_or_cb_arg);
|
|
}
|
|
|
|
/* Call the user's original callback now that the buffer has been copied */
|
|
req->user_cb_fn(req->user_cb_arg, cpl);
|
|
}
|
|
|
|
/**
|
|
* Allocate a request as well as a DMA-capable buffer to copy to/from the user's buffer.
|
|
*
|
|
* This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
|
|
* where the overhead of a copy is not a problem.
|
|
*/
|
|
struct nvme_request *
|
|
nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
|
|
void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
|
|
void *cb_arg, bool host_to_controller)
|
|
{
|
|
struct nvme_request *req;
|
|
void *dma_buffer = NULL;
|
|
|
|
if (buffer && payload_size) {
|
|
dma_buffer = spdk_zmalloc(payload_size, 4096, NULL,
|
|
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
|
|
if (!dma_buffer) {
|
|
return NULL;
|
|
}
|
|
|
|
if (host_to_controller) {
|
|
memcpy(dma_buffer, buffer, payload_size);
|
|
}
|
|
}
|
|
|
|
req = nvme_allocate_request_contig(qpair, dma_buffer, payload_size, nvme_user_copy_cmd_complete,
|
|
NULL);
|
|
if (!req) {
|
|
spdk_free(dma_buffer);
|
|
return NULL;
|
|
}
|
|
|
|
req->user_cb_fn = cb_fn;
|
|
req->user_cb_arg = cb_arg;
|
|
req->user_buffer = buffer;
|
|
req->cb_arg = req;
|
|
|
|
return req;
|
|
}
|
|
|
|
/**
|
|
* Check if a request has exceeded the controller timeout.
|
|
*
|
|
* \param req request to check for timeout.
|
|
* \param cid command ID for command submitted by req (will be passed to timeout_cb_fn)
|
|
* \param active_proc per-process data for the controller associated with req
|
|
* \param now_tick current time from spdk_get_ticks()
|
|
* \return 0 if requests submitted more recently than req should still be checked for timeouts, or
|
|
* 1 if requests newer than req need not be checked.
|
|
*
|
|
* The request's timeout callback will be called if needed; the caller is only responsible for
|
|
* calling this function on each outstanding request.
|
|
*/
|
|
int
|
|
nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
|
|
struct spdk_nvme_ctrlr_process *active_proc,
|
|
uint64_t now_tick)
|
|
{
|
|
struct spdk_nvme_qpair *qpair = req->qpair;
|
|
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
|
|
uint64_t timeout_ticks = nvme_qpair_is_admin_queue(qpair) ?
|
|
active_proc->timeout_admin_ticks : active_proc->timeout_io_ticks;
|
|
|
|
assert(active_proc->timeout_cb_fn != NULL);
|
|
|
|
if (req->timed_out || req->submit_tick == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (req->pid != g_spdk_nvme_pid) {
|
|
return 0;
|
|
}
|
|
|
|
if (nvme_qpair_is_admin_queue(qpair) &&
|
|
req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
|
|
return 0;
|
|
}
|
|
|
|
if (req->submit_tick + timeout_ticks > now_tick) {
|
|
return 1;
|
|
}
|
|
|
|
req->timed_out = true;
|
|
|
|
/*
|
|
* We don't want to expose the admin queue to the user,
|
|
* so when we're timing out admin commands set the
|
|
* qpair to NULL.
|
|
*/
|
|
active_proc->timeout_cb_fn(active_proc->timeout_cb_arg, ctrlr,
|
|
nvme_qpair_is_admin_queue(qpair) ? NULL : qpair,
|
|
cid);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
|
|
{
|
|
int rc = 0;
|
|
|
|
#ifdef __FreeBSD__
|
|
pthread_mutex_init(mtx, NULL);
|
|
#else
|
|
pthread_mutexattr_t attr;
|
|
|
|
if (pthread_mutexattr_init(&attr)) {
|
|
return -1;
|
|
}
|
|
if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
|
|
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
|
|
pthread_mutex_init(mtx, &attr)) {
|
|
rc = -1;
|
|
}
|
|
pthread_mutexattr_destroy(&attr);
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
nvme_driver_init(void)
|
|
{
|
|
static pthread_mutex_t g_init_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
int ret = 0;
|
|
/* Any socket ID */
|
|
int socket_id = -1;
|
|
|
|
/* Use a special process-private mutex to ensure the global
|
|
* nvme driver object (g_spdk_nvme_driver) gets initialized by
|
|
* only one thread. Once that object is established and its
|
|
* mutex is initialized, we can unlock this mutex and use that
|
|
* one instead.
|
|
*/
|
|
pthread_mutex_lock(&g_init_mutex);
|
|
|
|
/* Each process needs its own pid. */
|
|
g_spdk_nvme_pid = getpid();
|
|
|
|
/*
|
|
* Only one thread from one process will do this driver init work.
|
|
* The primary process will reserve the shared memory and do the
|
|
* initialization.
|
|
* The secondary process will lookup the existing reserved memory.
|
|
*/
|
|
if (spdk_process_is_primary()) {
|
|
/* The unique named memzone already reserved. */
|
|
if (g_spdk_nvme_driver != NULL) {
|
|
pthread_mutex_unlock(&g_init_mutex);
|
|
return 0;
|
|
} else {
|
|
g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
|
|
sizeof(struct nvme_driver), socket_id,
|
|
SPDK_MEMZONE_NO_IOVA_CONTIG);
|
|
}
|
|
|
|
if (g_spdk_nvme_driver == NULL) {
|
|
SPDK_ERRLOG("primary process failed to reserve memory\n");
|
|
pthread_mutex_unlock(&g_init_mutex);
|
|
return -1;
|
|
}
|
|
} else {
|
|
g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);
|
|
|
|
/* The unique named memzone already reserved by the primary process. */
|
|
if (g_spdk_nvme_driver != NULL) {
|
|
int ms_waited = 0;
|
|
|
|
/* Wait the nvme driver to get initialized. */
|
|
while ((g_spdk_nvme_driver->initialized == false) &&
|
|
(ms_waited < g_nvme_driver_timeout_ms)) {
|
|
ms_waited++;
|
|
nvme_delay(1000); /* delay 1ms */
|
|
}
|
|
if (g_spdk_nvme_driver->initialized == false) {
|
|
SPDK_ERRLOG("timeout waiting for primary process to init\n");
|
|
pthread_mutex_unlock(&g_init_mutex);
|
|
return -1;
|
|
}
|
|
} else {
|
|
SPDK_ERRLOG("primary process is not started yet\n");
|
|
pthread_mutex_unlock(&g_init_mutex);
|
|
return -1;
|
|
}
|
|
|
|
pthread_mutex_unlock(&g_init_mutex);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* At this moment, only one thread from the primary process will do
|
|
* the g_spdk_nvme_driver initialization
|
|
*/
|
|
assert(spdk_process_is_primary());
|
|
|
|
ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
|
|
if (ret != 0) {
|
|
SPDK_ERRLOG("failed to initialize mutex\n");
|
|
spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
|
|
pthread_mutex_unlock(&g_init_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/* The lock in the shared g_spdk_nvme_driver object is now ready to
|
|
* be used - so we can unlock the g_init_mutex here.
|
|
*/
|
|
pthread_mutex_unlock(&g_init_mutex);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
g_spdk_nvme_driver->initialized = false;
|
|
g_spdk_nvme_driver->hotplug_fd = spdk_pci_event_listen();
|
|
if (g_spdk_nvme_driver->hotplug_fd < 0) {
|
|
SPDK_DEBUGLOG(nvme, "Failed to open uevent netlink socket\n");
|
|
}
|
|
|
|
TAILQ_INIT(&g_spdk_nvme_driver->shared_attached_ctrlrs);
|
|
|
|
spdk_uuid_generate(&g_spdk_nvme_driver->default_extended_host_id);
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This function must only be called while holding g_spdk_nvme_driver->lock */
|
|
int
|
|
nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_probe_ctx *probe_ctx, void *devhandle)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
struct spdk_nvme_ctrlr_opts opts;
|
|
|
|
assert(trid != NULL);
|
|
|
|
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
|
|
|
|
if (!probe_ctx->probe_cb || probe_ctx->probe_cb(probe_ctx->cb_ctx, trid, &opts)) {
|
|
ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid);
|
|
if (ctrlr) {
|
|
/* This ctrlr already exists. */
|
|
|
|
if (ctrlr->is_destructed) {
|
|
/* This ctrlr is being destructed asynchronously. */
|
|
SPDK_ERRLOG("NVMe controller for SSD: %s is being destructed\n",
|
|
trid->traddr);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Increase the ref count before calling attach_cb() as the user may
|
|
* call nvme_detach() immediately. */
|
|
nvme_ctrlr_proc_get_ref(ctrlr);
|
|
|
|
if (probe_ctx->attach_cb) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle);
|
|
if (ctrlr == NULL) {
|
|
SPDK_ERRLOG("Failed to construct NVMe controller for SSD: %s\n", trid->traddr);
|
|
return -1;
|
|
}
|
|
ctrlr->remove_cb = probe_ctx->remove_cb;
|
|
ctrlr->cb_ctx = probe_ctx->cb_ctx;
|
|
|
|
nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
|
|
TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_poll_internal(struct spdk_nvme_ctrlr *ctrlr,
|
|
struct spdk_nvme_probe_ctx *probe_ctx)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = nvme_ctrlr_process_init(ctrlr);
|
|
|
|
if (rc) {
|
|
/* Controller failed to initialize. */
|
|
TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
|
|
SPDK_ERRLOG("Failed to initialize SSD: %s\n", ctrlr->trid.traddr);
|
|
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
|
|
nvme_ctrlr_fail(ctrlr, false);
|
|
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
|
|
nvme_ctrlr_destruct(ctrlr);
|
|
return;
|
|
}
|
|
|
|
if (ctrlr->state != NVME_CTRLR_STATE_READY) {
|
|
return;
|
|
}
|
|
|
|
STAILQ_INIT(&ctrlr->io_producers);
|
|
|
|
/*
|
|
* Controller has been initialized.
|
|
* Move it to the attached_ctrlrs list.
|
|
*/
|
|
TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
if (nvme_ctrlr_shared(ctrlr)) {
|
|
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, ctrlr, tailq);
|
|
}
|
|
|
|
/*
|
|
* Increase the ref count before calling attach_cb() as the user may
|
|
* call nvme_detach() immediately.
|
|
*/
|
|
nvme_ctrlr_proc_get_ref(ctrlr);
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
if (probe_ctx->attach_cb) {
|
|
probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
|
|
}
|
|
}
|
|
|
|
static int
|
|
nvme_init_controllers(struct spdk_nvme_probe_ctx *probe_ctx)
|
|
{
|
|
int rc = 0;
|
|
|
|
while (true) {
|
|
rc = spdk_nvme_probe_poll_async(probe_ctx);
|
|
if (rc != -EAGAIN) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* This function must not be called while holding g_spdk_nvme_driver->lock */
|
|
static struct spdk_nvme_ctrlr *
|
|
nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid);
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
return ctrlr;
|
|
}
|
|
|
|
/* This function must be called while holding g_spdk_nvme_driver->lock */
|
|
struct spdk_nvme_ctrlr *
|
|
nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
|
|
/* Search per-process list */
|
|
TAILQ_FOREACH(ctrlr, &g_nvme_attached_ctrlrs, tailq) {
|
|
if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
|
|
return ctrlr;
|
|
}
|
|
}
|
|
|
|
/* Search multi-process shared list */
|
|
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
|
|
if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
|
|
return ctrlr;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* This function must only be called while holding g_spdk_nvme_driver->lock */
|
|
static int
|
|
nvme_probe_internal(struct spdk_nvme_probe_ctx *probe_ctx,
|
|
bool direct_connect)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
|
|
|
|
spdk_nvme_trid_populate_transport(&probe_ctx->trid, probe_ctx->trid.trtype);
|
|
if (!spdk_nvme_transport_available_by_name(probe_ctx->trid.trstring)) {
|
|
SPDK_ERRLOG("NVMe trtype %u not available\n", probe_ctx->trid.trtype);
|
|
return -1;
|
|
}
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
rc = nvme_transport_ctrlr_scan(probe_ctx, direct_connect);
|
|
if (rc != 0) {
|
|
SPDK_ERRLOG("NVMe ctrlr scan failed\n");
|
|
TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
|
|
TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
|
|
nvme_transport_ctrlr_destruct(ctrlr);
|
|
}
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Probe controllers on the shared_attached_ctrlrs list
|
|
*/
|
|
if (!spdk_process_is_primary() && (probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) {
|
|
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
|
|
/* Do not attach other ctrlrs if user specify a valid trid */
|
|
if ((strlen(probe_ctx->trid.traddr) != 0) &&
|
|
(spdk_nvme_transport_id_compare(&probe_ctx->trid, &ctrlr->trid))) {
|
|
continue;
|
|
}
|
|
|
|
/* Do not attach if we failed to initialize it in this process */
|
|
if (nvme_ctrlr_get_current_process(ctrlr) == NULL) {
|
|
continue;
|
|
}
|
|
|
|
nvme_ctrlr_proc_get_ref(ctrlr);
|
|
|
|
/*
|
|
* Unlock while calling attach_cb() so the user can call other functions
|
|
* that may take the driver lock, like nvme_detach().
|
|
*/
|
|
if (probe_ctx->attach_cb) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_probe_ctx_init(struct spdk_nvme_probe_ctx *probe_ctx,
|
|
const struct spdk_nvme_transport_id *trid,
|
|
void *cb_ctx,
|
|
spdk_nvme_probe_cb probe_cb,
|
|
spdk_nvme_attach_cb attach_cb,
|
|
spdk_nvme_remove_cb remove_cb)
|
|
{
|
|
probe_ctx->trid = *trid;
|
|
probe_ctx->cb_ctx = cb_ctx;
|
|
probe_ctx->probe_cb = probe_cb;
|
|
probe_ctx->attach_cb = attach_cb;
|
|
probe_ctx->remove_cb = remove_cb;
|
|
TAILQ_INIT(&probe_ctx->init_ctrlrs);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
|
|
spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
|
|
spdk_nvme_remove_cb remove_cb)
|
|
{
|
|
struct spdk_nvme_transport_id trid_pcie;
|
|
struct spdk_nvme_probe_ctx *probe_ctx;
|
|
|
|
if (trid == NULL) {
|
|
memset(&trid_pcie, 0, sizeof(trid_pcie));
|
|
spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
|
|
trid = &trid_pcie;
|
|
}
|
|
|
|
probe_ctx = spdk_nvme_probe_async(trid, cb_ctx, probe_cb,
|
|
attach_cb, remove_cb);
|
|
if (!probe_ctx) {
|
|
SPDK_ERRLOG("Create probe context failed\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Keep going even if one or more nvme_attach() calls failed,
|
|
* but maintain the value of rc to signal errors when we return.
|
|
*/
|
|
return nvme_init_controllers(probe_ctx);
|
|
}
|
|
|
|
static bool
|
|
nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
struct spdk_nvme_ctrlr_opts *requested_opts = cb_ctx;
|
|
|
|
assert(requested_opts);
|
|
memcpy(opts, requested_opts, sizeof(*opts));
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
nvme_ctrlr_opts_init(struct spdk_nvme_ctrlr_opts *opts,
|
|
const struct spdk_nvme_ctrlr_opts *opts_user,
|
|
size_t opts_size_user)
|
|
{
|
|
assert(opts);
|
|
assert(opts_user);
|
|
|
|
spdk_nvme_ctrlr_get_default_ctrlr_opts(opts, opts_size_user);
|
|
|
|
#define FIELD_OK(field) \
|
|
offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= (opts->opts_size)
|
|
|
|
#define SET_FIELD(field) \
|
|
if (FIELD_OK(field)) { \
|
|
opts->field = opts_user->field; \
|
|
}
|
|
|
|
#define SET_FIELD_ARRAY(field) \
|
|
if (FIELD_OK(field)) { \
|
|
memcpy(opts->field, opts_user->field, sizeof(opts_user->field)); \
|
|
}
|
|
|
|
SET_FIELD(num_io_queues);
|
|
SET_FIELD(use_cmb_sqs);
|
|
SET_FIELD(no_shn_notification);
|
|
SET_FIELD(arb_mechanism);
|
|
SET_FIELD(arbitration_burst);
|
|
SET_FIELD(low_priority_weight);
|
|
SET_FIELD(medium_priority_weight);
|
|
SET_FIELD(high_priority_weight);
|
|
SET_FIELD(keep_alive_timeout_ms);
|
|
SET_FIELD(transport_retry_count);
|
|
SET_FIELD(io_queue_size);
|
|
SET_FIELD_ARRAY(hostnqn);
|
|
SET_FIELD(io_queue_requests);
|
|
SET_FIELD_ARRAY(src_addr);
|
|
SET_FIELD_ARRAY(src_svcid);
|
|
SET_FIELD_ARRAY(host_id);
|
|
SET_FIELD_ARRAY(extended_host_id);
|
|
SET_FIELD(command_set);
|
|
SET_FIELD(admin_timeout_ms);
|
|
SET_FIELD(header_digest);
|
|
SET_FIELD(data_digest);
|
|
SET_FIELD(disable_error_logging);
|
|
SET_FIELD(transport_ack_timeout);
|
|
SET_FIELD(admin_queue_size);
|
|
SET_FIELD(fabrics_connect_timeout_us);
|
|
SET_FIELD(disable_read_ana_log_page);
|
|
|
|
/* Do not remove this statement. When you add a new field, please do update this
|
|
* assert with the correct size. And do not forget to add a new SET_FIELD statement
|
|
* related with your new added field. */
|
|
SPDK_STATIC_ASSERT(sizeof(struct spdk_nvme_ctrlr_opts) == 616, "Incorrect size");
|
|
|
|
#undef FIELD_OK
|
|
#undef SET_FIELD
|
|
#undef SET_FIELD_ARRAY
|
|
}
|
|
|
|
struct spdk_nvme_ctrlr *
|
|
spdk_nvme_connect(const struct spdk_nvme_transport_id *trid,
|
|
const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_ctrlr *ctrlr = NULL;
|
|
struct spdk_nvme_probe_ctx *probe_ctx;
|
|
struct spdk_nvme_ctrlr_opts *opts_local_p = NULL;
|
|
struct spdk_nvme_ctrlr_opts opts_local;
|
|
|
|
if (trid == NULL) {
|
|
SPDK_ERRLOG("No transport ID specified\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (opts) {
|
|
opts_local_p = &opts_local;
|
|
nvme_ctrlr_opts_init(opts_local_p, opts, opts_size);
|
|
}
|
|
|
|
probe_ctx = spdk_nvme_connect_async(trid, opts_local_p, NULL);
|
|
if (!probe_ctx) {
|
|
SPDK_ERRLOG("Create probe context failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
rc = nvme_init_controllers(probe_ctx);
|
|
if (rc != 0) {
|
|
return NULL;
|
|
}
|
|
|
|
ctrlr = nvme_get_ctrlr_by_trid(trid);
|
|
|
|
return ctrlr;
|
|
}
|
|
|
|
void
|
|
spdk_nvme_trid_populate_transport(struct spdk_nvme_transport_id *trid,
|
|
enum spdk_nvme_transport_type trtype)
|
|
{
|
|
const char *trstring = "";
|
|
|
|
trid->trtype = trtype;
|
|
switch (trtype) {
|
|
case SPDK_NVME_TRANSPORT_FC:
|
|
trstring = SPDK_NVME_TRANSPORT_NAME_FC;
|
|
break;
|
|
case SPDK_NVME_TRANSPORT_PCIE:
|
|
trstring = SPDK_NVME_TRANSPORT_NAME_PCIE;
|
|
break;
|
|
case SPDK_NVME_TRANSPORT_RDMA:
|
|
trstring = SPDK_NVME_TRANSPORT_NAME_RDMA;
|
|
break;
|
|
case SPDK_NVME_TRANSPORT_TCP:
|
|
trstring = SPDK_NVME_TRANSPORT_NAME_TCP;
|
|
break;
|
|
case SPDK_NVME_TRANSPORT_VFIOUSER:
|
|
trstring = SPDK_NVME_TRANSPORT_NAME_VFIOUSER;
|
|
break;
|
|
case SPDK_NVME_TRANSPORT_CUSTOM:
|
|
trstring = SPDK_NVME_TRANSPORT_NAME_CUSTOM;
|
|
break;
|
|
default:
|
|
SPDK_ERRLOG("no available transports\n");
|
|
assert(0);
|
|
return;
|
|
}
|
|
snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
|
|
{
|
|
int len, i, rc;
|
|
|
|
if (trstring == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
len = strnlen(trstring, SPDK_NVMF_TRSTRING_MAX_LEN);
|
|
if (len == SPDK_NVMF_TRSTRING_MAX_LEN) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
|
|
/* cast official trstring to uppercase version of input. */
|
|
for (i = 0; i < len; i++) {
|
|
trid->trstring[i] = toupper(trid->trstring[i]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str)
|
|
{
|
|
if (trtype == NULL || str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (strcasecmp(str, "PCIe") == 0) {
|
|
*trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
} else if (strcasecmp(str, "RDMA") == 0) {
|
|
*trtype = SPDK_NVME_TRANSPORT_RDMA;
|
|
} else if (strcasecmp(str, "FC") == 0) {
|
|
*trtype = SPDK_NVME_TRANSPORT_FC;
|
|
} else if (strcasecmp(str, "TCP") == 0) {
|
|
*trtype = SPDK_NVME_TRANSPORT_TCP;
|
|
} else if (strcasecmp(str, "VFIOUSER") == 0) {
|
|
*trtype = SPDK_NVME_TRANSPORT_VFIOUSER;
|
|
} else {
|
|
*trtype = SPDK_NVME_TRANSPORT_CUSTOM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const char *
|
|
spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
|
|
{
|
|
switch (trtype) {
|
|
case SPDK_NVME_TRANSPORT_PCIE:
|
|
return "PCIe";
|
|
case SPDK_NVME_TRANSPORT_RDMA:
|
|
return "RDMA";
|
|
case SPDK_NVME_TRANSPORT_FC:
|
|
return "FC";
|
|
case SPDK_NVME_TRANSPORT_TCP:
|
|
return "TCP";
|
|
case SPDK_NVME_TRANSPORT_VFIOUSER:
|
|
return "VFIOUSER";
|
|
case SPDK_NVME_TRANSPORT_CUSTOM:
|
|
return "CUSTOM";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str)
|
|
{
|
|
if (adrfam == NULL || str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (strcasecmp(str, "IPv4") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_IPV4;
|
|
} else if (strcasecmp(str, "IPv6") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_IPV6;
|
|
} else if (strcasecmp(str, "IB") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_IB;
|
|
} else if (strcasecmp(str, "FC") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_FC;
|
|
} else {
|
|
return -ENOENT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const char *
|
|
spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam)
|
|
{
|
|
switch (adrfam) {
|
|
case SPDK_NVMF_ADRFAM_IPV4:
|
|
return "IPv4";
|
|
case SPDK_NVMF_ADRFAM_IPV6:
|
|
return "IPv6";
|
|
case SPDK_NVMF_ADRFAM_IB:
|
|
return "IB";
|
|
case SPDK_NVMF_ADRFAM_FC:
|
|
return "FC";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static size_t
|
|
parse_next_key(const char **str, char *key, char *val, size_t key_buf_size, size_t val_buf_size)
|
|
{
|
|
|
|
const char *sep, *sep1;
|
|
const char *whitespace = " \t\n";
|
|
size_t key_len, val_len;
|
|
|
|
*str += strspn(*str, whitespace);
|
|
|
|
sep = strchr(*str, ':');
|
|
if (!sep) {
|
|
sep = strchr(*str, '=');
|
|
if (!sep) {
|
|
SPDK_ERRLOG("Key without ':' or '=' separator\n");
|
|
return 0;
|
|
}
|
|
} else {
|
|
sep1 = strchr(*str, '=');
|
|
if ((sep1 != NULL) && (sep1 < sep)) {
|
|
sep = sep1;
|
|
}
|
|
}
|
|
|
|
key_len = sep - *str;
|
|
if (key_len >= key_buf_size) {
|
|
SPDK_ERRLOG("Key length %zu greater than maximum allowed %zu\n",
|
|
key_len, key_buf_size - 1);
|
|
return 0;
|
|
}
|
|
|
|
memcpy(key, *str, key_len);
|
|
key[key_len] = '\0';
|
|
|
|
*str += key_len + 1; /* Skip key: */
|
|
val_len = strcspn(*str, whitespace);
|
|
if (val_len == 0) {
|
|
SPDK_ERRLOG("Key without value\n");
|
|
return 0;
|
|
}
|
|
|
|
if (val_len >= val_buf_size) {
|
|
SPDK_ERRLOG("Value length %zu greater than maximum allowed %zu\n",
|
|
val_len, val_buf_size - 1);
|
|
return 0;
|
|
}
|
|
|
|
memcpy(val, *str, val_len);
|
|
val[val_len] = '\0';
|
|
|
|
*str += val_len;
|
|
|
|
return val_len;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str)
|
|
{
|
|
size_t val_len;
|
|
char key[32];
|
|
char val[1024];
|
|
|
|
if (trid == NULL || str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (*str != '\0') {
|
|
|
|
val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
|
|
|
|
if (val_len == 0) {
|
|
SPDK_ERRLOG("Failed to parse transport ID\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (strcasecmp(key, "trtype") == 0) {
|
|
if (spdk_nvme_transport_id_populate_trstring(trid, val) != 0) {
|
|
SPDK_ERRLOG("invalid transport '%s'\n", val);
|
|
return -EINVAL;
|
|
}
|
|
if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) {
|
|
SPDK_ERRLOG("Unknown trtype '%s'\n", val);
|
|
return -EINVAL;
|
|
}
|
|
} else if (strcasecmp(key, "adrfam") == 0) {
|
|
if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) {
|
|
SPDK_ERRLOG("Unknown adrfam '%s'\n", val);
|
|
return -EINVAL;
|
|
}
|
|
} else if (strcasecmp(key, "traddr") == 0) {
|
|
if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
|
|
SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_TRADDR_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(trid->traddr, val, val_len + 1);
|
|
} else if (strcasecmp(key, "trsvcid") == 0) {
|
|
if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
|
|
SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(trid->trsvcid, val, val_len + 1);
|
|
} else if (strcasecmp(key, "priority") == 0) {
|
|
if (val_len > SPDK_NVMF_PRIORITY_MAX_LEN) {
|
|
SPDK_ERRLOG("priority length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_PRIORITY_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
trid->priority = spdk_strtol(val, 10);
|
|
} else if (strcasecmp(key, "subnqn") == 0) {
|
|
if (val_len > SPDK_NVMF_NQN_MAX_LEN) {
|
|
SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_NQN_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(trid->subnqn, val, val_len + 1);
|
|
} else if (strcasecmp(key, "hostaddr") == 0) {
|
|
continue;
|
|
} else if (strcasecmp(key, "hostsvcid") == 0) {
|
|
continue;
|
|
} else if (strcasecmp(key, "hostnqn") == 0) {
|
|
continue;
|
|
} else if (strcasecmp(key, "ns") == 0) {
|
|
/*
|
|
* Special case. The namespace id parameter may
|
|
* optionally be passed in the transport id string
|
|
* for an SPDK application (e.g. nvme/perf)
|
|
* and additionally parsed therein to limit
|
|
* targeting a specific namespace. For this
|
|
* scenario, just silently ignore this key
|
|
* rather than letting it default to logging
|
|
* it as an invalid key.
|
|
*/
|
|
continue;
|
|
} else if (strcasecmp(key, "alt_traddr") == 0) {
|
|
/*
|
|
* Used by applications for enabling transport ID failover.
|
|
* Please see the case above for more information on custom parameters.
|
|
*/
|
|
continue;
|
|
} else {
|
|
SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_host_id_parse(struct spdk_nvme_host_id *hostid, const char *str)
|
|
{
|
|
|
|
size_t key_size = 32;
|
|
size_t val_size = 1024;
|
|
size_t val_len;
|
|
char key[key_size];
|
|
char val[val_size];
|
|
|
|
if (hostid == NULL || str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (*str != '\0') {
|
|
|
|
val_len = parse_next_key(&str, key, val, key_size, val_size);
|
|
|
|
if (val_len == 0) {
|
|
SPDK_ERRLOG("Failed to parse host ID\n");
|
|
return val_len;
|
|
}
|
|
|
|
/* Ignore the rest of the options from the transport ID. */
|
|
if (strcasecmp(key, "trtype") == 0) {
|
|
continue;
|
|
} else if (strcasecmp(key, "adrfam") == 0) {
|
|
continue;
|
|
} else if (strcasecmp(key, "traddr") == 0) {
|
|
continue;
|
|
} else if (strcasecmp(key, "trsvcid") == 0) {
|
|
continue;
|
|
} else if (strcasecmp(key, "subnqn") == 0) {
|
|
continue;
|
|
} else if (strcasecmp(key, "priority") == 0) {
|
|
continue;
|
|
} else if (strcasecmp(key, "ns") == 0) {
|
|
continue;
|
|
} else if (strcasecmp(key, "hostaddr") == 0) {
|
|
if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
|
|
SPDK_ERRLOG("hostaddr length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_TRADDR_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(hostid->hostaddr, val, val_len + 1);
|
|
|
|
} else if (strcasecmp(key, "hostsvcid") == 0) {
|
|
if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
|
|
SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(hostid->hostsvcid, val, val_len + 1);
|
|
} else {
|
|
SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cmp_int(int a, int b)
|
|
{
|
|
return a - b;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1,
|
|
const struct spdk_nvme_transport_id *trid2)
|
|
{
|
|
int cmp;
|
|
|
|
if (trid1->trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
|
|
cmp = strcasecmp(trid1->trstring, trid2->trstring);
|
|
} else {
|
|
cmp = cmp_int(trid1->trtype, trid2->trtype);
|
|
}
|
|
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
struct spdk_pci_addr pci_addr1 = {};
|
|
struct spdk_pci_addr pci_addr2 = {};
|
|
|
|
/* Normalize PCI addresses before comparing */
|
|
if (spdk_pci_addr_parse(&pci_addr1, trid1->traddr) < 0 ||
|
|
spdk_pci_addr_parse(&pci_addr2, trid2->traddr) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* PCIe transport ID only uses trtype and traddr */
|
|
return spdk_pci_addr_compare(&pci_addr1, &pci_addr2);
|
|
}
|
|
|
|
cmp = strcasecmp(trid1->traddr, trid2->traddr);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
cmp = cmp_int(trid1->adrfam, trid2->adrfam);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
cmp = strcmp(trid1->subnqn, trid2->subnqn);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_prchk_flags_parse(uint32_t *prchk_flags, const char *str)
|
|
{
|
|
size_t val_len;
|
|
char key[32];
|
|
char val[1024];
|
|
|
|
if (prchk_flags == NULL || str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (*str != '\0') {
|
|
val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
|
|
|
|
if (val_len == 0) {
|
|
SPDK_ERRLOG("Failed to parse prchk\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (strcasecmp(key, "prchk") == 0) {
|
|
if (strcasestr(val, "reftag") != NULL) {
|
|
*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG;
|
|
}
|
|
if (strcasestr(val, "guard") != NULL) {
|
|
*prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD;
|
|
}
|
|
} else {
|
|
SPDK_ERRLOG("Unknown key '%s'\n", key);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const char *
|
|
spdk_nvme_prchk_flags_str(uint32_t prchk_flags)
|
|
{
|
|
if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) {
|
|
if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
|
|
return "prchk:reftag|guard";
|
|
} else {
|
|
return "prchk:reftag";
|
|
}
|
|
} else {
|
|
if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
|
|
return "prchk:guard";
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
struct spdk_nvme_probe_ctx *
|
|
spdk_nvme_probe_async(const struct spdk_nvme_transport_id *trid,
|
|
void *cb_ctx,
|
|
spdk_nvme_probe_cb probe_cb,
|
|
spdk_nvme_attach_cb attach_cb,
|
|
spdk_nvme_remove_cb remove_cb)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_probe_ctx *probe_ctx;
|
|
|
|
rc = nvme_driver_init();
|
|
if (rc != 0) {
|
|
return NULL;
|
|
}
|
|
|
|
probe_ctx = calloc(1, sizeof(*probe_ctx));
|
|
if (!probe_ctx) {
|
|
return NULL;
|
|
}
|
|
|
|
nvme_probe_ctx_init(probe_ctx, trid, cb_ctx, probe_cb, attach_cb, remove_cb);
|
|
rc = nvme_probe_internal(probe_ctx, false);
|
|
if (rc != 0) {
|
|
free(probe_ctx);
|
|
return NULL;
|
|
}
|
|
|
|
return probe_ctx;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_probe_poll_async(struct spdk_nvme_probe_ctx *probe_ctx)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
|
|
|
|
if (!spdk_process_is_primary() && probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
free(probe_ctx);
|
|
return 0;
|
|
}
|
|
|
|
TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
|
|
nvme_ctrlr_poll_internal(ctrlr, probe_ctx);
|
|
}
|
|
|
|
if (TAILQ_EMPTY(&probe_ctx->init_ctrlrs)) {
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
g_spdk_nvme_driver->initialized = true;
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
free(probe_ctx);
|
|
return 0;
|
|
}
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
struct spdk_nvme_probe_ctx *
|
|
spdk_nvme_connect_async(const struct spdk_nvme_transport_id *trid,
|
|
const struct spdk_nvme_ctrlr_opts *opts,
|
|
spdk_nvme_attach_cb attach_cb)
|
|
{
|
|
int rc;
|
|
spdk_nvme_probe_cb probe_cb = NULL;
|
|
struct spdk_nvme_probe_ctx *probe_ctx;
|
|
|
|
rc = nvme_driver_init();
|
|
if (rc != 0) {
|
|
return NULL;
|
|
}
|
|
|
|
probe_ctx = calloc(1, sizeof(*probe_ctx));
|
|
if (!probe_ctx) {
|
|
return NULL;
|
|
}
|
|
|
|
if (opts) {
|
|
probe_cb = nvme_connect_probe_cb;
|
|
}
|
|
|
|
nvme_probe_ctx_init(probe_ctx, trid, (void *)opts, probe_cb, attach_cb, NULL);
|
|
rc = nvme_probe_internal(probe_ctx, true);
|
|
if (rc != 0) {
|
|
free(probe_ctx);
|
|
return NULL;
|
|
}
|
|
|
|
return probe_ctx;
|
|
}
|
|
|
|
SPDK_LOG_REGISTER_COMPONENT(nvme)
|