4c06ce9b9d
This lets us have a common place to put definitions like the length of the UUID string, as well as abstract away some of the API warts in libuuid (non-const values, no size checking for uuid_unparse, etc.). Change-Id: I80607fcd21ce57fdbb8729442fbb721bc71ccb98 Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com> Reviewed-on: https://review.gerrithub.io/402176 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Tomasz Zawadzki <tomasz.zawadzki@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
819 lines
21 KiB
C
819 lines
21 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/nvmf_spec.h"
|
|
#include "nvme_internal.h"
|
|
|
|
#define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"
|
|
|
|
struct nvme_driver *g_spdk_nvme_driver;
|
|
|
|
int32_t spdk_nvme_retry_count;
|
|
|
|
/* gross timeout of 180 seconds in milliseconds */
|
|
static int g_nvme_driver_timeout_ms = 3 * 60 * 1000;
|
|
|
|
static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_init_ctrlrs =
|
|
TAILQ_HEAD_INITIALIZER(g_nvme_init_ctrlrs);
|
|
|
|
/* Per-process attached controller list */
|
|
static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_attached_ctrlrs =
|
|
TAILQ_HEAD_INITIALIZER(g_nvme_attached_ctrlrs);
|
|
|
|
/* Returns true if ctrlr should be stored on the multi-process shared_attached_ctrlrs list */
|
|
static bool
|
|
nvme_ctrlr_shared(const struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
return ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE;
|
|
}
|
|
|
|
/* Caller must hold g_spdk_nvme_driver->lock */
|
|
void
|
|
nvme_ctrlr_connected(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
TAILQ_INSERT_TAIL(&g_nvme_init_ctrlrs, ctrlr, tailq);
|
|
}
|
|
|
|
int
|
|
spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
nvme_ctrlr_proc_put_ref(ctrlr);
|
|
|
|
if (nvme_ctrlr_get_ref_count(ctrlr) == 0) {
|
|
if (nvme_ctrlr_shared(ctrlr)) {
|
|
TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
|
|
} else {
|
|
TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq);
|
|
}
|
|
nvme_ctrlr_destruct(ctrlr);
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_completion_poll_status *status = arg;
|
|
|
|
/*
|
|
* Copy status into the argument passed by the caller, so that
|
|
* the caller can check the status to determine if the
|
|
* the request passed or failed.
|
|
*/
|
|
memcpy(&status->cpl, cpl, sizeof(*cpl));
|
|
status->done = true;
|
|
}
|
|
|
|
struct nvme_request *
|
|
nvme_allocate_request(struct spdk_nvme_qpair *qpair,
|
|
const struct nvme_payload *payload, uint32_t payload_size,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct nvme_request *req;
|
|
|
|
req = STAILQ_FIRST(&qpair->free_req);
|
|
if (req == NULL) {
|
|
return req;
|
|
}
|
|
|
|
STAILQ_REMOVE_HEAD(&qpair->free_req, stailq);
|
|
|
|
/*
|
|
* Only memset up to (but not including) the children
|
|
* TAILQ_ENTRY. children, and following members, are
|
|
* only used as part of I/O splitting so we avoid
|
|
* memsetting them until it is actually needed.
|
|
* They will be initialized in nvme_request_add_child()
|
|
* if the request is split.
|
|
*/
|
|
memset(req, 0, offsetof(struct nvme_request, children));
|
|
req->cb_fn = cb_fn;
|
|
req->cb_arg = cb_arg;
|
|
req->payload = *payload;
|
|
req->payload_size = payload_size;
|
|
req->qpair = qpair;
|
|
req->pid = getpid();
|
|
|
|
return req;
|
|
}
|
|
|
|
struct nvme_request *
|
|
nvme_allocate_request_contig(struct spdk_nvme_qpair *qpair,
|
|
void *buffer, uint32_t payload_size,
|
|
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct nvme_payload payload;
|
|
|
|
payload.type = NVME_PAYLOAD_TYPE_CONTIG;
|
|
payload.u.contig = buffer;
|
|
payload.md = NULL;
|
|
|
|
return nvme_allocate_request(qpair, &payload, payload_size, cb_fn, cb_arg);
|
|
}
|
|
|
|
struct nvme_request *
|
|
nvme_allocate_request_null(struct spdk_nvme_qpair *qpair, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
|
|
{
|
|
return nvme_allocate_request_contig(qpair, NULL, 0, cb_fn, cb_arg);
|
|
}
|
|
|
|
static void
|
|
nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct nvme_request *req = arg;
|
|
enum spdk_nvme_data_transfer xfer;
|
|
|
|
if (req->user_buffer && req->payload_size) {
|
|
/* Copy back to the user buffer and free the contig buffer */
|
|
assert(req->payload.type == NVME_PAYLOAD_TYPE_CONTIG);
|
|
xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
|
|
if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
|
|
xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
|
|
assert(req->pid == getpid());
|
|
memcpy(req->user_buffer, req->payload.u.contig, req->payload_size);
|
|
}
|
|
|
|
spdk_dma_free(req->payload.u.contig);
|
|
}
|
|
|
|
/* Call the user's original callback now that the buffer has been copied */
|
|
req->user_cb_fn(req->user_cb_arg, cpl);
|
|
}
|
|
|
|
/**
|
|
* Allocate a request as well as a physically contiguous buffer to copy to/from the user's buffer.
|
|
*
|
|
* This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
|
|
* where the overhead of a copy is not a problem.
|
|
*/
|
|
struct nvme_request *
|
|
nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
|
|
void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
|
|
void *cb_arg, bool host_to_controller)
|
|
{
|
|
struct nvme_request *req;
|
|
void *contig_buffer = NULL;
|
|
uint64_t phys_addr;
|
|
|
|
if (buffer && payload_size) {
|
|
contig_buffer = spdk_dma_zmalloc(payload_size, 4096, &phys_addr);
|
|
if (!contig_buffer) {
|
|
return NULL;
|
|
}
|
|
|
|
if (host_to_controller) {
|
|
memcpy(contig_buffer, buffer, payload_size);
|
|
}
|
|
}
|
|
|
|
req = nvme_allocate_request_contig(qpair, contig_buffer, payload_size, nvme_user_copy_cmd_complete,
|
|
NULL);
|
|
if (!req) {
|
|
spdk_dma_free(contig_buffer);
|
|
return NULL;
|
|
}
|
|
|
|
req->user_cb_fn = cb_fn;
|
|
req->user_cb_arg = cb_arg;
|
|
req->user_buffer = buffer;
|
|
req->cb_arg = req;
|
|
|
|
return req;
|
|
}
|
|
|
|
void
|
|
nvme_free_request(struct nvme_request *req)
|
|
{
|
|
assert(req != NULL);
|
|
assert(req->num_children == 0);
|
|
assert(req->qpair != NULL);
|
|
|
|
STAILQ_INSERT_HEAD(&req->qpair->free_req, req, stailq);
|
|
}
|
|
|
|
int
|
|
nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
|
|
{
|
|
int rc = 0;
|
|
|
|
#ifdef __FreeBSD__
|
|
pthread_mutex_init(mtx, NULL);
|
|
#else
|
|
pthread_mutexattr_t attr;
|
|
|
|
if (pthread_mutexattr_init(&attr)) {
|
|
return -1;
|
|
}
|
|
if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
|
|
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
|
|
pthread_mutex_init(mtx, &attr)) {
|
|
rc = -1;
|
|
}
|
|
pthread_mutexattr_destroy(&attr);
|
|
#endif
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
nvme_driver_init(void)
|
|
{
|
|
int ret = 0;
|
|
/* Any socket ID */
|
|
int socket_id = -1;
|
|
|
|
/*
|
|
* Only one thread from one process will do this driver init work.
|
|
* The primary process will reserve the shared memory and do the
|
|
* initialization.
|
|
* The secondary process will lookup the existing reserved memory.
|
|
*/
|
|
if (spdk_process_is_primary()) {
|
|
/* The unique named memzone already reserved. */
|
|
if (g_spdk_nvme_driver != NULL) {
|
|
assert(g_spdk_nvme_driver->initialized == true);
|
|
|
|
return 0;
|
|
} else {
|
|
g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
|
|
sizeof(struct nvme_driver), socket_id, 0);
|
|
}
|
|
|
|
if (g_spdk_nvme_driver == NULL) {
|
|
SPDK_ERRLOG("primary process failed to reserve memory\n");
|
|
|
|
return -1;
|
|
}
|
|
} else {
|
|
g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);
|
|
|
|
/* The unique named memzone already reserved by the primary process. */
|
|
if (g_spdk_nvme_driver != NULL) {
|
|
int ms_waited = 0;
|
|
|
|
/* Wait the nvme driver to get initialized. */
|
|
while ((g_spdk_nvme_driver->initialized == false) &&
|
|
(ms_waited < g_nvme_driver_timeout_ms)) {
|
|
ms_waited++;
|
|
nvme_delay(1000); /* delay 1ms */
|
|
}
|
|
if (g_spdk_nvme_driver->initialized == false) {
|
|
SPDK_ERRLOG("timeout waiting for primary process to init\n");
|
|
|
|
return -1;
|
|
}
|
|
} else {
|
|
SPDK_ERRLOG("primary process is not started yet\n");
|
|
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* At this moment, only one thread from the primary process will do
|
|
* the g_spdk_nvme_driver initialization
|
|
*/
|
|
assert(spdk_process_is_primary());
|
|
|
|
ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
|
|
if (ret != 0) {
|
|
SPDK_ERRLOG("failed to initialize mutex\n");
|
|
spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
|
|
return ret;
|
|
}
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
g_spdk_nvme_driver->initialized = false;
|
|
|
|
TAILQ_INIT(&g_spdk_nvme_driver->shared_attached_ctrlrs);
|
|
|
|
spdk_uuid_generate(&g_spdk_nvme_driver->default_extended_host_id);
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid, void *devhandle,
|
|
spdk_nvme_probe_cb probe_cb, void *cb_ctx)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
struct spdk_nvme_ctrlr_opts opts;
|
|
|
|
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
|
|
|
|
if (!probe_cb || probe_cb(cb_ctx, trid, &opts)) {
|
|
ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle);
|
|
if (ctrlr == NULL) {
|
|
if (trid != NULL) {
|
|
SPDK_ERRLOG("Failed to construct NVMe controller for SSD: %s\n", trid->traddr);
|
|
} else {
|
|
SPDK_ERRLOG("Failed to construct NVMe controller\n");
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&g_nvme_init_ctrlrs, ctrlr, tailq);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
nvme_init_controllers(void *cb_ctx, spdk_nvme_attach_cb attach_cb)
|
|
{
|
|
int rc = 0;
|
|
int start_rc;
|
|
struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
/* Initialize all new controllers in the g_nvme_init_ctrlrs list in parallel. */
|
|
while (!TAILQ_EMPTY(&g_nvme_init_ctrlrs)) {
|
|
TAILQ_FOREACH_SAFE(ctrlr, &g_nvme_init_ctrlrs, tailq, ctrlr_tmp) {
|
|
/* Drop the driver lock while calling nvme_ctrlr_process_init()
|
|
* since it needs to acquire the driver lock internally when calling
|
|
* nvme_ctrlr_start().
|
|
*
|
|
* TODO: Rethink the locking - maybe reset should take the lock so that start() and
|
|
* the functions it calls (in particular nvme_ctrlr_set_num_qpairs())
|
|
* can assume it is held.
|
|
*/
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
start_rc = nvme_ctrlr_process_init(ctrlr);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
if (start_rc) {
|
|
/* Controller failed to initialize. */
|
|
TAILQ_REMOVE(&g_nvme_init_ctrlrs, ctrlr, tailq);
|
|
SPDK_ERRLOG("Failed to initialize SSD: %s\n", ctrlr->trid.traddr);
|
|
nvme_ctrlr_destruct(ctrlr);
|
|
rc = -1;
|
|
break;
|
|
}
|
|
|
|
if (ctrlr->state == NVME_CTRLR_STATE_READY) {
|
|
/*
|
|
* Controller has been initialized.
|
|
* Move it to the attached_ctrlrs list.
|
|
*/
|
|
TAILQ_REMOVE(&g_nvme_init_ctrlrs, ctrlr, tailq);
|
|
if (nvme_ctrlr_shared(ctrlr)) {
|
|
TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
|
|
} else {
|
|
TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, ctrlr, tailq);
|
|
}
|
|
|
|
/*
|
|
* Increase the ref count before calling attach_cb() as the user may
|
|
* call nvme_detach() immediately.
|
|
*/
|
|
nvme_ctrlr_proc_get_ref(ctrlr);
|
|
|
|
/*
|
|
* Unlock while calling attach_cb() so the user can call other functions
|
|
* that may take the driver lock, like nvme_detach().
|
|
*/
|
|
if (attach_cb) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
attach_cb(cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
g_spdk_nvme_driver->initialized = true;
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
return rc;
|
|
}
|
|
|
|
/* This function must not be called while holding g_spdk_nvme_driver->lock */
|
|
static struct spdk_nvme_ctrlr *
|
|
spdk_nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(trid);
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
return ctrlr;
|
|
}
|
|
|
|
/* This function must be called while holding g_spdk_nvme_driver->lock */
|
|
struct spdk_nvme_ctrlr *
|
|
spdk_nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
|
|
/* Search per-process list */
|
|
TAILQ_FOREACH(ctrlr, &g_nvme_attached_ctrlrs, tailq) {
|
|
if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
|
|
return ctrlr;
|
|
}
|
|
}
|
|
|
|
/* Search multi-process shared list */
|
|
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
|
|
if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
|
|
return ctrlr;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* This function must only be called while holding g_spdk_nvme_driver->lock */
|
|
static int
|
|
spdk_nvme_probe_internal(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
|
|
spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
|
|
spdk_nvme_remove_cb remove_cb, struct spdk_nvme_ctrlr **connected_ctrlr)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
bool direct_connect = (connected_ctrlr != NULL);
|
|
|
|
if (!spdk_nvme_transport_available(trid->trtype)) {
|
|
SPDK_ERRLOG("NVMe trtype %u not available\n", trid->trtype);
|
|
return -1;
|
|
}
|
|
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
|
|
nvme_transport_ctrlr_scan(trid, cb_ctx, probe_cb, remove_cb, direct_connect);
|
|
|
|
/*
|
|
* Probe controllers on the shared_attached_ctrlrs list
|
|
*/
|
|
if (!spdk_process_is_primary() && (trid->trtype == SPDK_NVME_TRANSPORT_PCIE)) {
|
|
TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
|
|
/* Do not attach other ctrlrs if user specify a valid trid */
|
|
if ((strlen(trid->traddr) != 0) &&
|
|
(spdk_nvme_transport_id_compare(trid, &ctrlr->trid))) {
|
|
continue;
|
|
}
|
|
|
|
nvme_ctrlr_proc_get_ref(ctrlr);
|
|
|
|
/*
|
|
* Unlock while calling attach_cb() so the user can call other functions
|
|
* that may take the driver lock, like nvme_detach().
|
|
*/
|
|
if (attach_cb) {
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
attach_cb(cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
|
|
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
|
|
}
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
|
|
rc = 0;
|
|
|
|
goto exit;
|
|
}
|
|
|
|
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
|
|
/*
|
|
* Keep going even if one or more nvme_attach() calls failed,
|
|
* but maintain the value of rc to signal errors when we return.
|
|
*/
|
|
|
|
rc = nvme_init_controllers(cb_ctx, attach_cb);
|
|
|
|
exit:
|
|
if (connected_ctrlr) {
|
|
*connected_ctrlr = spdk_nvme_get_ctrlr_by_trid(trid);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
|
|
spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
|
|
spdk_nvme_remove_cb remove_cb)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_transport_id trid_pcie;
|
|
|
|
rc = nvme_driver_init();
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
if (trid == NULL) {
|
|
memset(&trid_pcie, 0, sizeof(trid_pcie));
|
|
trid_pcie.trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
trid = &trid_pcie;
|
|
}
|
|
|
|
return spdk_nvme_probe_internal(trid, cb_ctx, probe_cb, attach_cb, remove_cb, NULL);
|
|
}
|
|
|
|
static bool
|
|
spdk_nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
struct spdk_nvme_ctrlr_connect_opts *requested_opts = cb_ctx;
|
|
|
|
assert(requested_opts->opts);
|
|
|
|
assert(requested_opts->opts_size != 0);
|
|
|
|
memcpy(opts, requested_opts->opts, spdk_min(sizeof(*opts), requested_opts->opts_size));
|
|
|
|
return true;
|
|
}
|
|
|
|
struct spdk_nvme_ctrlr *
|
|
spdk_nvme_connect(const struct spdk_nvme_transport_id *trid,
|
|
const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
|
|
{
|
|
int rc;
|
|
struct spdk_nvme_ctrlr_connect_opts connect_opts = {};
|
|
struct spdk_nvme_ctrlr_connect_opts *user_connect_opts = NULL;
|
|
struct spdk_nvme_ctrlr *ctrlr = NULL;
|
|
spdk_nvme_probe_cb probe_cb = NULL;
|
|
|
|
if (trid == NULL) {
|
|
SPDK_ERRLOG("No transport ID specified\n");
|
|
return NULL;
|
|
}
|
|
|
|
rc = nvme_driver_init();
|
|
if (rc != 0) {
|
|
return NULL;
|
|
}
|
|
|
|
if (opts && opts_size > 0) {
|
|
connect_opts.opts = opts;
|
|
connect_opts.opts_size = opts_size;
|
|
user_connect_opts = &connect_opts;
|
|
probe_cb = spdk_nvme_connect_probe_cb;
|
|
}
|
|
|
|
spdk_nvme_probe_internal(trid, user_connect_opts, probe_cb, NULL, NULL, &ctrlr);
|
|
|
|
return ctrlr;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str)
|
|
{
|
|
if (trtype == NULL || str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (strcasecmp(str, "PCIe") == 0) {
|
|
*trtype = SPDK_NVME_TRANSPORT_PCIE;
|
|
} else if (strcasecmp(str, "RDMA") == 0) {
|
|
*trtype = SPDK_NVME_TRANSPORT_RDMA;
|
|
} else {
|
|
return -ENOENT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const char *
|
|
spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
|
|
{
|
|
switch (trtype) {
|
|
case SPDK_NVME_TRANSPORT_PCIE:
|
|
return "PCIe";
|
|
case SPDK_NVME_TRANSPORT_RDMA:
|
|
return "RDMA";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str)
|
|
{
|
|
if (adrfam == NULL || str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (strcasecmp(str, "IPv4") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_IPV4;
|
|
} else if (strcasecmp(str, "IPv6") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_IPV6;
|
|
} else if (strcasecmp(str, "IB") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_IB;
|
|
} else if (strcasecmp(str, "FC") == 0) {
|
|
*adrfam = SPDK_NVMF_ADRFAM_FC;
|
|
} else {
|
|
return -ENOENT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const char *
|
|
spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam)
|
|
{
|
|
switch (adrfam) {
|
|
case SPDK_NVMF_ADRFAM_IPV4:
|
|
return "IPv4";
|
|
case SPDK_NVMF_ADRFAM_IPV6:
|
|
return "IPv6";
|
|
case SPDK_NVMF_ADRFAM_IB:
|
|
return "IB";
|
|
case SPDK_NVMF_ADRFAM_FC:
|
|
return "FC";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str)
|
|
{
|
|
const char *sep;
|
|
const char *whitespace = " \t\n";
|
|
size_t key_len, val_len;
|
|
char key[32];
|
|
char val[1024];
|
|
|
|
if (trid == NULL || str == NULL) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (*str != '\0') {
|
|
str += strspn(str, whitespace);
|
|
|
|
sep = strchr(str, ':');
|
|
if (!sep) {
|
|
sep = strchr(str, '=');
|
|
if (!sep) {
|
|
SPDK_ERRLOG("Key without ':' or '=' separator\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
key_len = sep - str;
|
|
if (key_len >= sizeof(key)) {
|
|
SPDK_ERRLOG("Transport key length %zu greater than maximum allowed %zu\n",
|
|
key_len, sizeof(key) - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(key, str, key_len);
|
|
key[key_len] = '\0';
|
|
|
|
str += key_len + 1; /* Skip key: */
|
|
val_len = strcspn(str, whitespace);
|
|
if (val_len == 0) {
|
|
SPDK_ERRLOG("Key without value\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (val_len >= sizeof(val)) {
|
|
SPDK_ERRLOG("Transport value length %zu greater than maximum allowed %zu\n",
|
|
val_len, sizeof(val) - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(val, str, val_len);
|
|
val[val_len] = '\0';
|
|
|
|
str += val_len;
|
|
|
|
if (strcasecmp(key, "trtype") == 0) {
|
|
if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) {
|
|
SPDK_ERRLOG("Unknown trtype '%s'\n", val);
|
|
return -EINVAL;
|
|
}
|
|
} else if (strcasecmp(key, "adrfam") == 0) {
|
|
if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) {
|
|
SPDK_ERRLOG("Unknown adrfam '%s'\n", val);
|
|
return -EINVAL;
|
|
}
|
|
} else if (strcasecmp(key, "traddr") == 0) {
|
|
if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
|
|
SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_TRADDR_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(trid->traddr, val, val_len + 1);
|
|
} else if (strcasecmp(key, "trsvcid") == 0) {
|
|
if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
|
|
SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(trid->trsvcid, val, val_len + 1);
|
|
} else if (strcasecmp(key, "subnqn") == 0) {
|
|
if (val_len > SPDK_NVMF_NQN_MAX_LEN) {
|
|
SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n",
|
|
val_len, SPDK_NVMF_NQN_MAX_LEN);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(trid->subnqn, val, val_len + 1);
|
|
} else {
|
|
SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cmp_int(int a, int b)
|
|
{
|
|
return a - b;
|
|
}
|
|
|
|
int
|
|
spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1,
|
|
const struct spdk_nvme_transport_id *trid2)
|
|
{
|
|
int cmp;
|
|
|
|
cmp = cmp_int(trid1->trtype, trid2->trtype);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) {
|
|
struct spdk_pci_addr pci_addr1;
|
|
struct spdk_pci_addr pci_addr2;
|
|
|
|
/* Normalize PCI addresses before comparing */
|
|
if (spdk_pci_addr_parse(&pci_addr1, trid1->traddr) < 0 ||
|
|
spdk_pci_addr_parse(&pci_addr2, trid2->traddr) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* PCIe transport ID only uses trtype and traddr */
|
|
return spdk_pci_addr_compare(&pci_addr1, &pci_addr2);
|
|
}
|
|
|
|
cmp = strcasecmp(trid1->traddr, trid2->traddr);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
cmp = cmp_int(trid1->adrfam, trid2->adrfam);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
cmp = strcmp(trid1->subnqn, trid2->subnqn);
|
|
if (cmp) {
|
|
return cmp;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SPDK_LOG_REGISTER_COMPONENT("nvme", SPDK_LOG_NVME)
|