numam-spdk/lib/ftl/ftl_init.c
Konrad Sztyber 45372c5768 lib/ftl: separate non-volatile scrub function
The cache needs to be scrubbed during the initial device creation as
well as after power loss recovery. This patch extracts the scrubbing
code into a separate function.

Change-Id: I2cb32e6993a3531470f29f466d990f0d96e45def
Signed-off-by: Konrad Sztyber <konrad.sztyber@intel.com>
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/459621
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com>
Reviewed-by: Wojciech Malikowski <wojciech.malikowski@intel.com>
Reviewed-by: Mateusz Kozlowski <mateusz.kozlowski@intel.com>
2019-07-12 12:39:38 +00:00

1341 lines
33 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/nvme.h"
#include "spdk/io_channel.h"
#include "spdk/bdev_module.h"
#include "spdk/string.h"
#include "spdk/likely.h"
#include "spdk_internal/log.h"
#include "spdk/ftl.h"
#include "spdk/likely.h"
#include "spdk/string.h"
#include "ftl_core.h"
#include "ftl_anm.h"
#include "ftl_io.h"
#include "ftl_reloc.h"
#include "ftl_rwb.h"
#include "ftl_band.h"
#include "ftl_debug.h"
#define FTL_CORE_RING_SIZE 4096
#define FTL_INIT_TIMEOUT 30
#define FTL_NSID 1
#define ftl_range_intersect(s1, e1, s2, e2) \
((s1) <= (e2) && (s2) <= (e1))
struct ftl_admin_cmpl {
struct spdk_nvme_cpl status;
int complete;
};
static STAILQ_HEAD(, spdk_ftl_dev) g_ftl_queue = STAILQ_HEAD_INITIALIZER(g_ftl_queue);
static pthread_mutex_t g_ftl_queue_lock = PTHREAD_MUTEX_INITIALIZER;
static const struct spdk_ftl_conf g_default_conf = {
.defrag = {
.limits = {
/* 5 free bands / 0 % host writes */
[SPDK_FTL_LIMIT_CRIT] = { .thld = 5, .limit = 0 },
/* 10 free bands / 5 % host writes */
[SPDK_FTL_LIMIT_HIGH] = { .thld = 10, .limit = 5 },
/* 20 free bands / 40 % host writes */
[SPDK_FTL_LIMIT_LOW] = { .thld = 20, .limit = 40 },
/* 40 free bands / 100 % host writes - defrag starts running */
[SPDK_FTL_LIMIT_START] = { .thld = 40, .limit = 100 },
},
/* 10 percent valid lbks */
.invalid_thld = 10,
},
/* 20% spare lbks */
.lba_rsvd = 20,
/* 6M write buffer */
.rwb_size = 6 * 1024 * 1024,
/* 90% band fill threshold */
.band_thld = 90,
/* Max 32 IO depth per band relocate */
.max_reloc_qdepth = 32,
/* Max 3 active band relocates */
.max_active_relocs = 3,
/* IO pool size per user thread (this should be adjusted to thread IO qdepth) */
.user_io_pool_size = 2048,
/* Number of interleaving units per ws_opt */
/* 1 for default and 3 for 3D TLC NAND */
.num_interleave_units = 1,
/*
* If clear ftl will return error when restoring after a dirty shutdown
* If set, last band will be padded, ftl will restore based only on closed bands - this
* will result in lost data after recovery.
*/
.allow_open_bands = false,
.nv_cache = {
/* Maximum number of concurrent requests */
.max_request_cnt = 2048,
/* Maximum number of blocks per request */
.max_request_size = 16,
}
};
static void ftl_dev_free_sync(struct spdk_ftl_dev *dev);
static void
ftl_admin_cb(void *ctx, const struct spdk_nvme_cpl *cpl)
{
struct ftl_admin_cmpl *cmpl = ctx;
cmpl->complete = 1;
cmpl->status = *cpl;
}
static int
ftl_band_init_md(struct ftl_band *band)
{
struct ftl_lba_map *lba_map = &band->lba_map;
lba_map->vld = spdk_bit_array_create(ftl_num_band_lbks(band->dev));
if (!lba_map->vld) {
return -ENOMEM;
}
pthread_spin_init(&lba_map->lock, PTHREAD_PROCESS_PRIVATE);
ftl_band_md_clear(band);
return 0;
}
static int
ftl_check_conf(const struct spdk_ftl_conf *conf,
const struct spdk_ocssd_geometry_data *geo)
{
size_t i;
if (conf->defrag.invalid_thld >= 100) {
return -1;
}
if (conf->lba_rsvd >= 100) {
return -1;
}
if (conf->lba_rsvd == 0) {
return -1;
}
if (conf->rwb_size == 0) {
return -1;
}
if (conf->rwb_size % FTL_BLOCK_SIZE != 0) {
return -1;
}
if (geo->ws_opt % conf->num_interleave_units != 0) {
return -1;
}
for (i = 0; i < SPDK_FTL_LIMIT_MAX; ++i) {
if (conf->defrag.limits[i].limit > 100) {
return -1;
}
}
return 0;
}
static int
ftl_check_init_opts(const struct spdk_ftl_dev_init_opts *opts,
const struct spdk_ocssd_geometry_data *geo)
{
struct spdk_ftl_dev *dev;
size_t num_punits = geo->num_pu * geo->num_grp;
int rc = 0;
if (opts->range.begin > opts->range.end || opts->range.end >= num_punits) {
return -1;
}
if (ftl_check_conf(opts->conf, geo)) {
return -1;
}
pthread_mutex_lock(&g_ftl_queue_lock);
STAILQ_FOREACH(dev, &g_ftl_queue, stailq) {
if (spdk_nvme_transport_id_compare(&dev->trid, &opts->trid)) {
continue;
}
if (ftl_range_intersect(opts->range.begin, opts->range.end,
dev->range.begin, dev->range.end)) {
rc = -1;
goto out;
}
}
out:
pthread_mutex_unlock(&g_ftl_queue_lock);
return rc;
}
int
ftl_retrieve_chunk_info(struct spdk_ftl_dev *dev, struct ftl_ppa ppa,
struct spdk_ocssd_chunk_information_entry *info,
unsigned int num_entries)
{
volatile struct ftl_admin_cmpl cmpl = {};
uint32_t nsid = spdk_nvme_ns_get_id(dev->ns);
uint64_t offset = (ppa.grp * dev->geo.num_pu + ppa.pu) *
dev->geo.num_chk + ppa.chk;
int rc;
rc = spdk_nvme_ctrlr_cmd_get_log_page(dev->ctrlr, SPDK_OCSSD_LOG_CHUNK_INFO, nsid,
info, num_entries * sizeof(*info),
offset * sizeof(*info),
ftl_admin_cb, (void *)&cmpl);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("spdk_nvme_ctrlr_cmd_get_log_page: %s\n", spdk_strerror(-rc));
return -1;
}
while (!cmpl.complete) {
spdk_nvme_ctrlr_process_admin_completions(dev->ctrlr);
}
if (spdk_nvme_cpl_is_error(&cmpl.status)) {
SPDK_ERRLOG("Unexpected status code: [%d], status code type: [%d]\n",
cmpl.status.status.sc, cmpl.status.status.sct);
return -1;
}
return 0;
}
static int
ftl_retrieve_punit_chunk_info(struct spdk_ftl_dev *dev, const struct ftl_punit *punit,
struct spdk_ocssd_chunk_information_entry *info)
{
uint32_t i = 0;
unsigned int num_entries = FTL_BLOCK_SIZE / sizeof(*info);
struct ftl_ppa chunk_ppa = punit->start_ppa;
char ppa_buf[128];
for (i = 0; i < dev->geo.num_chk; i += num_entries, chunk_ppa.chk += num_entries) {
if (num_entries > dev->geo.num_chk - i) {
num_entries = dev->geo.num_chk - i;
}
if (ftl_retrieve_chunk_info(dev, chunk_ppa, &info[i], num_entries)) {
SPDK_ERRLOG("Failed to retrieve chunk information @ppa: %s\n",
ftl_ppa2str(chunk_ppa, ppa_buf, sizeof(ppa_buf)));
return -1;
}
}
return 0;
}
static unsigned char
ftl_get_chunk_state(const struct spdk_ocssd_chunk_information_entry *info)
{
if (info->cs.free) {
return FTL_CHUNK_STATE_FREE;
}
if (info->cs.open) {
return FTL_CHUNK_STATE_OPEN;
}
if (info->cs.closed) {
return FTL_CHUNK_STATE_CLOSED;
}
if (info->cs.offline) {
return FTL_CHUNK_STATE_BAD;
}
assert(0 && "Invalid block state");
return FTL_CHUNK_STATE_BAD;
}
static void
ftl_remove_empty_bands(struct spdk_ftl_dev *dev)
{
struct ftl_band *band, *temp_band;
/* Remove band from shut_bands list to prevent further processing */
/* if all blocks on this band are bad */
LIST_FOREACH_SAFE(band, &dev->shut_bands, list_entry, temp_band) {
if (!band->num_chunks) {
dev->num_bands--;
LIST_REMOVE(band, list_entry);
}
}
}
static int
ftl_dev_init_bands(struct spdk_ftl_dev *dev)
{
struct spdk_ocssd_chunk_information_entry *info;
struct ftl_band *band, *pband;
struct ftl_punit *punit;
struct ftl_chunk *chunk;
unsigned int i, j;
char buf[128];
int rc = 0;
LIST_INIT(&dev->free_bands);
LIST_INIT(&dev->shut_bands);
dev->num_free = 0;
dev->num_bands = ftl_dev_num_bands(dev);
dev->bands = calloc(ftl_dev_num_bands(dev), sizeof(*dev->bands));
if (!dev->bands) {
return -1;
}
info = calloc(dev->geo.num_chk, sizeof(*info));
if (!info) {
return -1;
}
for (i = 0; i < ftl_dev_num_bands(dev); ++i) {
band = &dev->bands[i];
band->id = i;
band->dev = dev;
band->state = FTL_BAND_STATE_CLOSED;
if (LIST_EMPTY(&dev->shut_bands)) {
LIST_INSERT_HEAD(&dev->shut_bands, band, list_entry);
} else {
LIST_INSERT_AFTER(pband, band, list_entry);
}
pband = band;
CIRCLEQ_INIT(&band->chunks);
band->chunk_buf = calloc(ftl_dev_num_punits(dev), sizeof(*band->chunk_buf));
if (!band->chunk_buf) {
SPDK_ERRLOG("Failed to allocate block state table for band: [%u]\n", i);
rc = -1;
goto out;
}
rc = ftl_band_init_md(band);
if (rc) {
SPDK_ERRLOG("Failed to initialize metadata structures for band [%u]\n", i);
goto out;
}
band->reloc_bitmap = spdk_bit_array_create(ftl_dev_num_bands(dev));
if (!band->reloc_bitmap) {
SPDK_ERRLOG("Failed to allocate band relocation bitmap\n");
goto out;
}
}
for (i = 0; i < ftl_dev_num_punits(dev); ++i) {
punit = &dev->punits[i];
rc = ftl_retrieve_punit_chunk_info(dev, punit, info);
if (rc) {
SPDK_ERRLOG("Failed to retrieve bbt for @ppa: %s [%lu]\n",
ftl_ppa2str(punit->start_ppa, buf, sizeof(buf)),
ftl_ppa_addr_pack(dev, punit->start_ppa));
goto out;
}
for (j = 0; j < ftl_dev_num_bands(dev); ++j) {
band = &dev->bands[j];
chunk = &band->chunk_buf[i];
chunk->pos = i;
chunk->state = ftl_get_chunk_state(&info[j]);
chunk->punit = punit;
chunk->start_ppa = punit->start_ppa;
chunk->start_ppa.chk = band->id;
chunk->write_offset = ftl_dev_lbks_in_chunk(dev);
if (chunk->state != FTL_CHUNK_STATE_BAD) {
band->num_chunks++;
CIRCLEQ_INSERT_TAIL(&band->chunks, chunk, circleq);
}
}
}
for (i = 0; i < ftl_dev_num_bands(dev); ++i) {
band = &dev->bands[i];
band->tail_md_ppa = ftl_band_tail_md_ppa(band);
}
ftl_remove_empty_bands(dev);
out:
free(info);
return rc;
}
static int
ftl_dev_init_punits(struct spdk_ftl_dev *dev)
{
unsigned int i, punit;
dev->punits = calloc(ftl_dev_num_punits(dev), sizeof(*dev->punits));
if (!dev->punits) {
return -1;
}
for (i = 0; i < ftl_dev_num_punits(dev); ++i) {
dev->punits[i].dev = dev;
punit = dev->range.begin + i;
dev->punits[i].start_ppa.ppa = 0;
dev->punits[i].start_ppa.grp = punit % dev->geo.num_grp;
dev->punits[i].start_ppa.pu = punit / dev->geo.num_grp;
}
return 0;
}
static int
ftl_dev_retrieve_geo(struct spdk_ftl_dev *dev)
{
volatile struct ftl_admin_cmpl cmpl = {};
uint32_t nsid = spdk_nvme_ns_get_id(dev->ns);
if (spdk_nvme_ocssd_ctrlr_cmd_geometry(dev->ctrlr, nsid, &dev->geo, sizeof(dev->geo),
ftl_admin_cb, (void *)&cmpl)) {
SPDK_ERRLOG("Unable to retrieve geometry\n");
return -1;
}
/* TODO: add a timeout */
while (!cmpl.complete) {
spdk_nvme_ctrlr_process_admin_completions(dev->ctrlr);
}
if (spdk_nvme_cpl_is_error(&cmpl.status)) {
SPDK_ERRLOG("Unexpected status code: [%d], status code type: [%d]\n",
cmpl.status.status.sc, cmpl.status.status.sct);
return -1;
}
/* TODO: add sanity checks for the geo */
dev->ppa_len = dev->geo.lbaf.grp_len +
dev->geo.lbaf.pu_len +
dev->geo.lbaf.chk_len +
dev->geo.lbaf.lbk_len;
dev->ppaf.lbk_offset = 0;
dev->ppaf.lbk_mask = (1 << dev->geo.lbaf.lbk_len) - 1;
dev->ppaf.chk_offset = dev->ppaf.lbk_offset + dev->geo.lbaf.lbk_len;
dev->ppaf.chk_mask = (1 << dev->geo.lbaf.chk_len) - 1;
dev->ppaf.pu_offset = dev->ppaf.chk_offset + dev->geo.lbaf.chk_len;
dev->ppaf.pu_mask = (1 << dev->geo.lbaf.pu_len) - 1;
dev->ppaf.grp_offset = dev->ppaf.pu_offset + dev->geo.lbaf.pu_len;
dev->ppaf.grp_mask = (1 << dev->geo.lbaf.grp_len) - 1;
/* We're using optimal write size as our xfer size */
dev->xfer_size = dev->geo.ws_opt;
return 0;
}
static int
ftl_dev_nvme_init(struct spdk_ftl_dev *dev, const struct spdk_ftl_dev_init_opts *opts)
{
uint32_t block_size;
dev->ctrlr = opts->ctrlr;
if (spdk_nvme_ctrlr_get_num_ns(dev->ctrlr) != 1) {
SPDK_ERRLOG("Unsupported number of namespaces\n");
return -1;
}
dev->ns = spdk_nvme_ctrlr_get_ns(dev->ctrlr, FTL_NSID);
dev->trid = opts->trid;
dev->md_size = spdk_nvme_ns_get_md_size(dev->ns);
block_size = spdk_nvme_ns_get_extended_sector_size(dev->ns);
if (block_size != FTL_BLOCK_SIZE) {
SPDK_ERRLOG("Unsupported block size (%"PRIu32")\n", block_size);
return -1;
}
if (dev->md_size % sizeof(uint32_t) != 0) {
/* Metadata pointer must be dword aligned */
SPDK_ERRLOG("Unsupported metadata size (%zu)\n", dev->md_size);
return -1;
}
return 0;
}
static int
ftl_dev_init_nv_cache(struct spdk_ftl_dev *dev, struct spdk_bdev_desc *bdev_desc)
{
struct spdk_bdev *bdev;
struct spdk_ftl_conf *conf = &dev->conf;
struct ftl_nv_cache *nv_cache = &dev->nv_cache;
char pool_name[128];
int rc;
if (!bdev_desc) {
return 0;
}
bdev = spdk_bdev_desc_get_bdev(bdev_desc);
SPDK_INFOLOG(SPDK_LOG_FTL_INIT, "Using %s as write buffer cache\n",
spdk_bdev_get_name(bdev));
if (spdk_bdev_get_block_size(bdev) != FTL_BLOCK_SIZE) {
SPDK_ERRLOG("Unsupported block size (%d)\n", spdk_bdev_get_block_size(bdev));
return -1;
}
if (!spdk_bdev_is_md_separate(bdev)) {
SPDK_ERRLOG("Bdev %s doesn't support separate metadata buffer IO\n",
spdk_bdev_get_name(bdev));
return -1;
}
if (spdk_bdev_get_md_size(bdev) < sizeof(uint64_t)) {
SPDK_ERRLOG("Bdev's %s metadata is too small (%"PRIu32")\n",
spdk_bdev_get_name(bdev), spdk_bdev_get_md_size(bdev));
return -1;
}
if (spdk_bdev_get_dif_type(bdev) != SPDK_DIF_DISABLE) {
SPDK_ERRLOG("Unsupported DIF type used by bdev %s\n",
spdk_bdev_get_name(bdev));
return -1;
}
/* The cache needs to be capable of storing at least two full bands. This requirement comes
* from the fact that cache works as a protection against power loss, so before the data
* inside the cache can be overwritten, the band it's stored on has to be closed. Plus one
* extra block is needed to store the header.
*/
if (spdk_bdev_get_num_blocks(bdev) < ftl_num_band_lbks(dev) * 2 + 1) {
SPDK_ERRLOG("Insufficient number of blocks for write buffer cache (available: %"
PRIu64", required: %"PRIu64")\n", spdk_bdev_get_num_blocks(bdev),
ftl_num_band_lbks(dev) * 2 + 1);
return -1;
}
rc = snprintf(pool_name, sizeof(pool_name), "ftl-nvpool-%p", dev);
if (rc < 0 || rc >= 128) {
return -1;
}
nv_cache->md_pool = spdk_mempool_create(pool_name, conf->nv_cache.max_request_cnt,
spdk_bdev_get_md_size(bdev) *
conf->nv_cache.max_request_size,
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY);
if (!nv_cache->md_pool) {
SPDK_ERRLOG("Failed to initialize non-volatile cache metadata pool\n");
return -1;
}
nv_cache->dma_buf = spdk_dma_zmalloc(FTL_BLOCK_SIZE, spdk_bdev_get_buf_align(bdev), NULL);
if (!nv_cache->dma_buf) {
SPDK_ERRLOG("Memory allocation failure\n");
return -1;
}
if (pthread_spin_init(&nv_cache->lock, PTHREAD_PROCESS_PRIVATE)) {
SPDK_ERRLOG("Failed to initialize cache lock\n");
return -1;
}
nv_cache->bdev_desc = bdev_desc;
nv_cache->current_addr = FTL_NV_CACHE_DATA_OFFSET;
nv_cache->num_data_blocks = spdk_bdev_get_num_blocks(bdev) - 1;
nv_cache->num_available = nv_cache->num_data_blocks;
nv_cache->ready = false;
return 0;
}
void
spdk_ftl_conf_init_defaults(struct spdk_ftl_conf *conf)
{
*conf = g_default_conf;
}
static void
ftl_lba_map_request_ctor(struct spdk_mempool *mp, void *opaque, void *obj, unsigned obj_idx)
{
struct ftl_lba_map_request *request = obj;
struct spdk_ftl_dev *dev = opaque;
request->segments = spdk_bit_array_create(spdk_divide_round_up(
ftl_num_band_lbks(dev), FTL_NUM_LBA_IN_BLOCK));
}
static int
ftl_init_lba_map_pools(struct spdk_ftl_dev *dev)
{
#define POOL_NAME_LEN 128
char pool_name[POOL_NAME_LEN];
int rc;
rc = snprintf(pool_name, sizeof(pool_name), "%s-%s", dev->name, "ocssd-lba-pool");
if (rc < 0 || rc >= POOL_NAME_LEN) {
return -ENAMETOOLONG;
}
/* We need to reserve at least 2 buffers for band close / open sequence
* alone, plus additional (8) buffers for handling write errors.
* TODO: This memory pool is utilized only by core thread - it introduce
* unnecessary overhead and should be replaced by different data structure.
*/
dev->lba_pool = spdk_mempool_create(pool_name, 2 + 8,
ftl_lba_map_pool_elem_size(dev),
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY);
if (!dev->lba_pool) {
return -ENOMEM;
}
rc = snprintf(pool_name, sizeof(pool_name), "%s-%s", dev->name, "ocssd-lbareq-pool");
if (rc < 0 || rc >= POOL_NAME_LEN) {
return -ENAMETOOLONG;
}
dev->lba_request_pool = spdk_mempool_create_ctor(pool_name,
dev->conf.max_reloc_qdepth * dev->conf.max_active_relocs,
sizeof(struct ftl_lba_map_request),
SPDK_MEMPOOL_DEFAULT_CACHE_SIZE,
SPDK_ENV_SOCKET_ID_ANY,
ftl_lba_map_request_ctor,
dev);
if (!dev->lba_request_pool) {
return -ENOMEM;
}
return 0;
}
static void
ftl_init_wptr_list(struct spdk_ftl_dev *dev)
{
LIST_INIT(&dev->wptr_list);
LIST_INIT(&dev->flush_list);
LIST_INIT(&dev->band_flush_list);
}
static size_t
ftl_dev_band_max_seq(struct spdk_ftl_dev *dev)
{
struct ftl_band *band;
size_t seq = 0;
LIST_FOREACH(band, &dev->shut_bands, list_entry) {
if (band->seq > seq) {
seq = band->seq;
}
}
return seq;
}
static void
_ftl_init_bands_state(void *ctx)
{
struct ftl_band *band, *temp_band;
struct spdk_ftl_dev *dev = ctx;
dev->seq = ftl_dev_band_max_seq(dev);
LIST_FOREACH_SAFE(band, &dev->shut_bands, list_entry, temp_band) {
if (!band->lba_map.num_vld) {
ftl_band_set_state(band, FTL_BAND_STATE_FREE);
}
}
ftl_reloc_resume(dev->reloc);
/* Clear the limit applications as they're incremented incorrectly by */
/* the initialization code */
memset(dev->stats.limits, 0, sizeof(dev->stats.limits));
}
static int
ftl_init_num_free_bands(struct spdk_ftl_dev *dev)
{
struct ftl_band *band;
int cnt = 0;
LIST_FOREACH(band, &dev->shut_bands, list_entry) {
if (band->num_chunks && !band->lba_map.num_vld) {
cnt++;
}
}
return cnt;
}
static int
ftl_init_bands_state(struct spdk_ftl_dev *dev)
{
/* TODO: Should we abort initialization or expose read only device */
/* if there is no free bands? */
/* If we abort initialization should we depend on condition that */
/* we have no free bands or should we have some minimal number of */
/* free bands? */
if (!ftl_init_num_free_bands(dev)) {
return -1;
}
spdk_thread_send_msg(ftl_get_core_thread(dev), _ftl_init_bands_state, dev);
return 0;
}
static void
_ftl_dev_init_thread(void *ctx)
{
struct ftl_thread *thread = ctx;
struct spdk_ftl_dev *dev = thread->dev;
thread->poller = spdk_poller_register(thread->poller_fn, thread, thread->period_us);
if (!thread->poller) {
SPDK_ERRLOG("Unable to register poller\n");
assert(0);
}
if (spdk_get_thread() == ftl_get_core_thread(dev)) {
ftl_anm_register_device(dev, ftl_process_anm_event);
}
}
static int
ftl_dev_init_thread(struct spdk_ftl_dev *dev, struct ftl_thread *thread,
struct spdk_thread *spdk_thread, spdk_poller_fn fn, uint64_t period_us)
{
thread->dev = dev;
thread->poller_fn = fn;
thread->thread = spdk_thread;
thread->period_us = period_us;
thread->qpair = spdk_nvme_ctrlr_alloc_io_qpair(dev->ctrlr, NULL, 0);
if (!thread->qpair) {
SPDK_ERRLOG("Unable to initialize qpair\n");
return -1;
}
spdk_thread_send_msg(spdk_thread, _ftl_dev_init_thread, thread);
return 0;
}
static int
ftl_dev_init_threads(struct spdk_ftl_dev *dev, const struct spdk_ftl_dev_init_opts *opts)
{
if (!opts->core_thread || !opts->read_thread) {
return -1;
}
if (ftl_dev_init_thread(dev, &dev->core_thread, opts->core_thread, ftl_task_core, 0)) {
SPDK_ERRLOG("Unable to initialize core thread\n");
return -1;
}
if (ftl_dev_init_thread(dev, &dev->read_thread, opts->read_thread, ftl_task_read, 0)) {
SPDK_ERRLOG("Unable to initialize read thread\n");
return -1;
}
return 0;
}
static void
ftl_dev_free_thread(struct spdk_ftl_dev *dev, struct ftl_thread *thread)
{
assert(thread->poller == NULL);
spdk_nvme_ctrlr_free_io_qpair(thread->qpair);
thread->thread = NULL;
thread->qpair = NULL;
}
static int
ftl_dev_l2p_alloc(struct spdk_ftl_dev *dev)
{
size_t addr_size;
uint64_t i;
if (dev->num_lbas == 0) {
SPDK_DEBUGLOG(SPDK_LOG_FTL_INIT, "Invalid l2p table size\n");
return -1;
}
if (dev->l2p) {
SPDK_DEBUGLOG(SPDK_LOG_FTL_INIT, "L2p table already allocated\n");
return -1;
}
addr_size = dev->ppa_len >= 32 ? 8 : 4;
dev->l2p = malloc(dev->num_lbas * addr_size);
if (!dev->l2p) {
SPDK_DEBUGLOG(SPDK_LOG_FTL_INIT, "Failed to allocate l2p table\n");
return -1;
}
for (i = 0; i < dev->num_lbas; ++i) {
ftl_l2p_set(dev, i, ftl_to_ppa(FTL_PPA_INVALID));
}
return 0;
}
static void
ftl_call_init_complete_cb(void *_ctx)
{
struct ftl_init_context *ctx = _ctx;
struct spdk_ftl_dev *dev = SPDK_CONTAINEROF(ctx, struct spdk_ftl_dev, init_ctx);
if (ctx->cb_fn != NULL) {
ctx->cb_fn(dev, ctx->cb_arg, 0);
}
}
static void
ftl_init_complete(struct spdk_ftl_dev *dev)
{
pthread_mutex_lock(&g_ftl_queue_lock);
STAILQ_INSERT_HEAD(&g_ftl_queue, dev, stailq);
pthread_mutex_unlock(&g_ftl_queue_lock);
dev->initialized = 1;
spdk_thread_send_msg(dev->init_ctx.thread, ftl_call_init_complete_cb, &dev->init_ctx);
}
static void
ftl_init_fail_cb(struct spdk_ftl_dev *dev, void *_ctx, int status)
{
struct ftl_init_context *ctx = _ctx;
if (ctx->cb_fn != NULL) {
ctx->cb_fn(NULL, ctx->cb_arg, -ENODEV);
}
free(ctx);
}
static int _spdk_ftl_dev_free(struct spdk_ftl_dev *dev, spdk_ftl_init_fn cb_fn, void *cb_arg,
struct spdk_thread *thread);
static void
ftl_init_fail(struct spdk_ftl_dev *dev)
{
struct ftl_init_context *ctx;
ctx = malloc(sizeof(*ctx));
if (!ctx) {
SPDK_ERRLOG("Unable to allocate context to free the device\n");
return;
}
*ctx = dev->init_ctx;
if (_spdk_ftl_dev_free(dev, ftl_init_fail_cb, ctx, ctx->thread)) {
SPDK_ERRLOG("Unable to free the device\n");
assert(0);
}
}
static void
ftl_write_nv_cache_md_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_ftl_dev *dev = cb_arg;
spdk_bdev_free_io(bdev_io);
if (spdk_unlikely(!success)) {
SPDK_ERRLOG("Writing non-volatile cache's metadata header failed\n");
ftl_init_fail(dev);
return;
}
dev->nv_cache.ready = true;
ftl_init_complete(dev);
}
static void
ftl_clear_nv_cache_cb(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)
{
struct spdk_ftl_dev *dev = cb_arg;
struct ftl_nv_cache *nv_cache = &dev->nv_cache;
spdk_bdev_free_io(bdev_io);
if (spdk_unlikely(!success)) {
SPDK_ERRLOG("Unable to clear the non-volatile cache bdev\n");
ftl_init_fail(dev);
return;
}
nv_cache->phase = 1;
if (ftl_nv_cache_write_header(nv_cache, ftl_write_nv_cache_md_cb, dev)) {
SPDK_ERRLOG("Unable to write non-volatile cache metadata header\n");
ftl_init_fail(dev);
}
}
static int
ftl_setup_initial_state(struct spdk_ftl_dev *dev)
{
struct spdk_ftl_conf *conf = &dev->conf;
size_t i;
int rc;
spdk_uuid_generate(&dev->uuid);
dev->num_lbas = 0;
for (i = 0; i < ftl_dev_num_bands(dev); ++i) {
dev->num_lbas += ftl_band_num_usable_lbks(&dev->bands[i]);
}
dev->num_lbas = (dev->num_lbas * (100 - conf->lba_rsvd)) / 100;
if (ftl_dev_l2p_alloc(dev)) {
SPDK_ERRLOG("Unable to init l2p table\n");
return -1;
}
if (ftl_init_bands_state(dev)) {
SPDK_ERRLOG("Unable to finish the initialization\n");
return -1;
}
if (!ftl_dev_has_nv_cache(dev)) {
ftl_init_complete(dev);
} else {
rc = ftl_nv_cache_scrub(&dev->nv_cache, ftl_clear_nv_cache_cb, dev);
if (spdk_unlikely(rc != 0)) {
SPDK_ERRLOG("Unable to clear the non-volatile cache bdev: %s\n",
spdk_strerror(-rc));
return -1;
}
}
return 0;
}
static void
ftl_restore_nv_cache_cb(struct spdk_ftl_dev *dev, struct ftl_restore *restore, int status)
{
if (spdk_unlikely(status != 0)) {
SPDK_ERRLOG("Failed to restore the non-volatile cache state\n");
ftl_init_fail(dev);
return;
}
ftl_init_complete(dev);
}
static void
ftl_restore_device_cb(struct spdk_ftl_dev *dev, struct ftl_restore *restore, int status)
{
if (status) {
SPDK_ERRLOG("Failed to restore the device from the SSD\n");
ftl_init_fail(dev);
return;
}
if (ftl_init_bands_state(dev)) {
SPDK_ERRLOG("Unable to finish the initialization\n");
ftl_init_fail(dev);
return;
}
if (!ftl_dev_has_nv_cache(dev)) {
ftl_init_complete(dev);
return;
}
ftl_restore_nv_cache(restore, ftl_restore_nv_cache_cb);
}
static void
ftl_restore_md_cb(struct spdk_ftl_dev *dev, struct ftl_restore *restore, int status)
{
if (status) {
SPDK_ERRLOG("Failed to restore the metadata from the SSD\n");
goto error;
}
/* After the metadata is read it should be possible to allocate the L2P */
if (ftl_dev_l2p_alloc(dev)) {
SPDK_ERRLOG("Failed to allocate the L2P\n");
goto error;
}
if (ftl_restore_device(restore, ftl_restore_device_cb)) {
SPDK_ERRLOG("Failed to start device restoration from the SSD\n");
goto error;
}
return;
error:
ftl_init_fail(dev);
}
static int
ftl_restore_state(struct spdk_ftl_dev *dev, const struct spdk_ftl_dev_init_opts *opts)
{
dev->uuid = opts->uuid;
if (ftl_restore_md(dev, ftl_restore_md_cb)) {
SPDK_ERRLOG("Failed to start metadata restoration from the SSD\n");
return -1;
}
return 0;
}
static int
ftl_io_channel_create_cb(void *io_device, void *ctx)
{
struct spdk_ftl_dev *dev = io_device;
struct ftl_io_channel *ioch = ctx;
char mempool_name[32];
snprintf(mempool_name, sizeof(mempool_name), "ftl_io_%p", ioch);
ioch->cache_ioch = NULL;
ioch->dev = dev;
ioch->elem_size = sizeof(struct ftl_md_io);
ioch->io_pool = spdk_mempool_create(mempool_name,
dev->conf.user_io_pool_size,
ioch->elem_size,
0,
SPDK_ENV_SOCKET_ID_ANY);
if (!ioch->io_pool) {
SPDK_ERRLOG("Failed to create IO channel's IO pool\n");
return -1;
}
if (ftl_dev_has_nv_cache(dev)) {
ioch->cache_ioch = spdk_bdev_get_io_channel(dev->nv_cache.bdev_desc);
if (!ioch->cache_ioch) {
SPDK_ERRLOG("Failed to create cache IO channel\n");
spdk_mempool_free(ioch->io_pool);
return -1;
}
}
return 0;
}
static void
ftl_io_channel_destroy_cb(void *io_device, void *ctx)
{
struct ftl_io_channel *ioch = ctx;
spdk_mempool_free(ioch->io_pool);
if (ioch->cache_ioch) {
spdk_put_io_channel(ioch->cache_ioch);
}
}
static int
ftl_dev_init_io_channel(struct spdk_ftl_dev *dev)
{
spdk_io_device_register(dev, ftl_io_channel_create_cb, ftl_io_channel_destroy_cb,
sizeof(struct ftl_io_channel),
NULL);
dev->ioch = spdk_get_io_channel(dev);
if (!dev->ioch) {
spdk_io_device_unregister(dev, NULL);
return -1;
}
return 0;
}
int
spdk_ftl_dev_init(const struct spdk_ftl_dev_init_opts *_opts, spdk_ftl_init_fn cb_fn, void *cb_arg)
{
struct spdk_ftl_dev *dev;
struct spdk_ftl_dev_init_opts opts = *_opts;
dev = calloc(1, sizeof(*dev));
if (!dev) {
return -ENOMEM;
}
if (!opts.conf) {
opts.conf = &g_default_conf;
}
TAILQ_INIT(&dev->retry_queue);
dev->conf = *opts.conf;
dev->init_ctx.cb_fn = cb_fn;
dev->init_ctx.cb_arg = cb_arg;
dev->init_ctx.thread = spdk_get_thread();
dev->range = opts.range;
dev->limit = SPDK_FTL_LIMIT_MAX;
dev->name = strdup(opts.name);
if (!dev->name) {
SPDK_ERRLOG("Unable to set device name\n");
goto fail_sync;
}
if (ftl_dev_nvme_init(dev, &opts)) {
SPDK_ERRLOG("Unable to initialize NVMe structures\n");
goto fail_sync;
}
/* In case of errors, we free all of the memory in ftl_dev_free_sync(), */
/* so we don't have to clean up in each of the init functions. */
if (ftl_dev_retrieve_geo(dev)) {
SPDK_ERRLOG("Unable to retrieve geometry\n");
goto fail_sync;
}
if (ftl_check_init_opts(&opts, &dev->geo)) {
SPDK_ERRLOG("Invalid device configuration\n");
goto fail_sync;
}
if (ftl_dev_init_punits(dev)) {
SPDK_ERRLOG("Unable to initialize LUNs\n");
goto fail_sync;
}
if (ftl_init_lba_map_pools(dev)) {
SPDK_ERRLOG("Unable to init LBA map pools\n");
goto fail_sync;
}
ftl_init_wptr_list(dev);
if (ftl_dev_init_bands(dev)) {
SPDK_ERRLOG("Unable to initialize band array\n");
goto fail_sync;
}
if (ftl_dev_init_nv_cache(dev, opts.cache_bdev_desc)) {
SPDK_ERRLOG("Unable to initialize persistent cache\n");
goto fail_sync;
}
dev->rwb = ftl_rwb_init(&dev->conf, dev->geo.ws_opt, dev->md_size, ftl_dev_num_punits(dev));
if (!dev->rwb) {
SPDK_ERRLOG("Unable to initialize rwb structures\n");
goto fail_sync;
}
dev->reloc = ftl_reloc_init(dev);
if (!dev->reloc) {
SPDK_ERRLOG("Unable to initialize reloc structures\n");
goto fail_sync;
}
if (ftl_dev_init_io_channel(dev)) {
SPDK_ERRLOG("Unable to initialize IO channels\n");
goto fail_sync;
}
if (ftl_dev_init_threads(dev, &opts)) {
SPDK_ERRLOG("Unable to initialize device threads\n");
goto fail_sync;
}
if (opts.mode & SPDK_FTL_MODE_CREATE) {
if (ftl_setup_initial_state(dev)) {
SPDK_ERRLOG("Failed to setup initial state of the device\n");
goto fail_async;
}
} else {
if (ftl_restore_state(dev, &opts)) {
SPDK_ERRLOG("Unable to restore device's state from the SSD\n");
goto fail_async;
}
}
return 0;
fail_sync:
ftl_dev_free_sync(dev);
return -ENOMEM;
fail_async:
ftl_init_fail(dev);
return 0;
}
static void
_ftl_halt_defrag(void *arg)
{
ftl_reloc_halt(((struct spdk_ftl_dev *)arg)->reloc);
}
static void
ftl_lba_map_request_dtor(struct spdk_mempool *mp, void *opaque, void *obj, unsigned obj_idx)
{
struct ftl_lba_map_request *request = obj;
spdk_bit_array_free(&request->segments);
}
static void
ftl_dev_free_sync(struct spdk_ftl_dev *dev)
{
struct spdk_ftl_dev *iter;
size_t i;
if (!dev) {
return;
}
pthread_mutex_lock(&g_ftl_queue_lock);
STAILQ_FOREACH(iter, &g_ftl_queue, stailq) {
if (iter == dev) {
STAILQ_REMOVE(&g_ftl_queue, dev, spdk_ftl_dev, stailq);
break;
}
}
pthread_mutex_unlock(&g_ftl_queue_lock);
assert(LIST_EMPTY(&dev->wptr_list));
ftl_dev_dump_bands(dev);
ftl_dev_dump_stats(dev);
if (dev->ioch) {
spdk_put_io_channel(dev->ioch);
spdk_io_device_unregister(dev, NULL);
}
if (dev->bands) {
for (i = 0; i < ftl_dev_num_bands(dev); ++i) {
free(dev->bands[i].chunk_buf);
spdk_bit_array_free(&dev->bands[i].lba_map.vld);
spdk_bit_array_free(&dev->bands[i].reloc_bitmap);
}
}
spdk_dma_free(dev->nv_cache.dma_buf);
spdk_mempool_free(dev->lba_pool);
spdk_mempool_free(dev->nv_cache.md_pool);
if (dev->lba_request_pool) {
spdk_mempool_obj_iter(dev->lba_request_pool, ftl_lba_map_request_dtor, NULL);
}
spdk_mempool_free(dev->lba_request_pool);
ftl_rwb_free(dev->rwb);
ftl_reloc_free(dev->reloc);
free(dev->name);
free(dev->punits);
free(dev->bands);
free(dev->l2p);
free(dev);
}
static void
ftl_call_fini_complete_cb(void *_ctx)
{
struct spdk_ftl_dev *dev = _ctx;
struct ftl_init_context ctx = dev->fini_ctx;
ftl_dev_free_sync(dev);
if (ctx.cb_fn != NULL) {
ctx.cb_fn(NULL, ctx.cb_arg, 0);
}
}
static int
ftl_halt_poller(void *ctx)
{
struct spdk_ftl_dev *dev = ctx;
if (!dev->core_thread.poller && !dev->read_thread.poller) {
spdk_poller_unregister(&dev->fini_ctx.poller);
ftl_dev_free_thread(dev, &dev->read_thread);
ftl_dev_free_thread(dev, &dev->core_thread);
ftl_anm_unregister_device(dev);
spdk_thread_send_msg(dev->fini_ctx.thread, ftl_call_fini_complete_cb, dev);
}
return 0;
}
static void
ftl_add_halt_poller(void *ctx)
{
struct spdk_ftl_dev *dev = ctx;
_ftl_halt_defrag(dev);
assert(!dev->fini_ctx.poller);
dev->fini_ctx.poller = spdk_poller_register(ftl_halt_poller, dev, 100);
}
static int
_spdk_ftl_dev_free(struct spdk_ftl_dev *dev, spdk_ftl_init_fn cb_fn, void *cb_arg,
struct spdk_thread *thread)
{
if (dev->fini_ctx.cb_fn != NULL) {
return -EBUSY;
}
dev->fini_ctx.cb_fn = cb_fn;
dev->fini_ctx.cb_arg = cb_arg;
dev->fini_ctx.thread = thread;
dev->halt = 1;
ftl_rwb_disable_interleaving(dev->rwb);
spdk_thread_send_msg(ftl_get_core_thread(dev), ftl_add_halt_poller, dev);
return 0;
}
int
spdk_ftl_dev_free(struct spdk_ftl_dev *dev, spdk_ftl_init_fn cb_fn, void *cb_arg)
{
return _spdk_ftl_dev_free(dev, cb_fn, cb_arg, spdk_get_thread());
}
int
spdk_ftl_module_init(const struct ftl_module_init_opts *opts, spdk_ftl_fn cb, void *cb_arg)
{
return ftl_anm_init(opts->anm_thread, cb, cb_arg);
}
int
spdk_ftl_module_fini(spdk_ftl_fn cb, void *cb_arg)
{
return ftl_anm_free(cb, cb_arg);
}
SPDK_LOG_REGISTER_COMPONENT("ftl_init", SPDK_LOG_FTL_INIT)