Shuhei Matsumoto 8696cd4288 dif: Add seed value for guard to avoid 0 in case of all zero data.
Allow user to add seed value for guard compuation to DIF context.
This will avoid the guard being zero in case of all zero data.

NVMe controller doesn't support seed value for guard computation
explicitly, and hence if we want to use such a seed value in
NVMe controller, we have to format metadata more than 8 byte,
and add seed value into the reserved metadata field.

But some popular iSCSI/FC HBAs and SAS controllers have supported
seed value for guard computation, and so supporting seed value
in the SPDK DIF library is very helpful for some use cases.

Hence this patch makes the DIF library possible to specify seed
value for those use cases.

Change-Id: I7e9e87cb441bf263e64605c7820409fdc22dd977
Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-on: https://review.gerrithub.io/c/444334
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Changpeng Liu <changpeng.liu@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: wuzhouhui <wuzhouhui@kingsoft.com>
2019-02-22 17:52:51 +00:00

1300 lines
34 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/dif.h"
#include "spdk/crc16.h"
#include "spdk/endian.h"
#include "spdk/log.h"
#include "spdk/util.h"
/* Context to iterate a iovec array. */
struct _iov_iter {
/* Current iovec in the iteration */
struct iovec *iov;
/* Remaining count of iovecs in the iteration. */
int iovcnt;
/* Current offset in the iovec */
uint32_t iov_offset;
};
static inline void
_iov_iter_init(struct _iov_iter *i, struct iovec *iovs, int iovcnt)
{
i->iov = iovs;
i->iovcnt = iovcnt;
i->iov_offset = 0;
}
static inline void
_iov_iter_advance(struct _iov_iter *i, uint32_t step)
{
i->iov_offset += step;
if (i->iov_offset == i->iov->iov_len) {
i->iov++;
assert(i->iovcnt > 0);
i->iovcnt--;
i->iov_offset = 0;
}
}
static inline void
_iov_iter_get_buf(struct _iov_iter *i, void **_buf, uint32_t *_buf_len)
{
if (_buf != NULL) {
*_buf = i->iov->iov_base + i->iov_offset;
}
if (_buf_len != NULL) {
*_buf_len = i->iov->iov_len - i->iov_offset;
}
}
static void
_iov_iter_fast_forward(struct _iov_iter *i, uint32_t offset)
{
i->iov_offset = offset;
while (i->iovcnt != 0) {
if (i->iov_offset < i->iov->iov_len) {
break;
}
i->iov_offset -= i->iov->iov_len;
i->iov++;
i->iovcnt--;
}
}
static bool
_are_iovs_bytes_multiple(struct iovec *iovs, int iovcnt, uint32_t bytes)
{
int i;
for (i = 0; i < iovcnt; i++) {
if (iovs[i].iov_len % bytes) {
return false;
}
}
return true;
}
static bool
_are_iovs_valid(struct iovec *iovs, int iovcnt, uint32_t bytes)
{
uint64_t total = 0;
int i;
for (i = 0; i < iovcnt; i++) {
total += iovs[i].iov_len;
}
return total >= bytes;
}
static bool
_dif_type_is_valid(enum spdk_dif_type dif_type, uint32_t dif_flags)
{
switch (dif_type) {
case SPDK_DIF_TYPE1:
case SPDK_DIF_TYPE2:
case SPDK_DIF_DISABLE:
break;
case SPDK_DIF_TYPE3:
if (dif_flags & SPDK_DIF_FLAGS_REFTAG_CHECK) {
SPDK_ERRLOG("Reference Tag should not be checked for Type 3\n");
return false;
}
break;
default:
SPDK_ERRLOG("Unknown DIF Type: %d\n", dif_type);
return false;
}
return true;
}
static bool
_dif_is_disabled(enum spdk_dif_type dif_type)
{
if (dif_type == SPDK_DIF_DISABLE) {
return true;
} else {
return false;
}
}
static uint32_t
_get_guard_interval(uint32_t block_size, uint32_t md_size, bool dif_loc, bool md_interleave)
{
if (!dif_loc) {
/* For metadata formats with more than 8 bytes, if the DIF is
* contained in the last 8 bytes of metadata, then the CRC
* covers all metadata up to but excluding these last 8 bytes.
*/
if (md_interleave) {
return block_size - sizeof(struct spdk_dif);
} else {
return md_size - sizeof(struct spdk_dif);
}
} else {
/* For metadata formats with more than 8 bytes, if the DIF is
* contained in the first 8 bytes of metadata, then the CRC
* does not cover any metadata.
*/
if (md_interleave) {
return block_size - md_size;
} else {
return 0;
}
}
}
int
spdk_dif_ctx_init(struct spdk_dif_ctx *ctx, uint32_t block_size, uint32_t md_size,
bool md_interleave, bool dif_loc, enum spdk_dif_type dif_type, uint32_t dif_flags,
uint32_t init_ref_tag, uint16_t apptag_mask, uint16_t app_tag,
uint16_t guard_seed)
{
if (md_size < sizeof(struct spdk_dif)) {
SPDK_ERRLOG("Metadata size is smaller than DIF size.\n");
return -EINVAL;
}
if (md_interleave) {
if (block_size < md_size) {
SPDK_ERRLOG("Block size is smaller than DIF size.\n");
return -EINVAL;
}
} else {
if (block_size == 0 || (block_size % 512) != 0) {
SPDK_ERRLOG("Zero block size is not allowed\n");
return -EINVAL;
}
}
if (!_dif_type_is_valid(dif_type, dif_flags)) {
SPDK_ERRLOG("DIF type is invalid.\n");
return -EINVAL;
}
ctx->block_size = block_size;
ctx->md_size = md_size;
ctx->guard_interval = _get_guard_interval(block_size, md_size, dif_loc, md_interleave);
ctx->dif_type = dif_type;
ctx->dif_flags = dif_flags;
ctx->init_ref_tag = init_ref_tag;
ctx->apptag_mask = apptag_mask;
ctx->app_tag = app_tag;
ctx->guard_seed = guard_seed;
return 0;
}
static void
_dif_generate(void *_dif, uint16_t guard, uint32_t offset_blocks,
const struct spdk_dif_ctx *ctx)
{
struct spdk_dif *dif = _dif;
uint32_t ref_tag;
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
to_be16(&dif->guard, guard);
}
if (ctx->dif_flags & SPDK_DIF_FLAGS_APPTAG_CHECK) {
to_be16(&dif->app_tag, ctx->app_tag);
}
if (ctx->dif_flags & SPDK_DIF_FLAGS_REFTAG_CHECK) {
/* For type 1 and 2, the reference tag is incremented for each
* subsequent logical block. For type 3, the reference tag
* remains the same as the initial reference tag.
*/
if (ctx->dif_type != SPDK_DIF_TYPE3) {
ref_tag = ctx->init_ref_tag + offset_blocks;
} else {
ref_tag = ctx->init_ref_tag;
}
to_be32(&dif->ref_tag, ref_tag);
}
}
static void
dif_generate(struct iovec *iovs, int iovcnt, uint32_t num_blocks,
const struct spdk_dif_ctx *ctx)
{
struct _iov_iter iter;
uint32_t offset_blocks;
void *buf;
uint16_t guard = 0;
offset_blocks = 0;
_iov_iter_init(&iter, iovs, iovcnt);
while (offset_blocks < num_blocks) {
_iov_iter_get_buf(&iter, &buf, NULL);
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif(ctx->guard_seed, buf, ctx->guard_interval);
}
_dif_generate(buf + ctx->guard_interval, guard, offset_blocks, ctx);
_iov_iter_advance(&iter, ctx->block_size);
offset_blocks++;
}
}
static void
_dif_generate_split(struct _iov_iter *iter, uint32_t offset_blocks,
const struct spdk_dif_ctx *ctx)
{
uint32_t offset_in_block, offset_in_dif, buf_len;
void *buf;
uint16_t guard = 0;
struct spdk_dif dif = {};
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = ctx->guard_seed;
}
offset_in_block = 0;
while (offset_in_block < ctx->block_size) {
_iov_iter_get_buf(iter, &buf, &buf_len);
if (offset_in_block < ctx->guard_interval) {
buf_len = spdk_min(buf_len, ctx->guard_interval - offset_in_block);
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
/* Compute CRC over split logical block data. */
guard = spdk_crc16_t10dif(guard, buf, buf_len);
}
if (offset_in_block + buf_len == ctx->guard_interval) {
/* If a whole logical block data is parsed, generate DIF
* and save it to the temporary DIF area.
*/
_dif_generate(&dif, guard, offset_blocks, ctx);
}
} else if (offset_in_block < ctx->guard_interval + sizeof(struct spdk_dif)) {
/* Copy generated DIF to the split DIF field. */
offset_in_dif = offset_in_block - ctx->guard_interval;
buf_len = spdk_min(buf_len, sizeof(struct spdk_dif) - offset_in_dif);
memcpy(buf, ((uint8_t *)&dif) + offset_in_dif, buf_len);
} else {
/* Skip metadata field after DIF field. */
buf_len = spdk_min(buf_len, ctx->block_size - offset_in_block);
}
_iov_iter_advance(iter, buf_len);
offset_in_block += buf_len;
}
}
static void
dif_generate_split(struct iovec *iovs, int iovcnt, uint32_t num_blocks,
const struct spdk_dif_ctx *ctx)
{
struct _iov_iter iter;
uint32_t offset_blocks;
offset_blocks = 0;
_iov_iter_init(&iter, iovs, iovcnt);
while (offset_blocks < num_blocks) {
_dif_generate_split(&iter, offset_blocks, ctx);
offset_blocks++;
}
}
int
spdk_dif_generate(struct iovec *iovs, int iovcnt, uint32_t num_blocks,
const struct spdk_dif_ctx *ctx)
{
if (!_are_iovs_valid(iovs, iovcnt, ctx->block_size * num_blocks)) {
SPDK_ERRLOG("Size of iovec array is not valid.\n");
return -EINVAL;
}
if (_dif_is_disabled(ctx->dif_type)) {
return 0;
}
if (_are_iovs_bytes_multiple(iovs, iovcnt, ctx->block_size)) {
dif_generate(iovs, iovcnt, num_blocks, ctx);
} else {
dif_generate_split(iovs, iovcnt, num_blocks, ctx);
}
return 0;
}
static void
_dif_error_set(struct spdk_dif_error *err_blk, uint8_t err_type,
uint32_t expected, uint32_t actual, uint32_t err_offset)
{
if (err_blk) {
err_blk->err_type = err_type;
err_blk->expected = expected;
err_blk->actual = actual;
err_blk->err_offset = err_offset;
}
}
static int
_dif_verify(void *_dif, uint16_t guard, uint32_t offset_blocks,
const struct spdk_dif_ctx *ctx, struct spdk_dif_error *err_blk)
{
struct spdk_dif *dif = _dif;
uint16_t _guard;
uint16_t _app_tag;
uint32_t ref_tag, _ref_tag;
switch (ctx->dif_type) {
case SPDK_DIF_TYPE1:
case SPDK_DIF_TYPE2:
/* If Type 1 or 2 is used, then all DIF checks are disabled when
* the Application Tag is 0xFFFF.
*/
if (dif->app_tag == 0xFFFF) {
return 0;
}
break;
case SPDK_DIF_TYPE3:
/* If Type 3 is used, then all DIF checks are disabled when the
* Application Tag is 0xFFFF and the Reference Tag is 0xFFFFFFFF.
*/
if (dif->app_tag == 0xFFFF && dif->ref_tag == 0xFFFFFFFF) {
return 0;
}
break;
default:
break;
}
/* For type 1 and 2, the reference tag is incremented for each
* subsequent logical block. For type 3, the reference tag
* remains the same as the initial reference tag.
*/
if (ctx->dif_type != SPDK_DIF_TYPE3) {
ref_tag = ctx->init_ref_tag + offset_blocks;
} else {
ref_tag = ctx->init_ref_tag;
}
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
/* Compare the DIF Guard field to the CRC computed over the logical
* block data.
*/
_guard = from_be16(&dif->guard);
if (_guard != guard) {
_dif_error_set(err_blk, SPDK_DIF_GUARD_ERROR, _guard, guard,
offset_blocks);
SPDK_ERRLOG("Failed to compare Guard: LBA=%" PRIu32 "," \
" Expected=%x, Actual=%x\n",
ref_tag, _guard, guard);
return -1;
}
}
if (ctx->dif_flags & SPDK_DIF_FLAGS_APPTAG_CHECK) {
/* Compare unmasked bits in the DIF Application Tag field to the
* passed Application Tag.
*/
_app_tag = from_be16(&dif->app_tag);
if ((_app_tag & ctx->apptag_mask) != ctx->app_tag) {
_dif_error_set(err_blk, SPDK_DIF_APPTAG_ERROR, ctx->app_tag,
(_app_tag & ctx->apptag_mask), offset_blocks);
SPDK_ERRLOG("Failed to compare App Tag: LBA=%" PRIu32 "," \
" Expected=%x, Actual=%x\n",
ref_tag, ctx->app_tag, (_app_tag & ctx->apptag_mask));
return -1;
}
}
if (ctx->dif_flags & SPDK_DIF_FLAGS_REFTAG_CHECK) {
switch (ctx->dif_type) {
case SPDK_DIF_TYPE1:
case SPDK_DIF_TYPE2:
/* Compare the DIF Reference Tag field to the passed Reference Tag.
* The passed Reference Tag will be the least significant 4 bytes
* of the LBA when Type 1 is used, and application specific value
* if Type 2 is used,
*/
_ref_tag = from_be32(&dif->ref_tag);
if (_ref_tag != ref_tag) {
_dif_error_set(err_blk, SPDK_DIF_REFTAG_ERROR, ref_tag,
_ref_tag, offset_blocks);
SPDK_ERRLOG("Failed to compare Ref Tag: LBA=%" PRIu32 "," \
" Expected=%x, Actual=%x\n",
ref_tag, ref_tag, _ref_tag);
return -1;
}
break;
case SPDK_DIF_TYPE3:
/* For Type 3, computed Reference Tag remains unchanged.
* Hence ignore the Reference Tag field.
*/
break;
default:
break;
}
}
return 0;
}
static int
dif_verify(struct iovec *iovs, int iovcnt, uint32_t num_blocks,
const struct spdk_dif_ctx *ctx, struct spdk_dif_error *err_blk)
{
struct _iov_iter iter;
uint32_t offset_blocks;
int rc;
void *buf;
uint16_t guard = 0;
offset_blocks = 0;
_iov_iter_init(&iter, iovs, iovcnt);
while (offset_blocks < num_blocks) {
_iov_iter_get_buf(&iter, &buf, NULL);
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif(ctx->guard_seed, buf, ctx->guard_interval);
}
rc = _dif_verify(buf + ctx->guard_interval, guard, offset_blocks, ctx, err_blk);
if (rc != 0) {
return rc;
}
_iov_iter_advance(&iter, ctx->block_size);
offset_blocks++;
}
return 0;
}
static int
_dif_verify_split(struct _iov_iter *iter, uint32_t offset_blocks,
const struct spdk_dif_ctx *ctx, struct spdk_dif_error *err_blk)
{
uint32_t offset_in_block, offset_in_dif, buf_len;
void *buf;
uint16_t guard = 0;
struct spdk_dif dif = {};
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = ctx->guard_seed;
}
offset_in_block = 0;
while (offset_in_block < ctx->block_size) {
_iov_iter_get_buf(iter, &buf, &buf_len);
if (offset_in_block < ctx->guard_interval) {
buf_len = spdk_min(buf_len, ctx->guard_interval - offset_in_block);
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
/* Compute CRC over split logical block data. */
guard = spdk_crc16_t10dif(guard, buf, buf_len);
}
} else if (offset_in_block < ctx->guard_interval + sizeof(struct spdk_dif)) {
/* Copy the split DIF field to the temporary DIF buffer. */
offset_in_dif = offset_in_block - ctx->guard_interval;
buf_len = spdk_min(buf_len, sizeof(struct spdk_dif) - offset_in_dif);
memcpy((uint8_t *)&dif + offset_in_dif, buf, buf_len);
} else {
/* Skip metadata field after DIF field. */
buf_len = spdk_min(buf_len, ctx->block_size - offset_in_block);
}
_iov_iter_advance(iter, buf_len);
offset_in_block += buf_len;
}
return _dif_verify(&dif, guard, offset_blocks, ctx, err_blk);
}
static int
dif_verify_split(struct iovec *iovs, int iovcnt, uint32_t num_blocks,
const struct spdk_dif_ctx *ctx, struct spdk_dif_error *err_blk)
{
struct _iov_iter iter;
uint32_t offset_blocks;
int rc;
offset_blocks = 0;
_iov_iter_init(&iter, iovs, iovcnt);
while (offset_blocks < num_blocks) {
rc = _dif_verify_split(&iter, offset_blocks, ctx, err_blk);
if (rc != 0) {
return rc;
}
offset_blocks++;
}
return 0;
}
int
spdk_dif_verify(struct iovec *iovs, int iovcnt, uint32_t num_blocks,
const struct spdk_dif_ctx *ctx, struct spdk_dif_error *err_blk)
{
if (!_are_iovs_valid(iovs, iovcnt, ctx->block_size * num_blocks)) {
SPDK_ERRLOG("Size of iovec array is not valid.\n");
return -EINVAL;
}
if (_dif_is_disabled(ctx->dif_type)) {
return 0;
}
if (_are_iovs_bytes_multiple(iovs, iovcnt, ctx->block_size)) {
return dif_verify(iovs, iovcnt, num_blocks, ctx, err_blk);
} else {
return dif_verify_split(iovs, iovcnt, num_blocks, ctx, err_blk);
}
}
static void
dif_generate_copy(struct iovec *iovs, int iovcnt, struct iovec *bounce_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx)
{
struct _iov_iter src_iter, dst_iter;
uint32_t offset_blocks, data_block_size;
void *src, *dst;
uint16_t guard;
offset_blocks = 0;
_iov_iter_init(&src_iter, iovs, iovcnt);
_iov_iter_init(&dst_iter, bounce_iov, 1);
data_block_size = ctx->block_size - ctx->md_size;
while (offset_blocks < num_blocks) {
_iov_iter_get_buf(&src_iter, &src, NULL);
_iov_iter_get_buf(&dst_iter, &dst, NULL);
guard = 0;
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif_copy(ctx->guard_seed, dst, src, data_block_size);
guard = spdk_crc16_t10dif(guard, dst + data_block_size,
ctx->guard_interval - data_block_size);
} else {
memcpy(dst, src, data_block_size);
}
_dif_generate(dst + ctx->guard_interval, guard, offset_blocks, ctx);
_iov_iter_advance(&src_iter, data_block_size);
_iov_iter_advance(&dst_iter, ctx->block_size);
offset_blocks++;
}
}
static void
_dif_generate_copy_split(struct _iov_iter *src_iter, struct _iov_iter *dst_iter,
uint32_t offset_blocks, const struct spdk_dif_ctx *ctx)
{
uint32_t offset_in_block, src_len, data_block_size;
uint16_t guard = 0;
void *src, *dst;
_iov_iter_get_buf(dst_iter, &dst, NULL);
data_block_size = ctx->block_size - ctx->md_size;
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = ctx->guard_seed;
}
offset_in_block = 0;
while (offset_in_block < data_block_size) {
/* Compute CRC over split logical block data and copy
* data to bounce buffer.
*/
_iov_iter_get_buf(src_iter, &src, &src_len);
src_len = spdk_min(src_len, data_block_size - offset_in_block);
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif_copy(guard, dst + offset_in_block,
src, src_len);
} else {
memcpy(dst + offset_in_block, src, src_len);
}
_iov_iter_advance(src_iter, src_len);
offset_in_block += src_len;
}
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif(guard, dst + data_block_size,
ctx->guard_interval - data_block_size);
}
_iov_iter_advance(dst_iter, ctx->block_size);
_dif_generate(dst + ctx->guard_interval, guard, offset_blocks, ctx);
}
static void
dif_generate_copy_split(struct iovec *iovs, int iovcnt, struct iovec *bounce_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx)
{
struct _iov_iter src_iter, dst_iter;
uint32_t offset_blocks;
offset_blocks = 0;
_iov_iter_init(&src_iter, iovs, iovcnt);
_iov_iter_init(&dst_iter, bounce_iov, 1);
while (offset_blocks < num_blocks) {
_dif_generate_copy_split(&src_iter, &dst_iter, offset_blocks, ctx);
offset_blocks++;
}
}
int
spdk_dif_generate_copy(struct iovec *iovs, int iovcnt, struct iovec *bounce_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx)
{
uint32_t data_block_size;
data_block_size = ctx->block_size - ctx->md_size;
if (!_are_iovs_valid(iovs, iovcnt, data_block_size * num_blocks) ||
!_are_iovs_valid(bounce_iov, 1, ctx->block_size * num_blocks)) {
SPDK_ERRLOG("Size of iovec arrays are not valid.\n");
return -EINVAL;
}
if (_dif_is_disabled(ctx->dif_type)) {
return 0;
}
if (_are_iovs_bytes_multiple(iovs, iovcnt, data_block_size)) {
dif_generate_copy(iovs, iovcnt, bounce_iov, num_blocks, ctx);
} else {
dif_generate_copy_split(iovs, iovcnt, bounce_iov, num_blocks, ctx);
}
return 0;
}
static int
dif_verify_copy(struct iovec *iovs, int iovcnt, struct iovec *bounce_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx,
struct spdk_dif_error *err_blk)
{
struct _iov_iter src_iter, dst_iter;
uint32_t offset_blocks, data_block_size;
void *src, *dst;
int rc;
uint16_t guard;
offset_blocks = 0;
_iov_iter_init(&src_iter, bounce_iov, 1);
_iov_iter_init(&dst_iter, iovs, iovcnt);
data_block_size = ctx->block_size - ctx->md_size;
while (offset_blocks < num_blocks) {
_iov_iter_get_buf(&src_iter, &src, NULL);
_iov_iter_get_buf(&dst_iter, &dst, NULL);
guard = 0;
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif_copy(ctx->guard_seed, dst, src, data_block_size);
guard = spdk_crc16_t10dif(guard, src + data_block_size,
ctx->guard_interval - data_block_size);
} else {
memcpy(dst, src, data_block_size);
}
rc = _dif_verify(src + ctx->guard_interval, guard, offset_blocks, ctx, err_blk);
if (rc != 0) {
return rc;
}
_iov_iter_advance(&src_iter, ctx->block_size);
_iov_iter_advance(&dst_iter, data_block_size);
offset_blocks++;
}
return 0;
}
static int
_dif_verify_copy_split(struct _iov_iter *src_iter, struct _iov_iter *dst_iter,
uint32_t offset_blocks, const struct spdk_dif_ctx *ctx,
struct spdk_dif_error *err_blk)
{
uint32_t offset_in_block, dst_len, data_block_size;
uint16_t guard = 0;
void *src, *dst;
_iov_iter_get_buf(src_iter, &src, NULL);
data_block_size = ctx->block_size - ctx->md_size;
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = ctx->guard_seed;
}
offset_in_block = 0;
while (offset_in_block < data_block_size) {
/* Compute CRC over split logical block data and copy
* data to bounce buffer.
*/
_iov_iter_get_buf(dst_iter, &dst, &dst_len);
dst_len = spdk_min(dst_len, data_block_size - offset_in_block);
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif_copy(guard, dst,
src + offset_in_block, dst_len);
} else {
memcpy(dst, src + offset_in_block, dst_len);
}
_iov_iter_advance(dst_iter, dst_len);
offset_in_block += dst_len;
}
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif(guard, src + data_block_size,
ctx->guard_interval - data_block_size);
}
_iov_iter_advance(src_iter, ctx->block_size);
return _dif_verify(src + ctx->guard_interval, guard, offset_blocks, ctx, err_blk);
}
static int
dif_verify_copy_split(struct iovec *iovs, int iovcnt, struct iovec *bounce_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx,
struct spdk_dif_error *err_blk)
{
struct _iov_iter src_iter, dst_iter;
uint32_t offset_blocks;
int rc;
offset_blocks = 0;
_iov_iter_init(&src_iter, bounce_iov, 1);
_iov_iter_init(&dst_iter, iovs, iovcnt);
while (offset_blocks < num_blocks) {
rc = _dif_verify_copy_split(&src_iter, &dst_iter, offset_blocks, ctx, err_blk);
if (rc != 0) {
return rc;
}
offset_blocks++;
}
return 0;
}
int
spdk_dif_verify_copy(struct iovec *iovs, int iovcnt, struct iovec *bounce_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx,
struct spdk_dif_error *err_blk)
{
uint32_t data_block_size;
data_block_size = ctx->block_size - ctx->md_size;
if (!_are_iovs_valid(iovs, iovcnt, data_block_size * num_blocks) ||
!_are_iovs_valid(bounce_iov, 1, ctx->block_size * num_blocks)) {
SPDK_ERRLOG("Size of iovec arrays are not valid\n");
return -EINVAL;
}
if (_dif_is_disabled(ctx->dif_type)) {
return 0;
}
if (_are_iovs_bytes_multiple(iovs, iovcnt, data_block_size)) {
return dif_verify_copy(iovs, iovcnt, bounce_iov, num_blocks, ctx, err_blk);
} else {
return dif_verify_copy_split(iovs, iovcnt, bounce_iov, num_blocks, ctx, err_blk);
}
}
static void
_bit_flip(uint8_t *buf, uint32_t flip_bit)
{
uint8_t byte;
byte = *buf;
byte ^= 1 << flip_bit;
*buf = byte;
}
static int
_dif_inject_error(struct iovec *iovs, int iovcnt,
uint32_t block_size, uint32_t num_blocks,
uint32_t inject_offset_blocks,
uint32_t inject_offset_bytes,
uint32_t inject_offset_bits)
{
struct _iov_iter iter;
uint32_t offset_in_block, buf_len;
void *buf;
_iov_iter_init(&iter, iovs, iovcnt);
_iov_iter_fast_forward(&iter, block_size * inject_offset_blocks);
offset_in_block = 0;
while (offset_in_block < block_size) {
_iov_iter_get_buf(&iter, &buf, &buf_len);
buf_len = spdk_min(buf_len, block_size - offset_in_block);
if (inject_offset_bytes >= offset_in_block &&
inject_offset_bytes < offset_in_block + buf_len) {
buf += inject_offset_bytes - offset_in_block;
_bit_flip(buf, inject_offset_bits);
return 0;
}
_iov_iter_advance(&iter, buf_len);
offset_in_block += buf_len;
}
return -1;
}
static int
dif_inject_error(struct iovec *iovs, int iovcnt,
uint32_t block_size, uint32_t num_blocks,
uint32_t start_inject_bytes, uint32_t inject_range_bytes,
uint32_t *inject_offset)
{
uint32_t inject_offset_blocks, inject_offset_bytes, inject_offset_bits;
uint32_t offset_blocks;
int rc;
srand(time(0));
inject_offset_blocks = rand() % num_blocks;
inject_offset_bytes = start_inject_bytes + (rand() % inject_range_bytes);
inject_offset_bits = rand() % 8;
for (offset_blocks = 0; offset_blocks < num_blocks; offset_blocks++) {
if (offset_blocks == inject_offset_blocks) {
rc = _dif_inject_error(iovs, iovcnt, block_size, num_blocks,
inject_offset_blocks,
inject_offset_bytes,
inject_offset_bits);
if (rc == 0) {
*inject_offset = inject_offset_blocks;
}
return rc;
}
}
return -1;
}
#define _member_size(type, member) sizeof(((type *)0)->member)
int
spdk_dif_inject_error(struct iovec *iovs, int iovcnt, uint32_t num_blocks,
const struct spdk_dif_ctx *ctx, uint32_t inject_flags,
uint32_t *inject_offset)
{
int rc;
if (!_are_iovs_valid(iovs, iovcnt, ctx->block_size * num_blocks)) {
SPDK_ERRLOG("Size of iovec array is not valid.\n");
return -EINVAL;
}
if (inject_flags & SPDK_DIF_REFTAG_ERROR) {
rc = dif_inject_error(iovs, iovcnt, ctx->block_size, num_blocks,
ctx->guard_interval + offsetof(struct spdk_dif, ref_tag),
_member_size(struct spdk_dif, ref_tag),
inject_offset);
if (rc != 0) {
SPDK_ERRLOG("Failed to inject error to Reference Tag.\n");
return rc;
}
}
if (inject_flags & SPDK_DIF_APPTAG_ERROR) {
rc = dif_inject_error(iovs, iovcnt, ctx->block_size, num_blocks,
ctx->guard_interval + offsetof(struct spdk_dif, app_tag),
_member_size(struct spdk_dif, app_tag),
inject_offset);
if (rc != 0) {
SPDK_ERRLOG("Failed to inject error to Application Tag.\n");
return rc;
}
}
if (inject_flags & SPDK_DIF_GUARD_ERROR) {
rc = dif_inject_error(iovs, iovcnt, ctx->block_size, num_blocks,
ctx->guard_interval,
_member_size(struct spdk_dif, guard),
inject_offset);
if (rc != 0) {
SPDK_ERRLOG("Failed to inject error to Guard.\n");
return rc;
}
}
if (inject_flags & SPDK_DIF_DATA_ERROR) {
/* If the DIF information is contained within the last 8 bytes of
* metadata, then the CRC covers all metadata bytes up to but excluding
* the last 8 bytes. But error injection does not cover these metadata
* because classification is not determined yet.
*
* Note: Error injection to data block is expected to be detected as
* guard error.
*/
rc = dif_inject_error(iovs, iovcnt, ctx->block_size, num_blocks,
0,
ctx->block_size - ctx->md_size,
inject_offset);
if (rc != 0) {
SPDK_ERRLOG("Failed to inject error to data block.\n");
return rc;
}
}
return 0;
}
static void
dix_generate(struct iovec *iovs, int iovcnt, struct iovec *md_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx)
{
struct _iov_iter data_iter, md_iter;
uint32_t offset_blocks;
uint16_t guard;
void *data_buf, *md_buf;
offset_blocks = 0;
_iov_iter_init(&data_iter, iovs, iovcnt);
_iov_iter_init(&md_iter, md_iov, 1);
while (offset_blocks < num_blocks) {
_iov_iter_get_buf(&data_iter, &data_buf, NULL);
_iov_iter_get_buf(&md_iter, &md_buf, NULL);
guard = 0;
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif(ctx->guard_seed, data_buf, ctx->block_size);
guard = spdk_crc16_t10dif(guard, md_buf, ctx->guard_interval);
}
_dif_generate(md_buf + ctx->guard_interval, guard, offset_blocks, ctx);
_iov_iter_advance(&data_iter, ctx->block_size);
_iov_iter_advance(&md_iter, ctx->md_size);
offset_blocks++;
}
}
static void
_dix_generate_split(struct _iov_iter *data_iter, struct _iov_iter *md_iter,
uint32_t offset_blocks, const struct spdk_dif_ctx *ctx)
{
uint32_t offset_in_block, data_buf_len;
uint16_t guard = 0;
void *data_buf, *md_buf;
_iov_iter_get_buf(md_iter, &md_buf, NULL);
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = ctx->guard_seed;
}
offset_in_block = 0;
while (offset_in_block < ctx->block_size) {
_iov_iter_get_buf(data_iter, &data_buf, &data_buf_len);
data_buf_len = spdk_min(data_buf_len, ctx->block_size - offset_in_block);
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif(guard, data_buf, data_buf_len);
}
_iov_iter_advance(data_iter, data_buf_len);
offset_in_block += data_buf_len;
}
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif(guard, md_buf, ctx->guard_interval);
}
_iov_iter_advance(md_iter, ctx->md_size);
_dif_generate(md_buf + ctx->guard_interval, guard, offset_blocks, ctx);
}
static void
dix_generate_split(struct iovec *iovs, int iovcnt, struct iovec *md_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx)
{
struct _iov_iter data_iter, md_iter;
uint32_t offset_blocks;
offset_blocks = 0;
_iov_iter_init(&data_iter, iovs, iovcnt);
_iov_iter_init(&md_iter, md_iov, 1);
while (offset_blocks < num_blocks) {
_dix_generate_split(&data_iter, &md_iter, offset_blocks, ctx);
offset_blocks++;
}
}
int
spdk_dix_generate(struct iovec *iovs, int iovcnt, struct iovec *md_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx)
{
if (!_are_iovs_valid(iovs, iovcnt, ctx->block_size * num_blocks) ||
!_are_iovs_valid(md_iov, 1, ctx->md_size * num_blocks)) {
SPDK_ERRLOG("Size of iovec array is not valid.\n");
return -EINVAL;
}
if (_dif_is_disabled(ctx->dif_type)) {
return 0;
}
if (_are_iovs_bytes_multiple(iovs, iovcnt, ctx->block_size)) {
dix_generate(iovs, iovcnt, md_iov, num_blocks, ctx);
} else {
dix_generate_split(iovs, iovcnt, md_iov, num_blocks, ctx);
}
return 0;
}
static int
dix_verify(struct iovec *iovs, int iovcnt, struct iovec *md_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx,
struct spdk_dif_error *err_blk)
{
struct _iov_iter data_iter, md_iter;
uint32_t offset_blocks;
uint16_t guard;
void *data_buf, *md_buf;
int rc;
offset_blocks = 0;
_iov_iter_init(&data_iter, iovs, iovcnt);
_iov_iter_init(&md_iter, md_iov, 1);
while (offset_blocks < num_blocks) {
_iov_iter_get_buf(&data_iter, &data_buf, NULL);
_iov_iter_get_buf(&md_iter, &md_buf, NULL);
guard = 0;
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif(ctx->guard_seed, data_buf, ctx->block_size);
guard = spdk_crc16_t10dif(guard, md_buf, ctx->guard_interval);
}
rc = _dif_verify(md_buf + ctx->guard_interval, guard, offset_blocks, ctx, err_blk);
if (rc != 0) {
return rc;
}
_iov_iter_advance(&data_iter, ctx->block_size);
_iov_iter_advance(&md_iter, ctx->md_size);
offset_blocks++;
}
return 0;
}
static int
_dix_verify_split(struct _iov_iter *data_iter, struct _iov_iter *md_iter,
uint32_t offset_blocks, const struct spdk_dif_ctx *ctx,
struct spdk_dif_error *err_blk)
{
uint32_t offset_in_block, data_buf_len;
uint16_t guard = 0;
void *data_buf, *md_buf;
_iov_iter_get_buf(md_iter, &md_buf, NULL);
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = ctx->guard_seed;
}
offset_in_block = 0;
while (offset_in_block < ctx->block_size) {
_iov_iter_get_buf(data_iter, &data_buf, &data_buf_len);
data_buf_len = spdk_min(data_buf_len, ctx->block_size - offset_in_block);
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif(guard, data_buf, data_buf_len);
}
_iov_iter_advance(data_iter, data_buf_len);
offset_in_block += data_buf_len;
}
if (ctx->dif_flags & SPDK_DIF_FLAGS_GUARD_CHECK) {
guard = spdk_crc16_t10dif(guard, md_buf, ctx->guard_interval);
}
_iov_iter_advance(md_iter, ctx->md_size);
return _dif_verify(md_buf + ctx->guard_interval, guard, offset_blocks, ctx, err_blk);
}
static int
dix_verify_split(struct iovec *iovs, int iovcnt, struct iovec *md_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx,
struct spdk_dif_error *err_blk)
{
struct _iov_iter data_iter, md_iter;
uint32_t offset_blocks;
int rc;
offset_blocks = 0;
_iov_iter_init(&data_iter, iovs, iovcnt);
_iov_iter_init(&md_iter, md_iov, 1);
while (offset_blocks < num_blocks) {
rc = _dix_verify_split(&data_iter, &md_iter, offset_blocks, ctx, err_blk);
if (rc != 0) {
return rc;
}
offset_blocks++;
}
return 0;
}
int
spdk_dix_verify(struct iovec *iovs, int iovcnt, struct iovec *md_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx,
struct spdk_dif_error *err_blk)
{
if (!_are_iovs_valid(iovs, iovcnt, ctx->block_size * num_blocks) ||
!_are_iovs_valid(md_iov, 1, ctx->md_size * num_blocks)) {
SPDK_ERRLOG("Size of iovec array is not valid.\n");
return -EINVAL;
}
if (_dif_is_disabled(ctx->dif_type)) {
return 0;
}
if (_are_iovs_bytes_multiple(iovs, iovcnt, ctx->block_size)) {
return dix_verify(iovs, iovcnt, md_iov, num_blocks, ctx, err_blk);
} else {
return dix_verify_split(iovs, iovcnt, md_iov, num_blocks, ctx, err_blk);
}
}
int
spdk_dix_inject_error(struct iovec *iovs, int iovcnt, struct iovec *md_iov,
uint32_t num_blocks, const struct spdk_dif_ctx *ctx,
uint32_t inject_flags, uint32_t *inject_offset)
{
int rc;
if (!_are_iovs_valid(iovs, iovcnt, ctx->block_size * num_blocks) ||
!_are_iovs_valid(md_iov, 1, ctx->md_size * num_blocks)) {
SPDK_ERRLOG("Size of iovec array is not valid.\n");
return -EINVAL;
}
if (inject_flags & SPDK_DIF_REFTAG_ERROR) {
rc = dif_inject_error(md_iov, 1, ctx->md_size, num_blocks,
ctx->guard_interval + offsetof(struct spdk_dif, ref_tag),
_member_size(struct spdk_dif, ref_tag),
inject_offset);
if (rc != 0) {
SPDK_ERRLOG("Failed to inject error to Reference Tag.\n");
return rc;
}
}
if (inject_flags & SPDK_DIF_APPTAG_ERROR) {
rc = dif_inject_error(md_iov, 1, ctx->md_size, num_blocks,
ctx->guard_interval + offsetof(struct spdk_dif, app_tag),
_member_size(struct spdk_dif, app_tag),
inject_offset);
if (rc != 0) {
SPDK_ERRLOG("Failed to inject error to Application Tag.\n");
return rc;
}
}
if (inject_flags & SPDK_DIF_GUARD_ERROR) {
rc = dif_inject_error(md_iov, 1, ctx->md_size, num_blocks,
ctx->guard_interval,
_member_size(struct spdk_dif, guard),
inject_offset);
if (rc != 0) {
SPDK_ERRLOG("Failed to inject error to Guard.\n");
return rc;
}
}
if (inject_flags & SPDK_DIF_DATA_ERROR) {
/* Note: Error injection to data block is expected to be detected
* as guard error.
*/
rc = dif_inject_error(iovs, iovcnt, ctx->block_size, num_blocks,
0,
ctx->block_size,
inject_offset);
if (rc != 0) {
SPDK_ERRLOG("Failed to inject error to Guard.\n");
return rc;
}
}
return 0;
}