numam-spdk/lib/nvme/nvme_qpair.c
Daniel Verkamp e2d3cc6502 nvme: replace rte_memcpy with specialized function
Use the knowledge that both the source and destination of
nvme_copy_command() are aligned to emit the aligned variants of the
SSE2/AVX mov instructions.

Change-Id: I0a7e32a3bb10b9a1920cd85691b79fa7172eecb3
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
2016-06-28 14:17:21 -07:00

1086 lines
31 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "nvme_internal.h"
static inline bool nvme_qpair_is_admin_queue(struct spdk_nvme_qpair *qpair)
{
return qpair->id == 0;
}
static inline bool nvme_qpair_is_io_queue(struct spdk_nvme_qpair *qpair)
{
return qpair->id != 0;
}
struct nvme_string {
uint16_t value;
const char *str;
};
static const struct nvme_string admin_opcode[] = {
{ SPDK_NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
{ SPDK_NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
{ SPDK_NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
{ SPDK_NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
{ SPDK_NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
{ SPDK_NVME_OPC_IDENTIFY, "IDENTIFY" },
{ SPDK_NVME_OPC_ABORT, "ABORT" },
{ SPDK_NVME_OPC_SET_FEATURES, "SET FEATURES" },
{ SPDK_NVME_OPC_GET_FEATURES, "GET FEATURES" },
{ SPDK_NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
{ SPDK_NVME_OPC_NS_MANAGEMENT, "NAMESPACE MANAGEMENT" },
{ SPDK_NVME_OPC_FIRMWARE_COMMIT, "FIRMWARE COMMIT" },
{ SPDK_NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
{ SPDK_NVME_OPC_NS_ATTACHMENT, "NAMESPACE ATTACHMENT" },
{ SPDK_NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
{ SPDK_NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
{ SPDK_NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
{ 0xFFFF, "ADMIN COMMAND" }
};
static const struct nvme_string io_opcode[] = {
{ SPDK_NVME_OPC_FLUSH, "FLUSH" },
{ SPDK_NVME_OPC_WRITE, "WRITE" },
{ SPDK_NVME_OPC_READ, "READ" },
{ SPDK_NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
{ SPDK_NVME_OPC_COMPARE, "COMPARE" },
{ SPDK_NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
{ SPDK_NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
{ SPDK_NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
{ SPDK_NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
{ SPDK_NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
{ SPDK_NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
{ 0xFFFF, "IO COMMAND" }
};
static const char *
nvme_get_string(const struct nvme_string *strings, uint16_t value)
{
const struct nvme_string *entry;
entry = strings;
while (entry->value != 0xFFFF) {
if (entry->value == value) {
return entry->str;
}
entry++;
}
return entry->str;
}
static void
nvme_admin_qpair_print_command(struct spdk_nvme_qpair *qpair,
struct spdk_nvme_cmd *cmd)
{
nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
"cdw10:%08x cdw11:%08x\n",
nvme_get_string(admin_opcode, cmd->opc), cmd->opc, qpair->id, cmd->cid,
cmd->nsid, cmd->cdw10, cmd->cdw11);
}
static void
nvme_io_qpair_print_command(struct spdk_nvme_qpair *qpair,
struct spdk_nvme_cmd *cmd)
{
nvme_assert(qpair != NULL, ("print_command: qpair == NULL\n"));
nvme_assert(cmd != NULL, ("print_command: cmd == NULL\n"));
switch ((int)cmd->opc) {
case SPDK_NVME_OPC_WRITE:
case SPDK_NVME_OPC_READ:
case SPDK_NVME_OPC_WRITE_UNCORRECTABLE:
case SPDK_NVME_OPC_COMPARE:
nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
"lba:%llu len:%d\n",
nvme_get_string(io_opcode, cmd->opc), qpair->id, cmd->cid,
cmd->nsid,
((unsigned long long)cmd->cdw11 << 32) + cmd->cdw10,
(cmd->cdw12 & 0xFFFF) + 1);
break;
case SPDK_NVME_OPC_FLUSH:
case SPDK_NVME_OPC_DATASET_MANAGEMENT:
nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
nvme_get_string(io_opcode, cmd->opc), qpair->id, cmd->cid,
cmd->nsid);
break;
default:
nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
nvme_get_string(io_opcode, cmd->opc), cmd->opc, qpair->id,
cmd->cid, cmd->nsid);
break;
}
}
static void
nvme_qpair_print_command(struct spdk_nvme_qpair *qpair, struct spdk_nvme_cmd *cmd)
{
nvme_assert(qpair != NULL, ("qpair can not be NULL"));
nvme_assert(cmd != NULL, ("cmd can not be NULL"));
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_admin_qpair_print_command(qpair, cmd);
} else {
nvme_io_qpair_print_command(qpair, cmd);
}
}
static const struct nvme_string generic_status[] = {
{ SPDK_NVME_SC_SUCCESS, "SUCCESS" },
{ SPDK_NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
{ SPDK_NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
{ SPDK_NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
{ SPDK_NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
{ SPDK_NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
{ SPDK_NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
{ SPDK_NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
{ SPDK_NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
{ SPDK_NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
{ SPDK_NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
{ SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
{ SPDK_NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
{ SPDK_NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
{ SPDK_NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
{ SPDK_NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
{ 0xFFFF, "GENERIC" }
};
static const struct nvme_string command_specific_status[] = {
{ SPDK_NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
{ SPDK_NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
{ SPDK_NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
{ SPDK_NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
{ SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
{ SPDK_NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
{ SPDK_NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
{ SPDK_NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
{ SPDK_NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
{ SPDK_NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
{ SPDK_NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
{ SPDK_NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
{ SPDK_NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
{ SPDK_NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
{ 0xFFFF, "COMMAND SPECIFIC" }
};
static const struct nvme_string media_error_status[] = {
{ SPDK_NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
{ SPDK_NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
{ SPDK_NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
{ SPDK_NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
{ SPDK_NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
{ SPDK_NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
{ SPDK_NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
{ 0xFFFF, "MEDIA ERROR" }
};
static const char *
get_status_string(uint16_t sct, uint16_t sc)
{
const struct nvme_string *entry;
switch (sct) {
case SPDK_NVME_SCT_GENERIC:
entry = generic_status;
break;
case SPDK_NVME_SCT_COMMAND_SPECIFIC:
entry = command_specific_status;
break;
case SPDK_NVME_SCT_MEDIA_ERROR:
entry = media_error_status;
break;
case SPDK_NVME_SCT_VENDOR_SPECIFIC:
return "VENDOR SPECIFIC";
default:
return "RESERVED";
}
return nvme_get_string(entry, sc);
}
static void
nvme_qpair_print_completion(struct spdk_nvme_qpair *qpair,
struct spdk_nvme_cpl *cpl)
{
nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x sqhd:%04x p:%x m:%x dnr:%x\n",
get_status_string(cpl->status.sct, cpl->status.sc),
cpl->status.sct, cpl->status.sc, cpl->sqid, cpl->cid, cpl->cdw0,
cpl->sqhd, cpl->status.p, cpl->status.m, cpl->status.dnr);
}
static bool
nvme_completion_is_retry(const struct spdk_nvme_cpl *cpl)
{
/*
* TODO: spec is not clear how commands that are aborted due
* to TLER will be marked. So for now, it seems
* NAMESPACE_NOT_READY is the only case where we should
* look at the DNR bit.
*/
switch ((int)cpl->status.sct) {
case SPDK_NVME_SCT_GENERIC:
switch ((int)cpl->status.sc) {
case SPDK_NVME_SC_ABORTED_BY_REQUEST:
case SPDK_NVME_SC_NAMESPACE_NOT_READY:
if (cpl->status.dnr) {
return false;
} else {
return true;
}
case SPDK_NVME_SC_INVALID_OPCODE:
case SPDK_NVME_SC_INVALID_FIELD:
case SPDK_NVME_SC_COMMAND_ID_CONFLICT:
case SPDK_NVME_SC_DATA_TRANSFER_ERROR:
case SPDK_NVME_SC_ABORTED_POWER_LOSS:
case SPDK_NVME_SC_INTERNAL_DEVICE_ERROR:
case SPDK_NVME_SC_ABORTED_SQ_DELETION:
case SPDK_NVME_SC_ABORTED_FAILED_FUSED:
case SPDK_NVME_SC_ABORTED_MISSING_FUSED:
case SPDK_NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
case SPDK_NVME_SC_COMMAND_SEQUENCE_ERROR:
case SPDK_NVME_SC_LBA_OUT_OF_RANGE:
case SPDK_NVME_SC_CAPACITY_EXCEEDED:
default:
return false;
}
case SPDK_NVME_SCT_COMMAND_SPECIFIC:
case SPDK_NVME_SCT_MEDIA_ERROR:
case SPDK_NVME_SCT_VENDOR_SPECIFIC:
default:
return false;
}
}
static void
nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
{
tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
tr->cid = cid;
tr->active = false;
}
static inline void
nvme_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
{
/* dst and src are known to be non-overlapping and 64-byte aligned. */
#if defined(__AVX__)
__m256i *d256 = (__m256i *)dst;
const __m256i *s256 = (const __m256i *)src;
_mm256_store_si256(&d256[0], _mm256_load_si256(&s256[0]));
_mm256_store_si256(&d256[1], _mm256_load_si256(&s256[1]));
#elif defined(__SSE2__)
__m128i *d128 = (__m128i *)dst;
const __m128i *s128 = (const __m128i *)src;
_mm_store_si128(&d128[0], _mm_load_si128(&s128[0]));
_mm_store_si128(&d128[1], _mm_load_si128(&s128[1]));
_mm_store_si128(&d128[2], _mm_load_si128(&s128[2]));
_mm_store_si128(&d128[3], _mm_load_si128(&s128[3]));
#else
*dst = *src;
#endif
}
static void
nvme_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
struct nvme_request *req;
req = tr->req;
qpair->tr[tr->cid].active = true;
/* Copy the command from the tracker to the submission queue. */
nvme_copy_command(&qpair->cmd[qpair->sq_tail], &req->cmd);
if (++qpair->sq_tail == qpair->num_entries) {
qpair->sq_tail = 0;
}
spdk_wmb();
spdk_mmio_write_4(qpair->sq_tdbl, qpair->sq_tail);
}
static void
nvme_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
struct spdk_nvme_cpl *cpl, bool print_on_error)
{
struct nvme_request *req;
bool retry, error;
req = tr->req;
nvme_assert(req != NULL, ("tr has NULL req\n"));
error = spdk_nvme_cpl_is_error(cpl);
retry = error && nvme_completion_is_retry(cpl) &&
req->retries < spdk_nvme_retry_count;
if (error && print_on_error) {
nvme_qpair_print_command(qpair, &req->cmd);
nvme_qpair_print_completion(qpair, cpl);
}
qpair->tr[cpl->cid].active = false;
nvme_assert(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
if (retry) {
req->retries++;
nvme_qpair_submit_tracker(qpair, tr);
} else {
if (req->cb_fn) {
req->cb_fn(req->cb_arg, cpl);
}
nvme_free_request(req);
tr->req = NULL;
LIST_REMOVE(tr, list);
LIST_INSERT_HEAD(&qpair->free_tr, tr, list);
/*
* If the controller is in the middle of resetting, don't
* try to submit queued requests here - let the reset logic
* handle that instead.
*/
if (!STAILQ_EMPTY(&qpair->queued_req) &&
!qpair->ctrlr->is_resetting) {
req = STAILQ_FIRST(&qpair->queued_req);
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
nvme_qpair_submit_request(qpair, req);
}
}
}
static void
nvme_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
bool print_on_error)
{
struct spdk_nvme_cpl cpl;
memset(&cpl, 0, sizeof(cpl));
cpl.sqid = qpair->id;
cpl.cid = tr->cid;
cpl.status.sct = sct;
cpl.status.sc = sc;
cpl.status.dnr = dnr;
nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
}
static void
nvme_qpair_manual_complete_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req, uint32_t sct, uint32_t sc,
bool print_on_error)
{
struct spdk_nvme_cpl cpl;
bool error;
memset(&cpl, 0, sizeof(cpl));
cpl.sqid = qpair->id;
cpl.status.sct = sct;
cpl.status.sc = sc;
error = spdk_nvme_cpl_is_error(&cpl);
if (error && print_on_error) {
nvme_qpair_print_command(qpair, &req->cmd);
nvme_qpair_print_completion(qpair, &cpl);
}
if (req->cb_fn) {
req->cb_fn(req->cb_arg, &cpl);
}
nvme_free_request(req);
}
static inline bool
nvme_qpair_check_enabled(struct spdk_nvme_qpair *qpair)
{
if (!qpair->is_enabled &&
!qpair->ctrlr->is_resetting) {
nvme_qpair_enable(qpair);
}
return qpair->is_enabled;
}
int32_t
spdk_nvme_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
struct nvme_tracker *tr;
struct spdk_nvme_cpl *cpl;
uint32_t num_completions = 0;
if (!nvme_qpair_check_enabled(qpair)) {
/*
* qpair is not enabled, likely because a controller reset is
* is in progress. Ignore the interrupt - any I/O that was
* associated with this interrupt will get retried when the
* reset is complete.
*/
return 0;
}
if (max_completions == 0) {
/*
* max_completions == 0 means unlimited; set it to the max uint32_t value
* to avoid a special case in the loop. The maximum possible queue size is
* only 64K, so num_completions will never reach this value.
*/
max_completions = UINT32_MAX;
}
while (1) {
cpl = &qpair->cpl[qpair->cq_head];
if (cpl->status.p != qpair->phase)
break;
tr = &qpair->tr[cpl->cid];
if (tr->active) {
nvme_qpair_complete_tracker(qpair, tr, cpl, true);
} else {
nvme_printf(qpair->ctrlr,
"cpl does not map to outstanding cmd\n");
nvme_qpair_print_completion(qpair, cpl);
nvme_assert(0, ("received completion for unknown cmd\n"));
}
if (++qpair->cq_head == qpair->num_entries) {
qpair->cq_head = 0;
qpair->phase = !qpair->phase;
}
if (++num_completions == max_completions) {
break;
}
}
if (num_completions > 0) {
spdk_mmio_write_4(qpair->cq_hdbl, qpair->cq_head);
}
return num_completions;
}
int
nvme_qpair_construct(struct spdk_nvme_qpair *qpair, uint16_t id,
uint16_t num_entries, uint16_t num_trackers,
struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_tracker *tr;
uint16_t i;
volatile uint32_t *doorbell_base;
uint64_t phys_addr = 0;
uint64_t offset;
nvme_assert(num_entries != 0, ("invalid num_entries\n"));
nvme_assert(num_trackers != 0, ("invalid num_trackers\n"));
qpair->id = id;
qpair->num_entries = num_entries;
qpair->qprio = 0;
qpair->sq_in_cmb = false;
qpair->ctrlr = ctrlr;
/* cmd and cpl rings must be aligned on 4KB boundaries. */
if (ctrlr->opts.use_cmb_sqs) {
if (nvme_ctrlr_alloc_cmb(ctrlr, qpair->num_entries * sizeof(struct spdk_nvme_cmd),
0x1000, &offset) == 0) {
qpair->cmd = ctrlr->cmb_bar_virt_addr + offset;
qpair->cmd_bus_addr = ctrlr->cmb_bar_phys_addr + offset;
qpair->sq_in_cmb = true;
}
}
if (qpair->sq_in_cmb == false) {
qpair->cmd = nvme_malloc("qpair_cmd",
qpair->num_entries * sizeof(struct spdk_nvme_cmd),
0x1000,
&qpair->cmd_bus_addr);
if (qpair->cmd == NULL) {
nvme_printf(ctrlr, "alloc qpair_cmd failed\n");
goto fail;
}
}
qpair->cpl = nvme_malloc("qpair_cpl",
qpair->num_entries * sizeof(struct spdk_nvme_cpl),
0x1000,
&qpair->cpl_bus_addr);
if (qpair->cpl == NULL) {
nvme_printf(ctrlr, "alloc qpair_cpl failed\n");
goto fail;
}
doorbell_base = &ctrlr->regs->doorbell[0].sq_tdbl;
qpair->sq_tdbl = doorbell_base + (2 * id + 0) * ctrlr->doorbell_stride_u32;
qpair->cq_hdbl = doorbell_base + (2 * id + 1) * ctrlr->doorbell_stride_u32;
LIST_INIT(&qpair->free_tr);
LIST_INIT(&qpair->outstanding_tr);
STAILQ_INIT(&qpair->queued_req);
/*
* Reserve space for all of the trackers in a single allocation.
* struct nvme_tracker must be padded so that its size is already a power of 2.
* This ensures the PRP list embedded in the nvme_tracker object will not span a
* 4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
*/
qpair->tr = nvme_malloc("nvme_tr", num_trackers * sizeof(*tr), sizeof(*tr), &phys_addr);
if (qpair->tr == NULL) {
nvme_printf(ctrlr, "nvme_tr failed\n");
goto fail;
}
for (i = 0; i < num_trackers; i++) {
tr = &qpair->tr[i];
nvme_qpair_construct_tracker(tr, i, phys_addr);
LIST_INSERT_HEAD(&qpair->free_tr, tr, list);
phys_addr += sizeof(struct nvme_tracker);
}
nvme_qpair_reset(qpair);
return 0;
fail:
nvme_qpair_destroy(qpair);
return -1;
}
static void
nvme_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
{
struct nvme_tracker *tr;
tr = LIST_FIRST(&qpair->outstanding_tr);
while (tr != NULL) {
nvme_assert(tr->req != NULL, ("tr->req == NULL in abort_aers\n"));
if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
nvme_qpair_manual_complete_tracker(qpair, tr,
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
false);
tr = LIST_FIRST(&qpair->outstanding_tr);
} else {
tr = LIST_NEXT(tr, list);
}
}
}
static void
_nvme_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
nvme_admin_qpair_abort_aers(qpair);
}
void
nvme_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
if (nvme_qpair_is_admin_queue(qpair)) {
_nvme_admin_qpair_destroy(qpair);
}
if (qpair->cmd && !qpair->sq_in_cmb) {
nvme_free(qpair->cmd);
qpair->cmd = NULL;
}
if (qpair->cpl) {
nvme_free(qpair->cpl);
qpair->cpl = NULL;
}
if (qpair->tr) {
nvme_free(qpair->tr);
qpair->tr = NULL;
}
}
static void
_nvme_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
/*
* Bad vtophys translation, so abort this request and return
* immediately.
*/
nvme_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_INVALID_FIELD,
1 /* do not retry */, true);
}
static void
_nvme_fail_request_ctrlr_failed(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
nvme_qpair_manual_complete_request(qpair, req, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, true);
}
/**
* Build PRP list describing physically contiguous payload buffer.
*/
static int
_nvme_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
uint64_t phys_addr;
void *seg_addr;
uint32_t nseg, cur_nseg, modulo, unaligned;
void *md_payload;
void *payload = req->payload.u.contig + req->payload_offset;
phys_addr = nvme_vtophys(payload);
if (phys_addr == NVME_VTOPHYS_ERROR) {
_nvme_fail_request_bad_vtophys(qpair, tr);
return -1;
}
nseg = req->payload_size >> nvme_u32log2(PAGE_SIZE);
modulo = req->payload_size & (PAGE_SIZE - 1);
unaligned = phys_addr & (PAGE_SIZE - 1);
if (modulo || unaligned) {
nseg += 1 + ((modulo + unaligned - 1) >> nvme_u32log2(PAGE_SIZE));
}
if (req->payload.md) {
md_payload = req->payload.md + req->md_offset;
tr->req->cmd.mptr = nvme_vtophys(md_payload);
if (tr->req->cmd.mptr == NVME_VTOPHYS_ERROR) {
_nvme_fail_request_bad_vtophys(qpair, tr);
return -1;
}
}
tr->req->cmd.psdt = SPDK_NVME_PSDT_PRP;
tr->req->cmd.dptr.prp.prp1 = phys_addr;
if (nseg == 2) {
seg_addr = payload + PAGE_SIZE - unaligned;
tr->req->cmd.dptr.prp.prp2 = nvme_vtophys(seg_addr);
} else if (nseg > 2) {
cur_nseg = 1;
tr->req->cmd.dptr.prp.prp2 = (uint64_t)tr->prp_sgl_bus_addr;
while (cur_nseg < nseg) {
seg_addr = payload + cur_nseg * PAGE_SIZE - unaligned;
phys_addr = nvme_vtophys(seg_addr);
if (phys_addr == NVME_VTOPHYS_ERROR) {
_nvme_fail_request_bad_vtophys(qpair, tr);
return -1;
}
tr->u.prp[cur_nseg - 1] = phys_addr;
cur_nseg++;
}
}
return 0;
}
/**
* Build SGL list describing scattered payload buffer.
*/
static int
_nvme_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
int rc;
uint64_t phys_addr;
uint32_t remaining_transfer_len, length;
struct spdk_nvme_sgl_descriptor *sgl;
uint32_t nseg = 0;
/*
* Build scattered payloads.
*/
nvme_assert(req->payload_size != 0, ("cannot build SGL for zero-length transfer\n"));
nvme_assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL, ("sgl payload type required\n"));
nvme_assert(req->payload.u.sgl.reset_sgl_fn != NULL, ("sgl reset callback required\n"));
nvme_assert(req->payload.u.sgl.next_sge_fn != NULL, ("sgl callback required\n"));
req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset);
sgl = tr->u.sgl;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_SGL;
req->cmd.dptr.sgl1.unkeyed.subtype = 0;
remaining_transfer_len = req->payload_size;
while (remaining_transfer_len > 0) {
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
_nvme_fail_request_bad_vtophys(qpair, tr);
return -1;
}
rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &phys_addr, &length);
if (rc) {
_nvme_fail_request_bad_vtophys(qpair, tr);
return -1;
}
length = nvme_min(remaining_transfer_len, length);
remaining_transfer_len -= length;
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
sgl->unkeyed.length = length;
sgl->address = phys_addr;
sgl->unkeyed.subtype = 0;
sgl++;
nseg++;
}
if (nseg == 1) {
/*
* The whole transfer can be described by a single SGL descriptor.
* Use the special case described by the spec where SGL1's type is Data Block.
* This means the SGL in the tracker is not used at all, so copy the first (and only)
* SGL element into SGL1.
*/
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
} else {
/* For now we can only support 1 SGL segment in NVMe controller */
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
}
return 0;
}
/**
* Build PRP list describing scattered payload buffer.
*/
static int
_nvme_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
int rc;
uint64_t phys_addr;
uint32_t data_transferred, remaining_transfer_len, length;
uint32_t nseg, cur_nseg, total_nseg, last_nseg, modulo, unaligned;
uint32_t sge_count = 0;
uint64_t prp2 = 0;
/*
* Build scattered payloads.
*/
nvme_assert(req->payload.type == NVME_PAYLOAD_TYPE_SGL, ("sgl payload type required\n"));
nvme_assert(req->payload.u.sgl.reset_sgl_fn != NULL, ("sgl reset callback required\n"));
req->payload.u.sgl.reset_sgl_fn(req->payload.u.sgl.cb_arg, req->payload_offset);
remaining_transfer_len = req->payload_size;
total_nseg = 0;
last_nseg = 0;
while (remaining_transfer_len > 0) {
nvme_assert(req->payload.u.sgl.next_sge_fn != NULL, ("sgl callback required\n"));
rc = req->payload.u.sgl.next_sge_fn(req->payload.u.sgl.cb_arg, &phys_addr, &length);
if (rc) {
_nvme_fail_request_bad_vtophys(qpair, tr);
return -1;
}
data_transferred = nvme_min(remaining_transfer_len, length);
nseg = data_transferred >> nvme_u32log2(PAGE_SIZE);
modulo = data_transferred & (PAGE_SIZE - 1);
unaligned = phys_addr & (PAGE_SIZE - 1);
if (modulo || unaligned) {
nseg += 1 + ((modulo + unaligned - 1) >> nvme_u32log2(PAGE_SIZE));
}
if (total_nseg == 0) {
req->cmd.psdt = SPDK_NVME_PSDT_PRP;
req->cmd.dptr.prp.prp1 = phys_addr;
}
total_nseg += nseg;
sge_count++;
remaining_transfer_len -= data_transferred;
if (total_nseg == 2) {
if (sge_count == 1)
tr->req->cmd.dptr.prp.prp2 = phys_addr + PAGE_SIZE - unaligned;
else if (sge_count == 2)
tr->req->cmd.dptr.prp.prp2 = phys_addr;
/* save prp2 value */
prp2 = tr->req->cmd.dptr.prp.prp2;
} else if (total_nseg > 2) {
if (sge_count == 1)
cur_nseg = 1;
else
cur_nseg = 0;
tr->req->cmd.dptr.prp.prp2 = (uint64_t)tr->prp_sgl_bus_addr;
while (cur_nseg < nseg) {
if (prp2) {
tr->u.prp[0] = prp2;
tr->u.prp[last_nseg + 1] = phys_addr + cur_nseg * PAGE_SIZE - unaligned;
} else
tr->u.prp[last_nseg] = phys_addr + cur_nseg * PAGE_SIZE - unaligned;
last_nseg++;
cur_nseg++;
/* physical address and length check */
if (remaining_transfer_len || (!remaining_transfer_len && (cur_nseg < nseg))) {
if ((length & (PAGE_SIZE - 1)) || unaligned) {
_nvme_fail_request_bad_vtophys(qpair, tr);
return -1;
}
}
}
}
}
return 0;
}
int
nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
int rc = 0;
struct nvme_tracker *tr;
struct nvme_request *child_req, *tmp;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
bool child_req_failed = false;
if (ctrlr->is_failed) {
nvme_free_request(req);
return -ENXIO;
}
nvme_qpair_check_enabled(qpair);
if (req->num_children) {
/*
* This is a split (parent) request. Submit all of the children but not the parent
* request itself, since the parent is the original unsplit request.
*/
TAILQ_FOREACH_SAFE(child_req, &req->children, child_tailq, tmp) {
if (!child_req_failed) {
rc = nvme_qpair_submit_request(qpair, child_req);
if (rc != 0)
child_req_failed = true;
} else { /* free remaining child_reqs since one child_req fails */
nvme_request_remove_child(req, child_req);
nvme_free_request(child_req);
}
}
return rc;
}
tr = LIST_FIRST(&qpair->free_tr);
if (tr == NULL || !qpair->is_enabled) {
/*
* No tracker is available, or the qpair is disabled due to
* an in-progress controller-level reset.
*
* Put the request on the qpair's request queue to be
* processed when a tracker frees up via a command
* completion or when the controller reset is
* completed.
*/
STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
return 0;
}
LIST_REMOVE(tr, list); /* remove tr from free_tr */
LIST_INSERT_HEAD(&qpair->outstanding_tr, tr, list);
tr->req = req;
req->cmd.cid = tr->cid;
if (req->payload_size == 0) {
/* Null payload - leave PRP fields zeroed */
} else if (req->payload.type == NVME_PAYLOAD_TYPE_CONTIG) {
rc = _nvme_qpair_build_contig_request(qpair, req, tr);
if (rc < 0) {
return rc;
}
} else if (req->payload.type == NVME_PAYLOAD_TYPE_SGL) {
if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED)
rc = _nvme_qpair_build_hw_sgl_request(qpair, req, tr);
else
rc = _nvme_qpair_build_prps_sgl_request(qpair, req, tr);
if (rc < 0) {
return rc;
}
} else {
nvme_assert(0, ("invalid NVMe payload type %d\n", req->payload.type));
_nvme_fail_request_bad_vtophys(qpair, tr);
return -EINVAL;
}
nvme_qpair_submit_tracker(qpair, tr);
return 0;
}
void
nvme_qpair_reset(struct spdk_nvme_qpair *qpair)
{
qpair->sq_tail = qpair->cq_head = 0;
/*
* First time through the completion queue, HW will set phase
* bit on completions to 1. So set this to 1 here, indicating
* we're looking for a 1 to know which entries have completed.
* we'll toggle the bit each time when the completion queue
* rolls over.
*/
qpair->phase = 1;
memset(qpair->cmd, 0,
qpair->num_entries * sizeof(struct spdk_nvme_cmd));
memset(qpair->cpl, 0,
qpair->num_entries * sizeof(struct spdk_nvme_cpl));
}
static void
_nvme_admin_qpair_enable(struct spdk_nvme_qpair *qpair)
{
struct nvme_tracker *tr;
struct nvme_tracker *tr_temp;
/*
* Manually abort each outstanding admin command. Do not retry
* admin commands found here, since they will be left over from
* a controller reset and its likely the context in which the
* command was issued no longer applies.
*/
LIST_FOREACH_SAFE(tr, &qpair->outstanding_tr, list, tr_temp) {
nvme_printf(qpair->ctrlr,
"aborting outstanding admin command\n");
nvme_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, true);
}
qpair->is_enabled = true;
}
static void
_nvme_io_qpair_enable(struct spdk_nvme_qpair *qpair)
{
STAILQ_HEAD(, nvme_request) temp;
struct nvme_tracker *tr;
struct nvme_tracker *tr_temp;
struct nvme_request *req;
qpair->is_enabled = true;
/*
* Manually abort each outstanding I/O. This normally results in a
* retry, unless the retry count on the associated request has
* reached its limit.
*/
LIST_FOREACH_SAFE(tr, &qpair->outstanding_tr, list, tr_temp) {
nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
nvme_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, 0, true);
}
STAILQ_INIT(&temp);
STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
while (!STAILQ_EMPTY(&temp)) {
req = STAILQ_FIRST(&temp);
STAILQ_REMOVE_HEAD(&temp, stailq);
nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
nvme_qpair_print_command(qpair, &req->cmd);
if (nvme_qpair_submit_request(qpair, req) != 0) {
_nvme_fail_request_ctrlr_failed(qpair, req);
}
}
}
void
nvme_qpair_enable(struct spdk_nvme_qpair *qpair)
{
if (nvme_qpair_is_io_queue(qpair)) {
_nvme_io_qpair_enable(qpair);
} else {
_nvme_admin_qpair_enable(qpair);
}
}
static void
_nvme_admin_qpair_disable(struct spdk_nvme_qpair *qpair)
{
qpair->is_enabled = false;
nvme_admin_qpair_abort_aers(qpair);
}
static void
_nvme_io_qpair_disable(struct spdk_nvme_qpair *qpair)
{
qpair->is_enabled = false;
}
void
nvme_qpair_disable(struct spdk_nvme_qpair *qpair)
{
if (nvme_qpair_is_io_queue(qpair)) {
_nvme_io_qpair_disable(qpair);
} else {
_nvme_admin_qpair_disable(qpair);
}
}
void
nvme_qpair_fail(struct spdk_nvme_qpair *qpair)
{
struct nvme_tracker *tr;
struct nvme_request *req;
while (!STAILQ_EMPTY(&qpair->queued_req)) {
req = STAILQ_FIRST(&qpair->queued_req);
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
nvme_printf(qpair->ctrlr, "failing queued i/o\n");
nvme_qpair_manual_complete_request(qpair, req, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, true);
}
/* Manually abort each outstanding I/O. */
while (!LIST_EMPTY(&qpair->outstanding_tr)) {
tr = LIST_FIRST(&qpair->outstanding_tr);
/*
* Do not remove the tracker. The abort_tracker path will
* do that for us.
*/
nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
nvme_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, true);
}
}