Shuhei Matsumoto a3004632e2 bdev/raid: Change construct_raid_bdev RPC to be consistent to other bdev modules
Change the behavior of construct_raid_bdev RPC to be consistent with
other bdev modules.

Create a config of raid bdev first. Then create a raid bdev based
on the config.

If both succeed, the config and the raid bdev are not removed even if
any failure occur later in construct_raid_bdev RPC. Otherwise, both
are removed and return failure.

During iteration of adding base bdevs in construct_raid_bdev RPC,
- skip any nonexistent bdev and move to the next base bdev.
- if adding any base bdev fails, move to the next bdev.
- if adding base bdevs don't fail but any base bdev doesn't exist,
  the raid bdev is in the configuring state and return success.
- if adding base bdev fails, the raid bdev is in the configuring state
  and return failure.
- if all adding base bdevs succeed, configure the raid bdev. If configuring
  the raid bdev fails, move the raid bdev to the offline state and return
  failure. If configuring the raid bdev succeed, return success.

check_and_remove_raid_bdev() becomes unused in raid_bdev_rpc.c but
is still necessary in UT. Hence move this function to UT.

In UT, finding a raid bdev config by name becomes necessary. Hence
factor out the iteration to a function and use the function in UT.

Change-Id: Ifa36967bdc987d97030e3a4e36684cb37b329d4e
Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-on: https://review.gerrithub.io/423622
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Kunal Sablok <kunal.sablok@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
2018-09-11 19:00:05 +00:00
2018-09-05 19:46:17 +00:00
2018-06-28 18:15:51 +00:00
2018-09-10 17:44:10 +00:00
2018-09-07 16:01:28 +00:00
2018-09-07 16:01:28 +00:00
2017-09-05 13:25:45 -04:00
2016-01-28 08:54:18 -07:00
2018-09-07 20:25:54 +00:00

Storage Performance Development Kit

Build Status

The Storage Performance Development Kit (SPDK) provides a set of tools and libraries for writing high performance, scalable, user-mode storage applications. It achieves high performance by moving all of the necessary drivers into userspace and operating in a polled mode instead of relying on interrupts, which avoids kernel context switches and eliminates interrupt handling overhead.

The development kit currently includes:

In this readme:

Documentation

Doxygen API documentation is available, as well as a Porting Guide for porting SPDK to different frameworks and operating systems.

Source Code

git clone https://github.com/spdk/spdk
cd spdk
git submodule update --init

Prerequisites

The dependencies can be installed automatically by scripts/pkgdep.sh.

./scripts/pkgdep.sh

Build

Linux:

./configure
make

FreeBSD: Note: Make sure you have the matching kernel source in /usr/src/ and also note that CONFIG_COVERAGE option is not available right now for FreeBSD builds.

./configure
gmake

Unit Tests

./test/unit/unittest.sh

You will see several error messages when running the unit tests, but they are part of the test suite. The final message at the end of the script indicates success or failure.

Vagrant

A Vagrant setup is also provided to create a Linux VM with a virtual NVMe controller to get up and running quickly. Currently this has only been tested on MacOS and Ubuntu 16.04.2 LTS with the VirtualBox provider. The VirtualBox Extension Pack must also be installed in order to get the required NVMe support.

Details on the Vagrant setup can be found in the SPDK Vagrant documentation.

Advanced Build Options

Optional components and other build-time configuration are controlled by settings in two Makefile fragments in the root of the repository. CONFIG contains the base settings. Running the configure script generates a new file, CONFIG.local, that contains overrides to the base CONFIG file. For advanced configuration, there are a number of additional options to configure that may be used, or CONFIG.local can simply be created and edited by hand. A description of all possible options is located in CONFIG.

Boolean (on/off) options are configured with a 'y' (yes) or 'n' (no). For example, this line of CONFIG controls whether the optional RDMA (libibverbs) support is enabled:

CONFIG_RDMA?=n

To enable RDMA, this line may be added to CONFIG.local with a 'y' instead of 'n'. For the majority of options this can be done using the configure script. For example:

./configure --with-rdma

Additionally, CONFIG options may also be overridden on the make command line:

make CONFIG_RDMA=y

Users may wish to use a version of DPDK different from the submodule included in the SPDK repository. Note, this includes the ability to build not only from DPDK sources, but also just with the includes and libraries installed via the dpdk and dpdk-devel packages. To specify an alternate DPDK installation, run configure with the --with-dpdk option. For example:

Linux:

./configure --with-dpdk=/path/to/dpdk/x86_64-native-linuxapp-gcc
make

FreeBSD:

./configure --with-dpdk=/path/to/dpdk/x86_64-native-bsdapp-clang
gmake

The options specified on the make command line take precedence over the default values in CONFIG and CONFIG.local. This can be useful if you, for example, generate a CONFIG.local using the configure script and then have one or two options (i.e. debug builds) that you wish to turn on and off frequently.

Hugepages and Device Binding

Before running an SPDK application, some hugepages must be allocated and any NVMe and I/OAT devices must be unbound from the native kernel drivers. SPDK includes a script to automate this process on both Linux and FreeBSD. This script should be run as root.

sudo scripts/setup.sh

Users may wish to configure a specific memory size. Below is an example of configuring 8192MB memory.

sudo HUGEMEM=8192 scripts/setup.sh

Example Code

Example code is located in the examples directory. The examples are compiled automatically as part of the build process. Simply call any of the examples with no arguments to see the help output. You'll likely need to run the examples as a privileged user (root) unless you've done additional configuration to grant your user permission to allocate huge pages and map devices through vfio.

Contributing

For additional details on how to get more involved in the community, including contributing code and participating in discussions and other activities, please refer to spdk.io

Description
Languages
C 82.7%
Shell 7.4%
Python 4.8%
Makefile 4.7%
C++ 0.3%