numam-spdk/lib/nvme/nvme_ctrlr.c
Cunyin Chang aa2970b9f3 nvme: Add Intel NVMe device supported feature quirks
This patch adds Intel NVMe device list and overrides the
supported log pages according to the quirk list.

In particular, the READ_CMD_LATENCY and WRITE_CMD_LATENCY pages are
supported on Intel DC P3x00 devices despite not being listed in the
Intel vendor-specific log page directory.

Change-Id: I3a2b6a5fa142c6e9c93567df65e85980bd3c7cc0
Signed-off-by: Cunyin Chang <cunyin.chang@intel.com>
2016-01-29 13:45:05 -07:00

928 lines
24 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <pciaccess.h>
#include "nvme_internal.h"
#include "spdk/pci.h"
/**
* \file
*
*/
static int nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
struct nvme_async_event_request *aer);
static void
nvme_ctrlr_construct_intel_support_log_page_list(struct nvme_controller *ctrlr,
struct nvme_intel_log_page_directory *log_page_directory)
{
struct pci_device *dev;
struct pci_id pci_id;
if (ctrlr->cdata.vid != PCI_VENDOR_ID_INTEL || log_page_directory == NULL)
return;
dev = ctrlr->devhandle;
pci_id.vendor_id = spdk_pci_device_get_vendor_id(dev);
pci_id.dev_id = spdk_pci_device_get_device_id(dev);
pci_id.sub_vendor_id = spdk_pci_device_get_subvendor_id(dev);
pci_id.sub_dev_id = spdk_pci_device_get_subdevice_id(dev);
ctrlr->log_page_supported[NVME_INTEL_LOG_PAGE_DIRECTORY] = true;
if (log_page_directory->read_latency_log_len ||
nvme_intel_has_quirk(&pci_id, NVME_INTEL_QUIRK_READ_LATENCY)) {
ctrlr->log_page_supported[NVME_INTEL_LOG_READ_CMD_LATENCY] = true;
}
if (log_page_directory->write_latency_log_len ||
nvme_intel_has_quirk(&pci_id, NVME_INTEL_QUIRK_WRITE_LATENCY)) {
ctrlr->log_page_supported[NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true;
}
if (log_page_directory->temperature_statistics_log_len) {
ctrlr->log_page_supported[NVME_INTEL_LOG_TEMPERATURE] = true;
}
if (log_page_directory->smart_log_len) {
ctrlr->log_page_supported[NVME_INTEL_LOG_SMART] = true;
}
}
static int nvme_ctrlr_set_intel_support_log_pages(struct nvme_controller *ctrlr)
{
uint64_t phys_addr = 0;
struct nvme_completion_poll_status status;
struct nvme_intel_log_page_directory *log_page_directory;
log_page_directory = nvme_malloc("nvme_log_page_directory",
sizeof(struct nvme_intel_log_page_directory),
64, &phys_addr);
if (log_page_directory == NULL) {
nvme_printf(NULL, "could not allocate log_page_directory\n");
return ENXIO;
}
status.done = false;
nvme_ctrlr_cmd_get_log_page(ctrlr, NVME_INTEL_LOG_PAGE_DIRECTORY, NVME_GLOBAL_NAMESPACE_TAG,
log_page_directory, sizeof(struct nvme_intel_log_page_directory),
nvme_completion_poll_cb,
&status);
while (status.done == false) {
nvme_qpair_process_completions(&ctrlr->adminq, 0);
}
if (nvme_completion_is_error(&status.cpl)) {
nvme_free(log_page_directory);
nvme_printf(ctrlr, "nvme_ctrlr_cmd_get_log_page failed!\n");
return ENXIO;
}
nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, log_page_directory);
nvme_free(log_page_directory);
return 0;
}
static void
nvme_ctrlr_set_supported_log_pages(struct nvme_controller *ctrlr)
{
memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported));
/* Mandatory pages */
ctrlr->log_page_supported[NVME_LOG_ERROR] = true;
ctrlr->log_page_supported[NVME_LOG_HEALTH_INFORMATION] = true;
ctrlr->log_page_supported[NVME_LOG_FIRMWARE_SLOT] = true;
if (ctrlr->cdata.lpa.celp) {
ctrlr->log_page_supported[NVME_LOG_COMMAND_EFFECTS_LOG] = true;
}
if (ctrlr->cdata.vid == PCI_VENDOR_ID_INTEL) {
nvme_ctrlr_set_intel_support_log_pages(ctrlr);
}
}
static void
nvme_ctrlr_set_intel_supported_features(struct nvme_controller *ctrlr)
{
ctrlr->feature_supported[NVME_INTEL_FEAT_MAX_LBA] = true;
ctrlr->feature_supported[NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true;
ctrlr->feature_supported[NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true;
ctrlr->feature_supported[NVME_INTEL_FEAT_SMBUS_ADDRESS] = true;
ctrlr->feature_supported[NVME_INTEL_FEAT_LED_PATTERN] = true;
ctrlr->feature_supported[NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true;
ctrlr->feature_supported[NVME_INTEL_FEAT_LATENCY_TRACKING] = true;
}
static void
nvme_ctrlr_set_supported_features(struct nvme_controller *ctrlr)
{
memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported));
/* Mandatory features */
ctrlr->feature_supported[NVME_FEAT_ARBITRATION] = true;
ctrlr->feature_supported[NVME_FEAT_POWER_MANAGEMENT] = true;
ctrlr->feature_supported[NVME_FEAT_TEMPERATURE_THRESHOLD] = true;
ctrlr->feature_supported[NVME_FEAT_ERROR_RECOVERY] = true;
ctrlr->feature_supported[NVME_FEAT_NUMBER_OF_QUEUES] = true;
ctrlr->feature_supported[NVME_FEAT_INTERRUPT_COALESCING] = true;
ctrlr->feature_supported[NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true;
ctrlr->feature_supported[NVME_FEAT_WRITE_ATOMICITY] = true;
ctrlr->feature_supported[NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true;
/* Optional features */
if (ctrlr->cdata.vwc.present) {
ctrlr->feature_supported[NVME_FEAT_VOLATILE_WRITE_CACHE] = true;
}
if (ctrlr->cdata.apsta.supported) {
ctrlr->feature_supported[NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true;
}
if (ctrlr->cdata.hmpre) {
ctrlr->feature_supported[NVME_FEAT_HOST_MEM_BUFFER] = true;
}
if (ctrlr->cdata.vid == PCI_VENDOR_ID_INTEL) {
nvme_ctrlr_set_intel_supported_features(ctrlr);
}
}
static int
nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
{
return nvme_qpair_construct(&ctrlr->adminq,
0, /* qpair ID */
NVME_ADMIN_ENTRIES,
NVME_ADMIN_TRACKERS,
ctrlr);
}
static int
nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
{
struct nvme_qpair *qpair;
union nvme_cap_lo_register cap_lo;
uint32_t i, num_entries, num_trackers;
int rc;
if (ctrlr->ioq != NULL) {
/*
* io_qpairs were already constructed, so just return.
* This typically happens when the controller is
* initialized a second (or subsequent) time after a
* controller reset.
*/
return 0;
}
/*
* NVMe spec sets a hard limit of 64K max entries, but
* devices may specify a smaller limit, so we need to check
* the MQES field in the capabilities register.
*/
cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo.raw);
num_entries = nvme_min(NVME_IO_ENTRIES, cap_lo.bits.mqes + 1);
/*
* No need to have more trackers than entries in the submit queue.
* Note also that for a queue size of N, we can only have (N-1)
* commands outstanding, hence the "-1" here.
*/
num_trackers = nvme_min(NVME_IO_TRACKERS, (num_entries - 1));
ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
ctrlr->ioq = calloc(ctrlr->num_io_queues, sizeof(struct nvme_qpair));
if (ctrlr->ioq == NULL)
return -1;
for (i = 0; i < ctrlr->num_io_queues; i++) {
qpair = &ctrlr->ioq[i];
/*
* Admin queue has ID=0. IO queues start at ID=1 -
* hence the 'i+1' here.
*/
rc = nvme_qpair_construct(qpair,
i + 1, /* qpair ID */
num_entries,
num_trackers,
ctrlr);
if (rc)
return -1;
}
return 0;
}
static void
nvme_ctrlr_fail(struct nvme_controller *ctrlr)
{
uint32_t i;
ctrlr->is_failed = true;
nvme_qpair_fail(&ctrlr->adminq);
for (i = 0; i < ctrlr->num_io_queues; i++) {
nvme_qpair_fail(&ctrlr->ioq[i]);
}
}
static int
_nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_ready_value)
{
int ms_waited, ready_timeout_in_ms;
union nvme_csts_register csts;
union nvme_cap_lo_register cap_lo;
/* Get ready timeout value from controller, in units of 500ms. */
cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo.raw);
ready_timeout_in_ms = cap_lo.bits.to * 500;
csts.raw = nvme_mmio_read_4(ctrlr, csts);
ms_waited = 0;
while (csts.bits.rdy != desired_ready_value) {
nvme_delay(1000);
if (ms_waited++ > ready_timeout_in_ms) {
nvme_printf(ctrlr, "controller ready did not become %d "
"within %d ms\n", desired_ready_value, ready_timeout_in_ms);
return ENXIO;
}
csts.raw = nvme_mmio_read_4(ctrlr, csts);
}
return 0;
}
static int
nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
{
union nvme_cc_register cc;
cc.raw = nvme_mmio_read_4(ctrlr, cc.raw);
if (!cc.bits.en) {
nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__);
return ENXIO;
}
return _nvme_ctrlr_wait_for_ready(ctrlr, 1);
}
static void
nvme_ctrlr_disable(struct nvme_controller *ctrlr)
{
union nvme_cc_register cc;
union nvme_csts_register csts;
cc.raw = nvme_mmio_read_4(ctrlr, cc.raw);
csts.raw = nvme_mmio_read_4(ctrlr, csts);
if (cc.bits.en == 1 && csts.bits.rdy == 0) {
_nvme_ctrlr_wait_for_ready(ctrlr, 1);
}
cc.bits.en = 0;
nvme_mmio_write_4(ctrlr, cc.raw, cc.raw);
_nvme_ctrlr_wait_for_ready(ctrlr, 0);
}
static void
nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
{
union nvme_cc_register cc;
union nvme_csts_register csts;
int ms_waited = 0;
cc.raw = nvme_mmio_read_4(ctrlr, cc.raw);
cc.bits.shn = NVME_SHN_NORMAL;
nvme_mmio_write_4(ctrlr, cc.raw, cc.raw);
csts.raw = nvme_mmio_read_4(ctrlr, csts);
/*
* The NVMe spec does not define a timeout period
* for shutdown notification, so we just pick
* 5 seconds as a reasonable amount of time to
* wait before proceeding.
*/
while (csts.bits.shst != NVME_SHST_COMPLETE) {
nvme_delay(1000);
csts.raw = nvme_mmio_read_4(ctrlr, csts);
if (ms_waited++ >= 5000)
break;
}
if (csts.bits.shst != NVME_SHST_COMPLETE)
nvme_printf(ctrlr, "did not shutdown within 5 seconds\n");
}
static int
nvme_ctrlr_enable(struct nvme_controller *ctrlr)
{
union nvme_cc_register cc;
union nvme_csts_register csts;
union nvme_aqa_register aqa;
cc.raw = nvme_mmio_read_4(ctrlr, cc.raw);
csts.raw = nvme_mmio_read_4(ctrlr, csts);
if (cc.bits.en == 1) {
if (csts.bits.rdy == 1) {
return 0;
} else {
return nvme_ctrlr_wait_for_ready(ctrlr);
}
}
nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
aqa.raw = 0;
/* acqs and asqs are 0-based. */
aqa.bits.acqs = ctrlr->adminq.num_entries - 1;
aqa.bits.asqs = ctrlr->adminq.num_entries - 1;
nvme_mmio_write_4(ctrlr, aqa.raw, aqa.raw);
cc.bits.en = 1;
cc.bits.css = 0;
cc.bits.ams = 0;
cc.bits.shn = 0;
cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
/* Page size is 2 ^ (12 + mps). */
cc.bits.mps = nvme_u32log2(PAGE_SIZE) - 12;
nvme_mmio_write_4(ctrlr, cc.raw, cc.raw);
return nvme_ctrlr_wait_for_ready(ctrlr);
}
static int
nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
{
uint32_t i;
int rc;
union nvme_cc_register cc;
cc.raw = nvme_mmio_read_4(ctrlr, cc.raw);
if (cc.bits.en) {
nvme_qpair_disable(&ctrlr->adminq);
for (i = 0; i < ctrlr->num_io_queues; i++) {
nvme_qpair_disable(&ctrlr->ioq[i]);
}
} else {
/*
* Ensure we do a transition from cc.en==1 to cc.en==0.
* If we started disabled (cc.en==0), then we have to enable
* first to get a reset.
*/
nvme_ctrlr_enable(ctrlr);
}
nvme_ctrlr_disable(ctrlr);
rc = nvme_ctrlr_enable(ctrlr);
return rc;
}
int
nvme_ctrlr_reset(struct nvme_controller *ctrlr)
{
int rc;
nvme_mutex_lock(&ctrlr->ctrlr_lock);
if (ctrlr->is_resetting || ctrlr->is_failed) {
/*
* Controller is already resetting or has failed. Return
* immediately since there is no need to kick off another
* reset in these cases.
*/
nvme_mutex_unlock(&ctrlr->ctrlr_lock);
return 0;
}
ctrlr->is_resetting = true;
nvme_printf(ctrlr, "resetting controller\n");
/* nvme_ctrlr_start() issues a reset as its first step */
rc = nvme_ctrlr_start(ctrlr);
if (rc) {
nvme_ctrlr_fail(ctrlr);
}
ctrlr->is_resetting = false;
nvme_mutex_unlock(&ctrlr->ctrlr_lock);
return rc;
}
static int
nvme_ctrlr_identify(struct nvme_controller *ctrlr)
{
struct nvme_completion_poll_status status;
status.done = false;
nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
nvme_completion_poll_cb, &status);
while (status.done == false) {
nvme_qpair_process_completions(&ctrlr->adminq, 0);
}
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
return ENXIO;
}
/*
* Use MDTS to ensure our default max_xfer_size doesn't exceed what the
* controller supports.
*/
if (ctrlr->cdata.mdts > 0) {
ctrlr->max_xfer_size = nvme_min(ctrlr->max_xfer_size,
ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
}
return 0;
}
static int
nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
{
struct nvme_driver *driver = &g_nvme_driver;
struct nvme_completion_poll_status status;
int cq_allocated, sq_allocated;
uint32_t max_io_queues;
status.done = false;
nvme_mutex_lock(&driver->lock);
max_io_queues = driver->max_io_queues;
nvme_mutex_unlock(&driver->lock);
nvme_ctrlr_cmd_set_num_queues(ctrlr, max_io_queues,
nvme_completion_poll_cb, &status);
while (status.done == false) {
nvme_qpair_process_completions(&ctrlr->adminq, 0);
}
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
return ENXIO;
}
/*
* Data in cdw0 is 0-based.
* Lower 16-bits indicate number of submission queues allocated.
* Upper 16-bits indicate number of completion queues allocated.
*/
sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
cq_allocated = (status.cpl.cdw0 >> 16) + 1;
ctrlr->num_io_queues = nvme_min(sq_allocated, cq_allocated);
nvme_mutex_lock(&driver->lock);
driver->max_io_queues = nvme_min(driver->max_io_queues, ctrlr->num_io_queues);
nvme_mutex_unlock(&driver->lock);
return 0;
}
static int
nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
{
struct nvme_completion_poll_status status;
struct nvme_qpair *qpair;
uint32_t i;
if (nvme_ctrlr_construct_io_qpairs(ctrlr)) {
nvme_printf(ctrlr, "nvme_ctrlr_construct_io_qpairs failed!\n");
return ENXIO;
}
for (i = 0; i < ctrlr->num_io_queues; i++) {
qpair = &ctrlr->ioq[i];
status.done = false;
nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
nvme_completion_poll_cb, &status);
while (status.done == false) {
nvme_qpair_process_completions(&ctrlr->adminq, 0);
}
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
return ENXIO;
}
status.done = false;
nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
nvme_completion_poll_cb, &status);
while (status.done == false) {
nvme_qpair_process_completions(&ctrlr->adminq, 0);
}
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
return ENXIO;
}
nvme_qpair_reset(qpair);
}
return 0;
}
static void
nvme_ctrlr_destruct_namespaces(struct nvme_controller *ctrlr)
{
if (ctrlr->ns) {
uint32_t i, num_ns = ctrlr->num_ns;
for (i = 0; i < num_ns; i++) {
nvme_ns_destruct(&ctrlr->ns[i]);
}
free(ctrlr->ns);
ctrlr->ns = NULL;
ctrlr->num_ns = 0;
}
if (ctrlr->nsdata) {
nvme_free(ctrlr->nsdata);
ctrlr->nsdata = NULL;
}
}
static int
nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
{
uint32_t i, nn = ctrlr->cdata.nn;
uint64_t phys_addr = 0;
if (nn == 0) {
nvme_printf(ctrlr, "controller has 0 namespaces\n");
return -1;
}
/* ctrlr->num_ns may be 0 (startup) or a different number of namespaces (reset),
* so check if we need to reallocate.
*/
if (nn != ctrlr->num_ns) {
nvme_ctrlr_destruct_namespaces(ctrlr);
ctrlr->ns = calloc(nn, sizeof(struct nvme_namespace));
if (ctrlr->ns == NULL) {
goto fail;
}
ctrlr->nsdata = nvme_malloc("nvme_namespaces",
nn * sizeof(struct nvme_namespace_data), 64,
&phys_addr);
if (ctrlr->nsdata == NULL) {
goto fail;
}
ctrlr->num_ns = nn;
}
for (i = 0; i < nn; i++) {
struct nvme_namespace *ns = &ctrlr->ns[i];
uint32_t nsid = i + 1;
if (nvme_ns_construct(ns, nsid, ctrlr) != 0) {
goto fail;
}
}
return 0;
fail:
nvme_ctrlr_destruct_namespaces(ctrlr);
return -1;
}
static void
nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
{
struct nvme_async_event_request *aer = arg;
struct nvme_controller *ctrlr = aer->ctrlr;
if (cpl->status.sc == NVME_SC_ABORTED_SQ_DELETION) {
/*
* This is simulated when controller is being shut down, to
* effectively abort outstanding asynchronous event requests
* and make sure all memory is freed. Do not repost the
* request in this case.
*/
return;
}
if (ctrlr->aer_cb_fn != NULL) {
ctrlr->aer_cb_fn(ctrlr->aer_cb_arg, cpl);
}
/*
* Repost another asynchronous event request to replace the one
* that just completed.
*/
if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
/*
* We can't do anything to recover from a failure here,
* so just print a warning message and leave the AER unsubmitted.
*/
nvme_printf(ctrlr, "resubmitting AER failed!\n");
}
}
static int
nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
struct nvme_async_event_request *aer)
{
struct nvme_request *req;
aer->ctrlr = ctrlr;
req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
aer->req = req;
if (req == NULL) {
return -1;
}
/*
* Disable timeout here, since asynchronous event requests should by
* nature never be timed out.
*/
req->timeout = false;
req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
nvme_ctrlr_submit_admin_request(ctrlr, req);
return 0;
}
static int
nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
{
union nvme_critical_warning_state state;
struct nvme_async_event_request *aer;
uint32_t i;
struct nvme_completion_poll_status status;
status.done = false;
state.raw = 0xFF;
state.bits.reserved = 0;
nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, nvme_completion_poll_cb, &status);
while (status.done == false) {
nvme_qpair_process_completions(&ctrlr->adminq, 0);
}
if (nvme_completion_is_error(&status.cpl)) {
nvme_printf(ctrlr, "nvme_ctrlr_cmd_set_async_event_config failed!\n");
return ENXIO;
}
/* aerl is a zero-based value, so we need to add 1 here. */
ctrlr->num_aers = nvme_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1));
for (i = 0; i < ctrlr->num_aers; i++) {
aer = &ctrlr->aer[i];
if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) {
nvme_printf(ctrlr, "nvme_ctrlr_construct_and_submit_aer failed!\n");
return -1;
}
}
return 0;
}
int
nvme_ctrlr_start(struct nvme_controller *ctrlr)
{
if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
return -1;
}
nvme_qpair_reset(&ctrlr->adminq);
nvme_qpair_enable(&ctrlr->adminq);
if (nvme_ctrlr_identify(ctrlr) != 0) {
return -1;
}
if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
return -1;
}
if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
return -1;
}
if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
return -1;
}
if (nvme_ctrlr_configure_aer(ctrlr) != 0) {
return -1;
}
nvme_ctrlr_set_supported_log_pages(ctrlr);
nvme_ctrlr_set_supported_features(ctrlr);
return 0;
}
static int
nvme_ctrlr_allocate_bars(struct nvme_controller *ctrlr)
{
int rc;
void *addr;
rc = nvme_pcicfg_map_bar(ctrlr->devhandle, 0, 0 /* writable */, &addr);
ctrlr->regs = (volatile struct nvme_registers *)addr;
if ((ctrlr->regs == NULL) || (rc != 0)) {
nvme_printf(ctrlr, "pci_device_map_range failed with error code %d\n", rc);
return -1;
}
return 0;
}
static int
nvme_ctrlr_free_bars(struct nvme_controller *ctrlr)
{
int rc = 0;
void *addr = (void *)ctrlr->regs;
if (addr) {
rc = nvme_pcicfg_unmap_bar(ctrlr->devhandle, 0, addr);
}
return rc;
}
int
nvme_ctrlr_construct(struct nvme_controller *ctrlr, void *devhandle)
{
union nvme_cap_hi_register cap_hi;
uint32_t cmd_reg;
int status;
int rc;
ctrlr->devhandle = devhandle;
status = nvme_ctrlr_allocate_bars(ctrlr);
if (status != 0) {
return status;
}
/* Enable PCI busmaster. */
nvme_pcicfg_read32(devhandle, &cmd_reg, 4);
cmd_reg |= 0x4;
nvme_pcicfg_write32(devhandle, cmd_reg, 4);
cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi.raw);
/* Doorbell stride is 2 ^ (dstrd + 2),
* but we want multiples of 4, so drop the + 2 */
ctrlr->doorbell_stride_u32 = 1 << cap_hi.bits.dstrd;
ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
rc = nvme_ctrlr_construct_admin_qpair(ctrlr);
if (rc)
return rc;
ctrlr->is_resetting = false;
ctrlr->is_failed = false;
nvme_mutex_init_recursive(&ctrlr->ctrlr_lock);
return 0;
}
void
nvme_ctrlr_destruct(struct nvme_controller *ctrlr)
{
uint32_t i;
nvme_ctrlr_disable(ctrlr);
nvme_ctrlr_shutdown(ctrlr);
nvme_ctrlr_destruct_namespaces(ctrlr);
for (i = 0; i < ctrlr->num_io_queues; i++) {
nvme_qpair_destroy(&ctrlr->ioq[i]);
}
free(ctrlr->ioq);
nvme_qpair_destroy(&ctrlr->adminq);
nvme_ctrlr_free_bars(ctrlr);
nvme_mutex_destroy(&ctrlr->ctrlr_lock);
}
void
nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
struct nvme_request *req)
{
nvme_qpair_submit_request(&ctrlr->adminq, req);
}
void
nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
struct nvme_request *req)
{
struct nvme_qpair *qpair;
nvme_assert(nvme_thread_ioq_index >= 0, ("no ioq_index assigned for thread\n"));
qpair = &ctrlr->ioq[nvme_thread_ioq_index];
nvme_qpair_submit_request(qpair, req);
}
int32_t
nvme_ctrlr_process_io_completions(struct nvme_controller *ctrlr, uint32_t max_completions)
{
nvme_assert(nvme_thread_ioq_index >= 0, ("no ioq_index assigned for thread\n"));
return nvme_qpair_process_completions(&ctrlr->ioq[nvme_thread_ioq_index], max_completions);
}
int32_t
nvme_ctrlr_process_admin_completions(struct nvme_controller *ctrlr)
{
int32_t num_completions;
nvme_mutex_lock(&ctrlr->ctrlr_lock);
num_completions = nvme_qpair_process_completions(&ctrlr->adminq, 0);
nvme_mutex_unlock(&ctrlr->ctrlr_lock);
return num_completions;
}
const struct nvme_controller_data *
nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
{
return &ctrlr->cdata;
}
uint32_t
nvme_ctrlr_get_num_ns(struct nvme_controller *ctrlr)
{
return ctrlr->num_ns;
}
struct nvme_namespace *
nvme_ctrlr_get_ns(struct nvme_controller *ctrlr, uint32_t ns_id)
{
if (ns_id < 1 || ns_id > ctrlr->num_ns) {
return NULL;
}
return &ctrlr->ns[ns_id - 1];
}
void
nvme_ctrlr_register_aer_callback(struct nvme_controller *ctrlr,
nvme_aer_cb_fn_t aer_cb_fn,
void *aer_cb_arg)
{
ctrlr->aer_cb_fn = aer_cb_fn;
ctrlr->aer_cb_arg = aer_cb_arg;
}
bool
nvme_ctrlr_is_log_page_supported(struct nvme_controller *ctrlr, uint8_t log_page)
{
/* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */
SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch");
return ctrlr->log_page_supported[log_page];
}
bool
nvme_ctrlr_is_feature_supported(struct nvme_controller *ctrlr, uint8_t feature_code)
{
/* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */
SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch");
return ctrlr->feature_supported[feature_code];
}