b0e349a804
Change-Id: Ic9b2db9bff3a914b3e5021695287157f1e076f9f Signed-off-by: Ben Walker <benjamin.walker@intel.com>
386 lines
10 KiB
C
386 lines
10 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
* NVMe driver integration callbacks
|
|
*
|
|
* This file describes the callback functions required to integrate
|
|
* the userspace NVMe driver for a specific implementation. This
|
|
* implementation is specific for DPDK. Users would
|
|
* revise it as necessary for their own particular environment if not
|
|
* using it within the DPDK framework.
|
|
*/
|
|
|
|
#ifndef __NVME_IMPL_H__
|
|
#define __NVME_IMPL_H__
|
|
|
|
#include "spdk/vtophys.h"
|
|
#include "spdk/pci.h"
|
|
#include "spdk/nvme_spec.h"
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <stdbool.h>
|
|
#include <rte_config.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_version.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_eal.h>
|
|
|
|
#ifdef SPDK_CONFIG_PCIACCESS
|
|
#include <pciaccess.h>
|
|
#else
|
|
#include <rte_pci.h>
|
|
#endif
|
|
|
|
#include "spdk/pci_ids.h"
|
|
|
|
/**
|
|
* \page nvme_driver_integration NVMe Driver Integration
|
|
*
|
|
* Users can integrate the userspace NVMe driver into their environment
|
|
* by implementing the callbacks in nvme_impl.h. These callbacks
|
|
* enable users to specify how to allocate pinned and physically
|
|
* contiguous memory, performance virtual to physical address
|
|
* translations, log messages, PCI configuration and register mapping,
|
|
* and a number of other facilities that may differ depending on the
|
|
* environment.
|
|
*/
|
|
|
|
/**
|
|
* Allocate a pinned, physically contiguous memory buffer with the
|
|
* given size and alignment.
|
|
* Note: these calls are only made during driver initialization.
|
|
*/
|
|
static inline void *
|
|
nvme_malloc(const char *tag, size_t size, unsigned align, uint64_t *phys_addr)
|
|
{
|
|
void *buf = rte_malloc(tag, size, align);
|
|
if (buf) {
|
|
memset(buf, 0, size);
|
|
*phys_addr = rte_malloc_virt2phy(buf);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
/**
|
|
* Free a memory buffer previously allocated with nvme_malloc.
|
|
*/
|
|
#define nvme_free(buf) rte_free(buf)
|
|
|
|
/**
|
|
* Reserve a named, process shared memory zone with the given size,
|
|
* socket_id and flags.
|
|
* Return a pointer to the allocated memory address. If the allocation
|
|
* cannot be done, return NULL.
|
|
*/
|
|
static inline void *
|
|
nvme_memzone_reserve(const char *name, size_t len, int socket_id, unsigned flags)
|
|
{
|
|
const struct rte_memzone *mz = rte_memzone_reserve(name, len, socket_id, flags);
|
|
|
|
if (mz != NULL) {
|
|
return mz->addr;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Lookup the memory zone identified by the given name.
|
|
* Return a pointer to the reserved memory address. If the reservation
|
|
* cannot be found, return NULL.
|
|
*/
|
|
static inline void *
|
|
nvme_memzone_lookup(const char *name)
|
|
{
|
|
const struct rte_memzone *mz = rte_memzone_lookup(name);
|
|
|
|
if (mz != NULL) {
|
|
return mz->addr;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Free the memory zone identified by the given name.
|
|
*/
|
|
static inline int
|
|
nvme_memzone_free(const char *name)
|
|
{
|
|
const struct rte_memzone *mz = rte_memzone_lookup(name);
|
|
|
|
if (mz != NULL) {
|
|
return rte_memzone_free(mz);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* Return true if the calling process is primary process
|
|
*/
|
|
static inline bool
|
|
nvme_process_is_primary(void)
|
|
{
|
|
return (rte_eal_process_type() == RTE_PROC_PRIMARY);
|
|
}
|
|
|
|
/**
|
|
* Return the physical address for the specified virtual address.
|
|
*/
|
|
#define nvme_vtophys(buf) spdk_vtophys(buf)
|
|
#define NVME_VTOPHYS_ERROR SPDK_VTOPHYS_ERROR
|
|
|
|
typedef struct rte_mempool nvme_mempool_t;
|
|
|
|
/**
|
|
* Create a mempool with the given configuration.
|
|
* Return a pointer to the allocated memory address. If the allocation
|
|
* cannot be done, return NULL.
|
|
*/
|
|
static inline nvme_mempool_t *
|
|
nvme_mempool_create(const char *name, unsigned n, unsigned elt_size,
|
|
unsigned cache_size)
|
|
{
|
|
struct rte_mempool *mp;
|
|
|
|
mp = rte_mempool_create(name, n, elt_size, cache_size,
|
|
0, NULL, NULL, NULL, NULL,
|
|
SOCKET_ID_ANY, 0);
|
|
|
|
if (mp == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return (nvme_mempool_t *)mp;
|
|
}
|
|
|
|
static inline void
|
|
nvme_mempool_get(nvme_mempool_t *mp, void **buf)
|
|
{
|
|
rte_mempool_get(mp, buf);
|
|
}
|
|
|
|
static inline void
|
|
nvme_mempool_put(nvme_mempool_t *mp, void *buf)
|
|
{
|
|
rte_mempool_put(mp, buf);
|
|
}
|
|
|
|
/**
|
|
* Get a monotonic timestamp counter (used for measuring timeouts during initialization).
|
|
*/
|
|
#define nvme_get_tsc() rte_get_timer_cycles()
|
|
|
|
/**
|
|
* Get the tick rate of nvme_get_tsc() per second.
|
|
*/
|
|
#define nvme_get_tsc_hz() rte_get_timer_hz()
|
|
|
|
/**
|
|
*
|
|
*/
|
|
#define nvme_pcicfg_read32(handle, var, offset) spdk_pci_device_cfg_read32(handle, var, offset)
|
|
#define nvme_pcicfg_write32(handle, var, offset) spdk_pci_device_cfg_write32(handle, var, offset)
|
|
|
|
struct nvme_pci_enum_ctx {
|
|
int (*user_enum_cb)(void *enum_ctx, struct spdk_pci_device *pci_dev);
|
|
void *user_enum_ctx;
|
|
};
|
|
|
|
#ifdef SPDK_CONFIG_PCIACCESS
|
|
|
|
static int
|
|
nvme_pci_enum_cb(void *enum_ctx, struct spdk_pci_device *pci_dev)
|
|
{
|
|
struct nvme_pci_enum_ctx *ctx = enum_ctx;
|
|
|
|
if (spdk_pci_device_get_class(pci_dev) != SPDK_PCI_CLASS_NVME) {
|
|
return 0;
|
|
}
|
|
|
|
return ctx->user_enum_cb(ctx->user_enum_ctx, pci_dev);
|
|
}
|
|
|
|
static inline int
|
|
nvme_pci_enumerate(int (*enum_cb)(void *enum_ctx, struct spdk_pci_device *pci_dev), void *enum_ctx)
|
|
{
|
|
struct nvme_pci_enum_ctx nvme_enum_ctx;
|
|
|
|
nvme_enum_ctx.user_enum_cb = enum_cb;
|
|
nvme_enum_ctx.user_enum_ctx = enum_ctx;
|
|
|
|
return spdk_pci_enumerate(nvme_pci_enum_cb, &nvme_enum_ctx);
|
|
}
|
|
|
|
static inline int
|
|
nvme_pcicfg_map_bar(void *devhandle, uint32_t bar, uint32_t read_only, void **mapped_addr)
|
|
{
|
|
struct pci_device *dev = devhandle;
|
|
uint32_t flags = (read_only ? 0 : PCI_DEV_MAP_FLAG_WRITABLE);
|
|
|
|
return pci_device_map_range(dev, dev->regions[bar].base_addr, dev->regions[bar].size,
|
|
flags, mapped_addr);
|
|
}
|
|
|
|
static inline int
|
|
nvme_pcicfg_map_bar_write_combine(void *devhandle, uint32_t bar, void **mapped_addr)
|
|
{
|
|
struct pci_device *dev = devhandle;
|
|
uint32_t flags = PCI_DEV_MAP_FLAG_WRITABLE | PCI_DEV_MAP_FLAG_WRITE_COMBINE;
|
|
|
|
return pci_device_map_range(dev, dev->regions[bar].base_addr, dev->regions[bar].size,
|
|
flags, mapped_addr);
|
|
}
|
|
|
|
static inline int
|
|
nvme_pcicfg_unmap_bar(void *devhandle, uint32_t bar, void *addr)
|
|
{
|
|
struct pci_device *dev = devhandle;
|
|
|
|
return pci_device_unmap_range(dev, addr, dev->regions[bar].size);
|
|
}
|
|
|
|
static inline void
|
|
nvme_pcicfg_get_bar_addr_len(void *devhandle, uint32_t bar, uint64_t *addr, uint64_t *size)
|
|
{
|
|
struct pci_device *dev = devhandle;
|
|
|
|
*addr = (uint64_t)dev->regions[bar].base_addr;
|
|
*size = (uint64_t)dev->regions[bar].size;
|
|
}
|
|
|
|
#else /* !SPDK_CONFIG_PCIACCESS */
|
|
|
|
static inline int
|
|
nvme_pcicfg_map_bar(void *devhandle, uint32_t bar, uint32_t read_only, void **mapped_addr)
|
|
{
|
|
struct rte_pci_device *dev = devhandle;
|
|
|
|
*mapped_addr = dev->mem_resource[bar].addr;
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
nvme_pcicfg_map_bar_write_combine(void *devhandle, uint32_t bar, void **mapped_addr)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static inline int
|
|
nvme_pcicfg_unmap_bar(void *devhandle, uint32_t bar, void *addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
nvme_pcicfg_get_bar_addr_len(void *devhandle, uint32_t bar, uint64_t *addr, uint64_t *size)
|
|
{
|
|
struct rte_pci_device *dev = devhandle;
|
|
|
|
*addr = (uint64_t)dev->mem_resource[bar].phys_addr;
|
|
*size = (uint64_t)dev->mem_resource[bar].len;
|
|
}
|
|
|
|
static struct rte_pci_id nvme_pci_driver_id[] = {
|
|
#if RTE_VERSION >= RTE_VERSION_NUM(16, 7, 0, 1)
|
|
{
|
|
.class_id = SPDK_PCI_CLASS_NVME,
|
|
.vendor_id = PCI_ANY_ID,
|
|
.device_id = PCI_ANY_ID,
|
|
.subsystem_vendor_id = PCI_ANY_ID,
|
|
.subsystem_device_id = PCI_ANY_ID,
|
|
},
|
|
#else
|
|
{RTE_PCI_DEVICE(0x8086, 0x0953)},
|
|
#endif
|
|
{ .vendor_id = 0, /* sentinel */ },
|
|
};
|
|
|
|
/*
|
|
* TODO: eliminate this global if possible (does rte_pci_driver have a context field for this?)
|
|
*
|
|
* This should be protected by the NVMe driver lock, since nvme_probe() holds the lock
|
|
* while calling nvme_pci_enumerate(), but we shouldn't have to depend on that.
|
|
*/
|
|
static struct nvme_pci_enum_ctx g_nvme_pci_enum_ctx;
|
|
|
|
static int
|
|
nvme_driver_init(struct rte_pci_driver *dr, struct rte_pci_device *rte_dev)
|
|
{
|
|
/*
|
|
* These are actually the same type internally.
|
|
* TODO: refactor this so it's inside pci.c
|
|
*/
|
|
struct spdk_pci_device *pci_dev = (struct spdk_pci_device *)rte_dev;
|
|
|
|
/*
|
|
* TODO: This is a workaround for an issue where the device is not ready after VFIO reset.
|
|
* Figure out what is actually going wrong and remove this sleep.
|
|
*/
|
|
usleep(500 * 1000);
|
|
|
|
return g_nvme_pci_enum_ctx.user_enum_cb(g_nvme_pci_enum_ctx.user_enum_ctx, pci_dev);
|
|
}
|
|
|
|
static struct rte_pci_driver nvme_rte_driver = {
|
|
.name = "nvme_driver",
|
|
.devinit = nvme_driver_init,
|
|
.id_table = nvme_pci_driver_id,
|
|
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
|
|
};
|
|
|
|
static inline int
|
|
nvme_pci_enumerate(int (*enum_cb)(void *enum_ctx, struct spdk_pci_device *pci_dev), void *enum_ctx)
|
|
{
|
|
int rc;
|
|
|
|
g_nvme_pci_enum_ctx.user_enum_cb = enum_cb;
|
|
g_nvme_pci_enum_ctx.user_enum_ctx = enum_ctx;
|
|
|
|
rte_eal_pci_register(&nvme_rte_driver);
|
|
rc = rte_eal_pci_probe();
|
|
rte_eal_pci_unregister(&nvme_rte_driver);
|
|
|
|
return rc;
|
|
}
|
|
|
|
#endif /* !SPDK_CONFIG_PCIACCESS */
|
|
|
|
#endif /* __NVME_IMPL_H__ */
|