Daniel Verkamp ad35d6cd86 nvme_spec: add spdk_ prefixes
Use shorter names for commonly-used objects:
namespace -> ns
controller -> ctrlr
command -> cmd
completion -> cpl

Change-Id: I97d192546b35a6aeb76ad3a709f65631502cde71
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
2016-02-09 11:06:48 -07:00

834 lines
26 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdbool.h>
#include <unistd.h>
#include <rte_config.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_lcore.h>
#include "spdk/nvme.h"
#include "spdk/pci.h"
#include "spdk/nvme_intel.h"
#include "spdk/pci_ids.h"
struct rte_mempool *request_mempool;
static int outstanding_commands;
struct feature {
uint32_t result;
bool valid;
};
static struct feature features[256];
static struct spdk_nvme_health_information_page *health_page;
static struct spdk_nvme_intel_smart_information_page *intel_smart_page;
static struct spdk_nvme_intel_temperature_page *intel_temperature_page;
static bool g_hex_dump = false;
static void
hex_dump(const void *data, size_t size)
{
size_t offset = 0, i;
const uint8_t *bytes = data;
while (size) {
printf("%08zX:", offset);
for (i = 0; i < 16; i++) {
if (i == 8) {
printf("-");
} else {
printf(" ");
}
if (i < size) {
printf("%02X", bytes[offset + i]);
} else {
printf(" ");
}
}
printf(" ");
for (i = 0; i < 16; i++) {
if (i < size) {
if (bytes[offset + i] > 0x20 && bytes[offset + i] < 0x7F) {
printf("%c", bytes[offset + i]);
} else {
printf(".");
}
}
}
printf("\n");
offset += 16;
if (size > 16) {
size -= 16;
} else {
break;
}
}
}
static void
get_feature_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
struct feature *feature = cb_arg;
int fid = feature - features;
if (spdk_nvme_cpl_is_error(cpl)) {
printf("get_feature(0x%02X) failed\n", fid);
} else {
feature->result = cpl->cdw0;
feature->valid = true;
}
outstanding_commands--;
}
static void
get_log_page_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
if (spdk_nvme_cpl_is_error(cpl)) {
printf("get log page failed\n");
}
outstanding_commands--;
}
static int
get_feature(struct nvme_controller *ctrlr, uint8_t fid)
{
struct spdk_nvme_cmd cmd = {};
cmd.opc = SPDK_NVME_OPC_GET_FEATURES;
cmd.cdw10 = fid;
return nvme_ctrlr_cmd_admin_raw(ctrlr, &cmd, NULL, 0, get_feature_completion, &features[fid]);
}
static void
get_features(struct nvme_controller *ctrlr)
{
size_t i;
uint8_t features_to_get[] = {
SPDK_NVME_FEAT_ARBITRATION,
SPDK_NVME_FEAT_POWER_MANAGEMENT,
SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD,
SPDK_NVME_FEAT_ERROR_RECOVERY,
};
/* Submit several GET FEATURES commands and wait for them to complete */
outstanding_commands = 0;
for (i = 0; i < sizeof(features_to_get) / sizeof(*features_to_get); i++) {
if (get_feature(ctrlr, features_to_get[i]) == 0) {
outstanding_commands++;
} else {
printf("get_feature(0x%02X) failed to submit command\n", features_to_get[i]);
}
}
while (outstanding_commands) {
nvme_ctrlr_process_admin_completions(ctrlr);
}
}
static int
get_health_log_page(struct nvme_controller *ctrlr)
{
if (health_page == NULL) {
health_page = rte_zmalloc("nvme health", sizeof(*health_page), 4096);
}
if (health_page == NULL) {
printf("Allocation error (health page)\n");
exit(1);
}
if (nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_HEALTH_INFORMATION, SPDK_NVME_GLOBAL_NS_TAG,
health_page, sizeof(*health_page), get_log_page_completion, NULL)) {
printf("nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
return 0;
}
static int
get_intel_smart_log_page(struct nvme_controller *ctrlr)
{
if (intel_smart_page == NULL) {
intel_smart_page = rte_zmalloc("nvme intel smart", sizeof(*intel_smart_page), 4096);
}
if (intel_smart_page == NULL) {
printf("Allocation error (intel smart page)\n");
exit(1);
}
if (nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_SMART, SPDK_NVME_GLOBAL_NS_TAG,
intel_smart_page, sizeof(*intel_smart_page), get_log_page_completion, NULL)) {
printf("nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
return 0;
}
static int
get_intel_temperature_log_page(struct nvme_controller *ctrlr)
{
if (intel_temperature_page == NULL) {
intel_temperature_page = rte_zmalloc("nvme intel temperature", sizeof(*intel_temperature_page),
4096);
}
if (intel_temperature_page == NULL) {
printf("Allocation error (nvme intel temperature page)\n");
exit(1);
}
if (nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE, SPDK_NVME_GLOBAL_NS_TAG,
intel_temperature_page, sizeof(*intel_temperature_page), get_log_page_completion, NULL)) {
printf("nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
return 0;
}
static void
get_log_pages(struct nvme_controller *ctrlr)
{
const struct spdk_nvme_ctrlr_data *ctrlr_data;
outstanding_commands = 0;
if (get_health_log_page(ctrlr) == 0) {
outstanding_commands++;
} else {
printf("Get Log Page (SMART/health) failed\n");
}
ctrlr_data = nvme_ctrlr_get_data(ctrlr);
if (ctrlr_data->vid == SPDK_PCI_VID_INTEL) {
if (nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_SMART)) {
if (get_intel_smart_log_page(ctrlr) == 0) {
outstanding_commands++;
} else {
printf("Get Log Page (Intel SMART/health) failed\n");
}
}
if (nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE)) {
if (get_intel_temperature_log_page(ctrlr) == 0) {
outstanding_commands++;
} else {
printf("Get Log Page (Intel temperature) failed\n");
}
}
}
while (outstanding_commands) {
nvme_ctrlr_process_admin_completions(ctrlr);
}
}
static void
cleanup(void)
{
if (health_page) {
rte_free(health_page);
health_page = NULL;
}
if (intel_smart_page) {
rte_free(intel_smart_page);
intel_smart_page = NULL;
}
if (intel_temperature_page) {
rte_free(intel_temperature_page);
intel_temperature_page = NULL;
}
}
static void
print_uint128_hex(uint64_t *v)
{
unsigned long long lo = v[0], hi = v[1];
if (hi) {
printf("0x%llX%016llX", hi, lo);
} else {
printf("0x%llX", lo);
}
}
static void
print_uint128_dec(uint64_t *v)
{
unsigned long long lo = v[0], hi = v[1];
if (hi) {
/* can't handle large (>64-bit) decimal values for now, so fall back to hex */
print_uint128_hex(v);
} else {
printf("%llu", (unsigned long long)lo);
}
}
/* The len should be <= 8.*/
static void
print_uint_var_dec(uint8_t *array, unsigned int len)
{
uint64_t result = 0;
int i = len;
while (i > 0) {
result += (uint64_t)array[i - 1] << (8 * (i - 1));
i--;
}
printf("%lu", result);
}
static void
print_namespace(struct nvme_namespace *ns)
{
const struct spdk_nvme_ns_data *nsdata;
uint32_t i;
uint32_t flags;
nsdata = nvme_ns_get_data(ns);
flags = nvme_ns_get_flags(ns);
printf("Namespace ID:%d\n", nvme_ns_get_id(ns));
if (g_hex_dump) {
hex_dump(nsdata, sizeof(*nsdata));
printf("\n");
}
printf("Deallocate: %s\n",
(flags & NVME_NS_DEALLOCATE_SUPPORTED) ? "Supported" : "Not Supported");
printf("Flush: %s\n",
(flags & NVME_NS_FLUSH_SUPPORTED) ? "Supported" : "Not Supported");
printf("Reservation: %s\n",
(flags & NVME_NS_RESERVATION_SUPPORTED) ? "Supported" : "Not Supported");
printf("Size (in LBAs): %lld (%lldM)\n",
(long long)nsdata->nsze,
(long long)nsdata->nsze / 1024 / 1024);
printf("Capacity (in LBAs): %lld (%lldM)\n",
(long long)nsdata->ncap,
(long long)nsdata->ncap / 1024 / 1024);
printf("Utilization (in LBAs): %lld (%lldM)\n",
(long long)nsdata->nuse,
(long long)nsdata->nuse / 1024 / 1024);
printf("Thin Provisioning: %s\n",
nsdata->nsfeat.thin_prov ? "Supported" : "Not Supported");
printf("Number of LBA Formats: %d\n", nsdata->nlbaf + 1);
printf("Current LBA Format: LBA Format #%02d\n",
nsdata->flbas.format);
for (i = 0; i <= nsdata->nlbaf; i++)
printf("LBA Format #%02d: Data Size: %5d Metadata Size: %5d\n",
i, 1 << nsdata->lbaf[i].lbads, nsdata->lbaf[i].ms);
printf("\n");
}
static void
print_controller(struct nvme_controller *ctrlr, struct spdk_pci_device *pci_dev)
{
const struct spdk_nvme_ctrlr_data *cdata;
uint8_t str[128];
uint32_t i;
get_features(ctrlr);
get_log_pages(ctrlr);
cdata = nvme_ctrlr_get_data(ctrlr);
printf("=====================================================\n");
printf("NVMe Controller at PCI bus %d, device %d, function %d\n",
spdk_pci_device_get_bus(pci_dev), spdk_pci_device_get_dev(pci_dev),
spdk_pci_device_get_func(pci_dev));
printf("=====================================================\n");
if (g_hex_dump) {
hex_dump(cdata, sizeof(*cdata));
printf("\n");
}
printf("Controller Capabilities/Features\n");
printf("================================\n");
printf("Vendor ID: %04x\n", cdata->vid);
printf("Subsystem Vendor ID: %04x\n", cdata->ssvid);
snprintf(str, sizeof(cdata->sn) + 1, "%s", cdata->sn);
printf("Serial Number: %s\n", str);
snprintf(str, sizeof(cdata->mn) + 1, "%s", cdata->mn);
printf("Model Number: %s\n", str);
snprintf(str, sizeof(cdata->fr) + 1, "%s", cdata->fr);
printf("Firmware Version: %s\n", str);
printf("Recommended Arb Burst: %d\n", cdata->rab);
printf("IEEE OUI Identifier: %02x %02x %02x\n",
cdata->ieee[0], cdata->ieee[1], cdata->ieee[2]);
printf("Multi-Interface Cap: %02x\n", cdata->mic);
/* TODO: Use CAP.MPSMIN to determine true memory page size. */
printf("Max Data Transfer Size: ");
if (cdata->mdts == 0)
printf("Unlimited\n");
else
printf("%d\n", 4096 * (1 << cdata->mdts));
if (features[SPDK_NVME_FEAT_ERROR_RECOVERY].valid) {
unsigned tler = features[SPDK_NVME_FEAT_ERROR_RECOVERY].result & 0xFFFF;
printf("Error Recovery Timeout: ");
if (tler == 0) {
printf("Unlimited\n");
} else {
printf("%u milliseconds\n", tler * 100);
}
}
printf("\n");
printf("Admin Command Set Attributes\n");
printf("============================\n");
printf("Security Send/Receive: %s\n",
cdata->oacs.security ? "Supported" : "Not Supported");
printf("Format NVM: %s\n",
cdata->oacs.format ? "Supported" : "Not Supported");
printf("Firmware Activate/Download: %s\n",
cdata->oacs.firmware ? "Supported" : "Not Supported");
printf("Abort Command Limit: %d\n", cdata->acl + 1);
printf("Async Event Request Limit: %d\n", cdata->aerl + 1);
printf("Number of Firmware Slots: ");
if (cdata->oacs.firmware != 0)
printf("%d\n", cdata->frmw.num_slots);
else
printf("N/A\n");
printf("Firmware Slot 1 Read-Only: ");
if (cdata->oacs.firmware != 0)
printf("%s\n", cdata->frmw.slot1_ro ? "Yes" : "No");
else
printf("N/A\n");
printf("Per-Namespace SMART Log: %s\n",
cdata->lpa.ns_smart ? "Yes" : "No");
printf("Error Log Page Entries: %d\n", cdata->elpe + 1);
printf("\n");
printf("NVM Command Set Attributes\n");
printf("==========================\n");
printf("Submission Queue Entry Size\n");
printf(" Max: %d\n", 1 << cdata->sqes.max);
printf(" Min: %d\n", 1 << cdata->sqes.min);
printf("Completion Queue Entry Size\n");
printf(" Max: %d\n", 1 << cdata->cqes.max);
printf(" Min: %d\n", 1 << cdata->cqes.min);
printf("Number of Namespaces: %d\n", cdata->nn);
printf("Compare Command: %s\n",
cdata->oncs.compare ? "Supported" : "Not Supported");
printf("Write Uncorrectable Command: %s\n",
cdata->oncs.write_unc ? "Supported" : "Not Supported");
printf("Dataset Management Command: %s\n",
cdata->oncs.dsm ? "Supported" : "Not Supported");
printf("Write Zeroes Command: %s\n",
cdata->oncs.write_zeroes ? "Supported" : "Not Supported");
printf("Set Features Save Field: %s\n",
cdata->oncs.set_features_save ? "Supported" : "Not Supported");
printf("Reservations: %s\n",
cdata->oncs.reservations ? "Supported" : "Not Supported");
printf("Volatile Write Cache: %s\n",
cdata->vwc.present ? "Present" : "Not Present");
printf("Scatter-Gather List\n");
printf(" SGL Command Set: %s\n",
cdata->sgls.supported ? "Supported" : "Not Supported");
printf(" SGL Bit Bucket Descriptor: %s\n",
cdata->sgls.bit_bucket_descriptor_supported ? "Supported" : "Not Supported");
printf(" SGL Metadata Pointer: %s\n",
cdata->sgls.metadata_pointer_supported ? "Supported" : "Not Supported");
printf(" Oversized SGL: %s\n",
cdata->sgls.oversized_sgl_supported ? "Supported" : "Not Supported");
printf("\n");
if (features[SPDK_NVME_FEAT_ARBITRATION].valid) {
uint32_t arb = features[SPDK_NVME_FEAT_ARBITRATION].result;
unsigned ab, lpw, mpw, hpw;
ab = arb & 0x3;
lpw = ((arb >> 8) & 0xFF) + 1;
mpw = ((arb >> 16) & 0xFF) + 1;
hpw = ((arb >> 24) & 0xFF) + 1;
printf("Arbitration\n");
printf("===========\n");
printf("Arbitration Burst: ");
if (ab == 7) {
printf("no limit\n");
} else {
printf("%u\n", 1u << ab);
}
printf("Low Priority Weight: %u\n", lpw);
printf("Medium Priority Weight: %u\n", mpw);
printf("High Priority Weight: %u\n", hpw);
printf("\n");
}
if (features[SPDK_NVME_FEAT_POWER_MANAGEMENT].valid) {
unsigned ps = features[SPDK_NVME_FEAT_POWER_MANAGEMENT].result & 0x1F;
printf("Power Management\n");
printf("================\n");
printf("Number of Power States: %u\n", cdata->npss + 1);
printf("Current Power State: Power State #%u\n", ps);
for (i = 0; i <= cdata->npss; i++) {
const struct spdk_nvme_power_state *psd = &cdata->psd[i];
printf("Power State #%u: ", i);
if (psd->mps) {
/* MP scale is 0.0001 W */
printf("Max Power: %u.%04u W\n",
psd->mp / 10000,
psd->mp % 10000);
} else {
/* MP scale is 0.01 W */
printf("Max Power: %3u.%02u W\n",
psd->mp / 100,
psd->mp % 100);
}
/* TODO: print other power state descriptor fields */
}
printf("\n");
}
if (features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].valid && health_page) {
printf("Health Information\n");
printf("==================\n");
if (g_hex_dump) {
hex_dump(health_page, sizeof(*health_page));
printf("\n");
}
printf("Critical Warnings:\n");
printf(" Available Spare Space: %s\n",
health_page->critical_warning.bits.available_spare ? "WARNING" : "OK");
printf(" Temperature: %s\n",
health_page->critical_warning.bits.temperature ? "WARNING" : "OK");
printf(" Device Reliability: %s\n",
health_page->critical_warning.bits.device_reliability ? "WARNING" : "OK");
printf(" Read Only: %s\n",
health_page->critical_warning.bits.read_only ? "Yes" : "No");
printf(" Volatile Memory Backup: %s\n",
health_page->critical_warning.bits.volatile_memory_backup ? "WARNING" : "OK");
printf("Current Temperature: %u Kelvin (%u Celsius)\n",
health_page->temperature,
health_page->temperature - 273);
printf("Temperature Threshold: %u Kelvin (%u Celsius)\n",
features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].result,
features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].result - 273);
printf("Available Spare: %u%%\n", health_page->available_spare);
printf("Life Percentage Used: %u%%\n", health_page->percentage_used);
printf("Data Units Read: ");
print_uint128_dec(health_page->data_units_read);
printf("\n");
printf("Data Units Written: ");
print_uint128_dec(health_page->data_units_written);
printf("\n");
printf("Host Read Commands: ");
print_uint128_dec(health_page->host_read_commands);
printf("\n");
printf("Host Write Commands: ");
print_uint128_dec(health_page->host_write_commands);
printf("\n");
printf("Controller Busy Time: ");
print_uint128_dec(health_page->controller_busy_time);
printf(" minutes\n");
printf("Power Cycles: ");
print_uint128_dec(health_page->power_cycles);
printf("\n");
printf("Power On Hours: ");
print_uint128_dec(health_page->power_on_hours);
printf(" hours\n");
printf("Unsafe Shutdowns: ");
print_uint128_dec(health_page->unsafe_shutdowns);
printf("\n");
printf("Unrecoverable Media Errors: ");
print_uint128_dec(health_page->media_errors);
printf("\n");
printf("Lifetime Error Log Entries: ");
print_uint128_dec(health_page->num_error_info_log_entries);
printf("\n");
printf("\n");
}
if (intel_smart_page) {
size_t i = 0;
printf("Intel Health Information\n");
printf("==================\n");
for (i = 0;
i < sizeof(intel_smart_page->attributes) / sizeof(intel_smart_page->attributes[0]); i++) {
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_PROGRAM_FAIL_COUNT) {
printf("Program Fail Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page->attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_ERASE_FAIL_COUNT) {
printf("Erase Fail Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page->attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_WEAR_LEVELING_COUNT) {
printf("Wear Leveling Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: \n");
printf(" Min: ");
print_uint_var_dec(&intel_smart_page->attributes[i].raw_value[0], 2);
printf("\n");
printf(" Max: ");
print_uint_var_dec(&intel_smart_page->attributes[i].raw_value[2], 2);
printf("\n");
printf(" Avg: ");
print_uint_var_dec(&intel_smart_page->attributes[i].raw_value[4], 2);
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_E2E_ERROR_COUNT) {
printf("End to End Error Detection Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page->attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_CRC_ERROR_COUNT) {
printf("CRC Error Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page->attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_MEDIA_WEAR) {
printf("Timed Workload, Media Wear:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page->attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_HOST_READ_PERCENTAGE) {
printf("Timed Workload, Host Read/Write Ratio:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page->attributes[i].raw_value, 6);
printf("%%");
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_TIMER) {
printf("Timed Workload, Timer:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page->attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_THERMAL_THROTTLE_STATUS) {
printf("Thermal Throttle Status:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: \n");
printf(" Percentage: %d%%\n", intel_smart_page->attributes[i].raw_value[0]);
printf(" Throttling Event Count: ");
print_uint_var_dec(&intel_smart_page->attributes[i].raw_value[1], 4);
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_RETRY_BUFFER_OVERFLOW_COUNTER) {
printf("Retry Buffer Overflow Counter:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page->attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_PLL_LOCK_LOSS_COUNT) {
printf("PLL Lock Loss Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page->attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_NAND_BYTES_WRITTEN) {
printf("NAND Bytes Written:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page->attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page->attributes[i].code == SPDK_NVME_INTEL_SMART_HOST_BYTES_WRITTEN) {
printf("Host Bytes Written:\n");
printf(" Normalized Value : %d\n",
intel_smart_page->attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page->attributes[i].raw_value, 6);
printf("\n");
}
}
printf("\n");
}
if (intel_temperature_page) {
printf("Intel Temperature Information\n");
printf("==================\n");
printf("Current Temperature: %lu\n", intel_temperature_page->current_temperature);
printf("Overtemp shutdown Flag for last critical component temperature: %lu\n",
intel_temperature_page->shutdown_flag_last);
printf("Overtemp shutdown Flag for life critical component temperature: %lu\n",
intel_temperature_page->shutdown_flag_life);
printf("Highest temperature: %lu\n", intel_temperature_page->highest_temperature);
printf("Lowest temperature: %lu\n", intel_temperature_page->lowest_temperature);
printf("Specified Maximum Operating Temperature: %lu\n",
intel_temperature_page->specified_max_op_temperature);
printf("Specified Minimum Operating Temperature: %lu\n",
intel_temperature_page->specified_min_op_temperature);
printf("Estimated offset: %ld\n", intel_temperature_page->estimated_offset);
printf("\n");
printf("\n");
}
for (i = 1; i <= nvme_ctrlr_get_num_ns(ctrlr); i++) {
print_namespace(nvme_ctrlr_get_ns(ctrlr, i));
}
}
static void
usage(const char *program_name)
{
printf("%s [options]", program_name);
printf("\n");
printf("options:\n");
printf(" -x print hex dump of raw data\n");
}
static int
parse_args(int argc, char **argv)
{
int op;
while ((op = getopt(argc, argv, "x")) != -1) {
switch (op) {
case 'x':
g_hex_dump = true;
break;
default:
usage(argv[0]);
return 1;
}
}
optind = 1;
return 0;
}
static bool
probe_cb(void *cb_ctx, struct spdk_pci_device *dev)
{
if (spdk_pci_device_has_non_uio_driver(dev)) {
fprintf(stderr, "non-uio kernel driver attached to NVMe\n");
fprintf(stderr, " controller at PCI address %04x:%02x:%02x.%02x\n",
spdk_pci_device_get_domain(dev),
spdk_pci_device_get_bus(dev),
spdk_pci_device_get_dev(dev),
spdk_pci_device_get_func(dev));
fprintf(stderr, " skipping...\n");
return false;
}
return true;
}
static void
attach_cb(void *cb_ctx, struct spdk_pci_device *pci_dev, struct nvme_controller *ctrlr)
{
print_controller(ctrlr, pci_dev);
nvme_detach(ctrlr);
}
static const char *ealargs[] = {
"identify",
"-c 0x1",
"-n 4",
};
int main(int argc, char **argv)
{
int rc;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
rc = rte_eal_init(sizeof(ealargs) / sizeof(ealargs[0]),
(char **)(void *)(uintptr_t)ealargs);
if (rc < 0) {
fprintf(stderr, "could not initialize dpdk\n");
exit(1);
}
request_mempool = rte_mempool_create("nvme_request", 8192,
nvme_request_size(), 128, 0,
NULL, NULL, NULL, NULL,
SOCKET_ID_ANY, 0);
if (request_mempool == NULL) {
fprintf(stderr, "could not initialize request mempool\n");
exit(1);
}
rc = 0;
if (nvme_probe(NULL, probe_cb, attach_cb) != 0) {
fprintf(stderr, "nvme_probe() failed\n");
rc = 1;
}
cleanup();
return rc;
}