0aca4d91e8
Signed-off-by: paul luse <paul.e.luse@intel.com> Change-Id: If196c51deead9828fd75388f34b5622884c5e2d8 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2204 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Community-CI: Mellanox Build Bot
866 lines
22 KiB
C
866 lines
22 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include "spdk/env.h"
|
|
#include "spdk/util.h"
|
|
#include "spdk/memory.h"
|
|
|
|
#include "spdk_internal/log.h"
|
|
#include "spdk_internal/idxd.h"
|
|
|
|
#include "idxd.h"
|
|
|
|
#define ALIGN_4K 0x1000
|
|
|
|
pthread_mutex_t g_driver_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
/*
|
|
* g_dev_cfg gives us 2 pre-set configurations of DSA to choose from
|
|
* via RPC.
|
|
*/
|
|
struct device_config *g_dev_cfg = NULL;
|
|
|
|
/*
|
|
* Pre-built configurations. Variations depend on various factors
|
|
* including how many different types of target latency profiles there
|
|
* are, how many different QOS requirements there might be, etc.
|
|
*/
|
|
struct device_config g_dev_cfg0 = {
|
|
.config_num = 0,
|
|
.num_groups = 4,
|
|
.num_wqs_per_group = 1,
|
|
.num_engines_per_group = 1,
|
|
.total_wqs = 4,
|
|
.total_engines = 4,
|
|
};
|
|
|
|
struct device_config g_dev_cfg1 = {
|
|
.config_num = 1,
|
|
.num_groups = 2,
|
|
.num_wqs_per_group = 2,
|
|
.num_engines_per_group = 2,
|
|
.total_wqs = 4,
|
|
.total_engines = 4,
|
|
};
|
|
|
|
static uint32_t
|
|
_idxd_read_4(struct spdk_idxd_device *idxd, uint32_t offset)
|
|
{
|
|
return spdk_mmio_read_4((uint32_t *)(idxd->reg_base + offset));
|
|
}
|
|
|
|
static void
|
|
_idxd_write_4(struct spdk_idxd_device *idxd, uint32_t offset, uint32_t value)
|
|
{
|
|
spdk_mmio_write_4((uint32_t *)(idxd->reg_base + offset), value);
|
|
}
|
|
|
|
static uint64_t
|
|
_idxd_read_8(struct spdk_idxd_device *idxd, uint32_t offset)
|
|
{
|
|
return spdk_mmio_read_8((uint64_t *)(idxd->reg_base + offset));
|
|
}
|
|
|
|
static void
|
|
_idxd_write_8(struct spdk_idxd_device *idxd, uint32_t offset, uint64_t value)
|
|
{
|
|
spdk_mmio_write_8((uint64_t *)(idxd->reg_base + offset), value);
|
|
}
|
|
|
|
struct spdk_idxd_io_channel *
|
|
spdk_idxd_get_channel(struct spdk_idxd_device *idxd)
|
|
{
|
|
struct spdk_idxd_io_channel *chan;
|
|
|
|
chan = calloc(1, sizeof(struct spdk_idxd_io_channel));
|
|
if (chan == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate idxd chan\n");
|
|
return NULL;
|
|
}
|
|
chan->idxd = idxd;
|
|
|
|
return chan;
|
|
}
|
|
|
|
void
|
|
spdk_idxd_put_channel(struct spdk_idxd_io_channel *chan)
|
|
{
|
|
free(chan);
|
|
}
|
|
|
|
int
|
|
spdk_idxd_configure_chan(struct spdk_idxd_io_channel *chan)
|
|
{
|
|
uint32_t num_ring_slots;
|
|
|
|
chan->idxd->wq_id++;
|
|
if (chan->idxd->wq_id == g_dev_cfg->total_wqs) {
|
|
chan->idxd->wq_id = 0;
|
|
}
|
|
|
|
num_ring_slots = chan->idxd->queues[chan->idxd->wq_id].wqcfg.wq_size;
|
|
|
|
chan->ring_ctrl.ring_slots = spdk_bit_array_create(num_ring_slots);
|
|
if (chan->ring_ctrl.ring_slots == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate bit array for ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* max ring slots can change as channels come and go but we
|
|
* start off getting all of the slots for this work queue.
|
|
*/
|
|
chan->ring_ctrl.max_ring_slots = num_ring_slots;
|
|
|
|
/* Store the original size of the ring. */
|
|
chan->ring_ctrl.ring_size = num_ring_slots;
|
|
|
|
chan->ring_ctrl.data_desc = spdk_zmalloc(num_ring_slots * sizeof(struct idxd_hw_desc),
|
|
0x40, NULL,
|
|
SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
|
|
if (chan->ring_ctrl.data_desc == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate descriptor memory\n");
|
|
spdk_bit_array_free(&chan->ring_ctrl.ring_slots);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
chan->ring_ctrl.completions = spdk_zmalloc(num_ring_slots * sizeof(struct idxd_comp),
|
|
0x40, NULL,
|
|
SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
|
|
if (chan->ring_ctrl.completions == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate completion memory\n");
|
|
spdk_bit_array_free(&chan->ring_ctrl.ring_slots);
|
|
spdk_free(chan->ring_ctrl.data_desc);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
chan->ring_ctrl.portal = (char *)chan->idxd->portals + chan->idxd->wq_id * PORTAL_SIZE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
_idxd_drain(struct spdk_idxd_io_channel *chan)
|
|
{
|
|
uint32_t index;
|
|
int set = 0;
|
|
|
|
/*
|
|
* TODO this is a temp solution to drain until getting the drain cmd to work, this
|
|
* provides equivalent functionality but just doesn't use the device to do it.
|
|
*/
|
|
do {
|
|
spdk_idxd_process_events(chan);
|
|
set = 0;
|
|
for (index = 0; index < chan->ring_ctrl.max_ring_slots; index++) {
|
|
set |= spdk_bit_array_get(chan->ring_ctrl.ring_slots, index);
|
|
}
|
|
} while (set);
|
|
}
|
|
|
|
int
|
|
spdk_idxd_reconfigure_chan(struct spdk_idxd_io_channel *chan, uint32_t num_channels)
|
|
{
|
|
uint32_t num_ring_slots;
|
|
int rc;
|
|
|
|
_idxd_drain(chan);
|
|
|
|
assert(spdk_bit_array_count_set(chan->ring_ctrl.ring_slots) == 0);
|
|
|
|
if (num_channels == 0) {
|
|
spdk_free(chan->ring_ctrl.completions);
|
|
spdk_free(chan->ring_ctrl.data_desc);
|
|
spdk_bit_array_free(&chan->ring_ctrl.ring_slots);
|
|
return 0;
|
|
}
|
|
|
|
num_ring_slots = chan->ring_ctrl.ring_size / num_channels;
|
|
|
|
/* re-allocate our descriptor ring for hw flow control. */
|
|
rc = spdk_bit_array_resize(&chan->ring_ctrl.ring_slots, num_ring_slots);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Unable to resize channel bit array\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
chan->ring_ctrl.max_ring_slots = num_ring_slots;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Called via RPC to select a pre-defined configuration. */
|
|
void
|
|
spdk_idxd_set_config(uint32_t config_num)
|
|
{
|
|
switch (config_num) {
|
|
case 0:
|
|
g_dev_cfg = &g_dev_cfg0;
|
|
break;
|
|
case 1:
|
|
g_dev_cfg = &g_dev_cfg1;
|
|
break;
|
|
default:
|
|
g_dev_cfg = &g_dev_cfg0;
|
|
SPDK_ERRLOG("Invalid config, using default\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
idxd_unmap_pci_bar(struct spdk_idxd_device *idxd, int bar)
|
|
{
|
|
int rc = 0;
|
|
void *addr = NULL;
|
|
|
|
if (bar == IDXD_MMIO_BAR) {
|
|
addr = (void *)idxd->reg_base;
|
|
} else if (bar == IDXD_WQ_BAR) {
|
|
addr = (void *)idxd->portals;
|
|
}
|
|
|
|
if (addr) {
|
|
rc = spdk_pci_device_unmap_bar(idxd->device, 0, addr);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
idxd_map_pci_bars(struct spdk_idxd_device *idxd)
|
|
{
|
|
int rc;
|
|
void *addr;
|
|
uint64_t phys_addr, size;
|
|
|
|
rc = spdk_pci_device_map_bar(idxd->device, IDXD_MMIO_BAR, &addr, &phys_addr, &size);
|
|
if (rc != 0 || addr == NULL) {
|
|
SPDK_ERRLOG("pci_device_map_range failed with error code %d\n", rc);
|
|
return -1;
|
|
}
|
|
idxd->reg_base = addr;
|
|
|
|
rc = spdk_pci_device_map_bar(idxd->device, IDXD_WQ_BAR, &addr, &phys_addr, &size);
|
|
if (rc != 0 || addr == NULL) {
|
|
SPDK_ERRLOG("pci_device_map_range failed with error code %d\n", rc);
|
|
rc = idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
|
|
if (rc) {
|
|
SPDK_ERRLOG("unable to unmap MMIO bar\n");
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
idxd->portals = addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Used for control commands, not for descriptor submission. */
|
|
static int
|
|
idxd_wait_cmd(struct spdk_idxd_device *idxd, int _timeout)
|
|
{
|
|
uint32_t timeout = _timeout;
|
|
union idxd_cmdsts_reg cmd_status = {};
|
|
|
|
cmd_status.raw = _idxd_read_4(idxd, IDXD_CMDSTS_OFFSET);
|
|
while (cmd_status.active && --timeout) {
|
|
usleep(1);
|
|
cmd_status.raw = _idxd_read_4(idxd, IDXD_CMDSTS_OFFSET);
|
|
}
|
|
|
|
/* Check for timeout */
|
|
if (timeout == 0 && cmd_status.active) {
|
|
SPDK_ERRLOG("Command timeout, waited %u\n", _timeout);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Check for error */
|
|
if (cmd_status.err) {
|
|
SPDK_ERRLOG("Command status reg reports error 0x%x\n", cmd_status.err);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
idxd_reset_dev(struct spdk_idxd_device *idxd)
|
|
{
|
|
int rc;
|
|
|
|
_idxd_write_4(idxd, IDXD_CMD_OFFSET, IDXD_RESET_DEVICE << IDXD_CMD_SHIFT);
|
|
rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Error resetting device %u\n", rc);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Build group config based on getting info from the device combined
|
|
* with the defined configuration. Once built, it is written to the
|
|
* device.
|
|
*/
|
|
static int
|
|
idxd_group_config(struct spdk_idxd_device *idxd)
|
|
{
|
|
int i;
|
|
uint64_t base_offset;
|
|
|
|
assert(g_dev_cfg->num_groups <= idxd->registers.groupcap.num_groups);
|
|
idxd->groups = calloc(idxd->registers.groupcap.num_groups, sizeof(struct idxd_group));
|
|
if (idxd->groups == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate group memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
assert(g_dev_cfg->total_engines <= idxd->registers.enginecap.num_engines);
|
|
for (i = 0; i < g_dev_cfg->total_engines; i++) {
|
|
idxd->groups[i % g_dev_cfg->num_groups].grpcfg.engines |= (1 << i);
|
|
}
|
|
|
|
assert(g_dev_cfg->total_wqs <= idxd->registers.wqcap.num_wqs);
|
|
for (i = 0; i < g_dev_cfg->total_wqs; i++) {
|
|
idxd->groups[i % g_dev_cfg->num_groups].grpcfg.wqs[0] |= (1 << i);
|
|
}
|
|
|
|
for (i = 0; i < g_dev_cfg->num_groups; i++) {
|
|
idxd->groups[i].idxd = idxd;
|
|
idxd->groups[i].id = i;
|
|
|
|
/* Divide BW tokens evenly */
|
|
idxd->groups[i].grpcfg.flags.tokens_allowed =
|
|
idxd->registers.groupcap.total_tokens / g_dev_cfg->num_groups;
|
|
}
|
|
|
|
/*
|
|
* Now write the group config to the device for all groups. We write
|
|
* to the max number of groups in order to 0 out the ones we didn't
|
|
* configure.
|
|
*/
|
|
for (i = 0 ; i < idxd->registers.groupcap.num_groups; i++) {
|
|
|
|
base_offset = idxd->grpcfg_offset + i * 64;
|
|
|
|
/* GRPWQCFG, work queues config */
|
|
_idxd_write_8(idxd, base_offset, idxd->groups[i].grpcfg.wqs[0]);
|
|
|
|
/* GRPENGCFG, engine config */
|
|
_idxd_write_8(idxd, base_offset + CFG_ENGINE_OFFSET, idxd->groups[i].grpcfg.engines);
|
|
|
|
/* GRPFLAGS, flags config */
|
|
_idxd_write_8(idxd, base_offset + CFG_FLAG_OFFSET, idxd->groups[i].grpcfg.flags.raw);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Build work queue (WQ) config based on getting info from the device combined
|
|
* with the defined configuration. Once built, it is written to the device.
|
|
*/
|
|
static int
|
|
idxd_wq_config(struct spdk_idxd_device *idxd)
|
|
{
|
|
int i, j;
|
|
struct idxd_wq *queue;
|
|
u_int32_t wq_size = idxd->registers.wqcap.total_wq_size / g_dev_cfg->total_wqs;
|
|
|
|
SPDK_NOTICELOG("Total ring slots available space 0x%x, so per work queue is 0x%x\n",
|
|
idxd->registers.wqcap.total_wq_size, wq_size);
|
|
assert(g_dev_cfg->total_wqs <= IDXD_MAX_QUEUES);
|
|
assert(g_dev_cfg->total_wqs <= idxd->registers.wqcap.num_wqs);
|
|
assert(LOG2_WQ_MAX_BATCH <= idxd->registers.gencap.max_batch_shift);
|
|
assert(LOG2_WQ_MAX_XFER <= idxd->registers.gencap.max_xfer_shift);
|
|
|
|
idxd->queues = calloc(1, idxd->registers.wqcap.num_wqs * sizeof(struct idxd_wq));
|
|
if (idxd->queues == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate queue memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < g_dev_cfg->total_wqs; i++) {
|
|
queue = &idxd->queues[i];
|
|
queue->wqcfg.wq_size = wq_size;
|
|
queue->wqcfg.mode = WQ_MODE_DEDICATED;
|
|
queue->wqcfg.max_batch_shift = LOG2_WQ_MAX_BATCH;
|
|
queue->wqcfg.max_xfer_shift = LOG2_WQ_MAX_XFER;
|
|
queue->wqcfg.wq_state = WQ_ENABLED;
|
|
queue->wqcfg.priority = WQ_PRIORITY_1;
|
|
|
|
/* Not part of the config struct */
|
|
queue->idxd = idxd;
|
|
queue->group = &idxd->groups[i % g_dev_cfg->num_groups];
|
|
}
|
|
|
|
/*
|
|
* Now write the work queue config to the device for all wq space
|
|
*/
|
|
for (i = 0 ; i < idxd->registers.wqcap.num_wqs; i++) {
|
|
queue = &idxd->queues[i];
|
|
for (j = 0 ; j < WQCFG_NUM_DWORDS; j++) {
|
|
_idxd_write_4(idxd, idxd->wqcfg_offset + i * 32 + j * 4,
|
|
queue->wqcfg.raw[j]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
idxd_device_configure(struct spdk_idxd_device *idxd)
|
|
{
|
|
int i, rc = 0;
|
|
union idxd_offsets_register offsets_reg;
|
|
union idxd_genstatus_register genstatus_reg;
|
|
|
|
/*
|
|
* Map BAR0 and BAR2
|
|
*/
|
|
rc = idxd_map_pci_bars(idxd);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Reset the device
|
|
*/
|
|
rc = idxd_reset_dev(idxd);
|
|
if (rc) {
|
|
goto err_reset;
|
|
}
|
|
|
|
/*
|
|
* Read in config registers
|
|
*/
|
|
idxd->registers.version = _idxd_read_4(idxd, IDXD_VERSION_OFFSET);
|
|
idxd->registers.gencap.raw = _idxd_read_8(idxd, IDXD_GENCAP_OFFSET);
|
|
idxd->registers.wqcap.raw = _idxd_read_8(idxd, IDXD_WQCAP_OFFSET);
|
|
idxd->registers.groupcap.raw = _idxd_read_8(idxd, IDXD_GRPCAP_OFFSET);
|
|
idxd->registers.enginecap.raw = _idxd_read_8(idxd, IDXD_ENGCAP_OFFSET);
|
|
for (i = 0; i < IDXD_OPCAP_WORDS; i++) {
|
|
idxd->registers.opcap.raw[i] =
|
|
_idxd_read_8(idxd, i * sizeof(uint64_t) + IDXD_OPCAP_OFFSET);
|
|
}
|
|
offsets_reg.raw[0] = _idxd_read_8(idxd, IDXD_TABLE_OFFSET);
|
|
offsets_reg.raw[1] = _idxd_read_8(idxd, IDXD_TABLE_OFFSET + sizeof(uint64_t));
|
|
idxd->grpcfg_offset = offsets_reg.grpcfg * IDXD_TABLE_OFFSET_MULT;
|
|
idxd->wqcfg_offset = offsets_reg.wqcfg * IDXD_TABLE_OFFSET_MULT;
|
|
idxd->ims_offset = offsets_reg.ims * IDXD_TABLE_OFFSET_MULT;
|
|
idxd->msix_perm_offset = offsets_reg.msix_perm * IDXD_TABLE_OFFSET_MULT;
|
|
idxd->perfmon_offset = offsets_reg.perfmon * IDXD_TABLE_OFFSET_MULT;
|
|
|
|
/*
|
|
* Configure groups and work queues.
|
|
*/
|
|
rc = idxd_group_config(idxd);
|
|
if (rc) {
|
|
goto err_group_cfg;
|
|
}
|
|
|
|
rc = idxd_wq_config(idxd);
|
|
if (rc) {
|
|
goto err_wq_cfg;
|
|
}
|
|
|
|
/*
|
|
* Enable the device
|
|
*/
|
|
genstatus_reg.raw = _idxd_read_4(idxd, IDXD_GENSTATUS_OFFSET);
|
|
assert(genstatus_reg.state == IDXD_DEVICE_STATE_DISABLED);
|
|
|
|
_idxd_write_4(idxd, IDXD_CMD_OFFSET, IDXD_ENABLE_DEV << IDXD_CMD_SHIFT);
|
|
rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US);
|
|
genstatus_reg.raw = _idxd_read_4(idxd, IDXD_GENSTATUS_OFFSET);
|
|
if ((rc < 0) || (genstatus_reg.state != IDXD_DEVICE_STATE_ENABLED)) {
|
|
rc = -EINVAL;
|
|
SPDK_ERRLOG("Error enabling device %u\n", rc);
|
|
goto err_device_enable;
|
|
}
|
|
|
|
genstatus_reg.raw = spdk_mmio_read_4((uint32_t *)(idxd->reg_base + IDXD_GENSTATUS_OFFSET));
|
|
assert(genstatus_reg.state == IDXD_DEVICE_STATE_ENABLED);
|
|
|
|
/*
|
|
* Enable the work queues that we've configured
|
|
*/
|
|
for (i = 0; i < g_dev_cfg->total_wqs; i++) {
|
|
_idxd_write_4(idxd, IDXD_CMD_OFFSET,
|
|
(IDXD_ENABLE_WQ << IDXD_CMD_SHIFT) | i);
|
|
rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US);
|
|
if (rc < 0) {
|
|
SPDK_ERRLOG("Error enabling work queues 0x%x\n", rc);
|
|
goto err_wq_enable;
|
|
}
|
|
}
|
|
|
|
if ((rc == 0) && (genstatus_reg.state == IDXD_DEVICE_STATE_ENABLED)) {
|
|
SPDK_NOTICELOG("Device enabled, version 0x%x gencap: 0x%lx\n",
|
|
idxd->registers.version,
|
|
idxd->registers.gencap.raw);
|
|
|
|
}
|
|
|
|
return rc;
|
|
err_wq_enable:
|
|
err_device_enable:
|
|
free(idxd->queues);
|
|
err_wq_cfg:
|
|
free(idxd->groups);
|
|
err_group_cfg:
|
|
err_reset:
|
|
idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
|
|
idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
idxd_device_destruct(struct spdk_idxd_device *idxd)
|
|
{
|
|
idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
|
|
idxd_unmap_pci_bar(idxd, IDXD_WQ_BAR);
|
|
free(idxd->groups);
|
|
free(idxd->queues);
|
|
free(idxd);
|
|
}
|
|
|
|
/* Caller must hold g_driver_lock */
|
|
static struct spdk_idxd_device *
|
|
idxd_attach(struct spdk_pci_device *device)
|
|
{
|
|
struct spdk_idxd_device *idxd;
|
|
uint32_t cmd_reg;
|
|
int rc;
|
|
|
|
idxd = calloc(1, sizeof(struct spdk_idxd_device));
|
|
if (idxd == NULL) {
|
|
SPDK_ERRLOG("Failed to allocate memory for idxd device.\n");
|
|
return NULL;
|
|
}
|
|
|
|
idxd->device = device;
|
|
|
|
/* Enable PCI busmaster. */
|
|
spdk_pci_device_cfg_read32(device, &cmd_reg, 4);
|
|
cmd_reg |= 0x4;
|
|
spdk_pci_device_cfg_write32(device, cmd_reg, 4);
|
|
|
|
rc = idxd_device_configure(idxd);
|
|
if (rc) {
|
|
goto err;
|
|
}
|
|
|
|
return idxd;
|
|
err:
|
|
idxd_device_destruct(idxd);
|
|
return NULL;
|
|
}
|
|
|
|
struct idxd_enum_ctx {
|
|
spdk_idxd_probe_cb probe_cb;
|
|
spdk_idxd_attach_cb attach_cb;
|
|
void *cb_ctx;
|
|
};
|
|
|
|
/* This function must only be called while holding g_driver_lock */
|
|
static int
|
|
idxd_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
|
|
{
|
|
struct idxd_enum_ctx *enum_ctx = ctx;
|
|
struct spdk_idxd_device *idxd;
|
|
|
|
if (enum_ctx->probe_cb(enum_ctx->cb_ctx, pci_dev)) {
|
|
idxd = idxd_attach(pci_dev);
|
|
if (idxd == NULL) {
|
|
SPDK_ERRLOG("idxd_attach() failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
enum_ctx->attach_cb(enum_ctx->cb_ctx, pci_dev, idxd);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_idxd_probe(void *cb_ctx, spdk_idxd_probe_cb probe_cb, spdk_idxd_attach_cb attach_cb)
|
|
{
|
|
int rc;
|
|
struct idxd_enum_ctx enum_ctx;
|
|
|
|
enum_ctx.probe_cb = probe_cb;
|
|
enum_ctx.attach_cb = attach_cb;
|
|
enum_ctx.cb_ctx = cb_ctx;
|
|
|
|
pthread_mutex_lock(&g_driver_lock);
|
|
rc = spdk_pci_enumerate(spdk_pci_idxd_get_driver(), idxd_enum_cb, &enum_ctx);
|
|
pthread_mutex_unlock(&g_driver_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
spdk_idxd_detach(struct spdk_idxd_device *idxd)
|
|
{
|
|
idxd_device_destruct(idxd);
|
|
}
|
|
|
|
static struct idxd_hw_desc *
|
|
_idxd_prep_command(struct spdk_idxd_io_channel *chan,
|
|
spdk_idxd_req_cb cb_fn, void *cb_arg)
|
|
{
|
|
uint32_t index;
|
|
struct idxd_hw_desc *desc;
|
|
struct idxd_comp *comp;
|
|
|
|
index = spdk_bit_array_find_first_clear(chan->ring_ctrl.ring_slots, 0);
|
|
if (index == UINT32_MAX) {
|
|
/* ran out of ring slots */
|
|
return NULL;
|
|
}
|
|
|
|
spdk_bit_array_set(chan->ring_ctrl.ring_slots, index);
|
|
|
|
desc = &chan->ring_ctrl.data_desc[index];
|
|
comp = &chan->ring_ctrl.completions[index];
|
|
|
|
desc->flags = IDXD_FLAG_COMPLETION_ADDR_VALID | IDXD_FLAG_REQUEST_COMPLETION;
|
|
desc->completion_addr = (uintptr_t)&comp->hw;
|
|
comp->cb_arg = cb_arg;
|
|
comp->cb_fn = cb_fn;
|
|
|
|
return desc;
|
|
}
|
|
|
|
int
|
|
spdk_idxd_submit_copy(struct spdk_idxd_io_channel *chan, void *dst, const void *src,
|
|
uint64_t nbytes,
|
|
spdk_idxd_req_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct idxd_hw_desc *desc;
|
|
|
|
/* Common prep. */
|
|
desc = _idxd_prep_command(chan, cb_fn, cb_arg);
|
|
if (desc == NULL) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Command specific. */
|
|
desc->opcode = IDXD_OPCODE_MEMMOVE;
|
|
desc->src_addr = (uintptr_t)src;
|
|
desc->dst_addr = (uintptr_t)dst;
|
|
desc->xfer_size = nbytes;
|
|
|
|
/* Submit operation. */
|
|
movdir64b(chan->ring_ctrl.portal, desc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Dual-cast copies the same source to two separate destination buffers. */
|
|
int
|
|
spdk_idxd_submit_dualcast(struct spdk_idxd_io_channel *chan, void *dst1, void *dst2,
|
|
const void *src, uint64_t nbytes, spdk_idxd_req_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct idxd_hw_desc *desc;
|
|
|
|
if ((uintptr_t)dst1 & (ALIGN_4K - 1) || (uintptr_t)dst2 & (ALIGN_4K - 1)) {
|
|
SPDK_ERRLOG("Dualcast requires 4K alignment on dst addresses\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Common prep. */
|
|
desc = _idxd_prep_command(chan, cb_fn, cb_arg);
|
|
if (desc == NULL) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Command specific. */
|
|
desc->opcode = IDXD_OPCODE_DUALCAST;
|
|
desc->src_addr = (uintptr_t)src;
|
|
desc->dst_addr = (uintptr_t)dst1;
|
|
desc->dest2 = (uintptr_t)dst2;
|
|
desc->xfer_size = nbytes;
|
|
|
|
/* Submit operation. */
|
|
movdir64b(chan->ring_ctrl.portal, desc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_idxd_submit_compare(struct spdk_idxd_io_channel *chan, void *src1, const void *src2,
|
|
uint64_t nbytes,
|
|
spdk_idxd_req_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct idxd_hw_desc *desc;
|
|
|
|
/* Common prep. */
|
|
desc = _idxd_prep_command(chan, cb_fn, cb_arg);
|
|
if (desc == NULL) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Command specific. */
|
|
desc->opcode = IDXD_OPCODE_COMPARE;
|
|
desc->src_addr = (uintptr_t)src1;
|
|
desc->src2_addr = (uintptr_t)src2;
|
|
desc->xfer_size = nbytes;
|
|
|
|
/* Submit operation. */
|
|
movdir64b(chan->ring_ctrl.portal, desc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_idxd_submit_fill(struct spdk_idxd_io_channel *chan, void *dst, uint64_t fill_pattern,
|
|
uint64_t nbytes,
|
|
spdk_idxd_req_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct idxd_hw_desc *desc;
|
|
|
|
/* Common prep. */
|
|
desc = _idxd_prep_command(chan, cb_fn, cb_arg);
|
|
if (desc == NULL) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Command specific. */
|
|
desc->opcode = IDXD_OPCODE_MEMFILL;
|
|
desc->pattern = fill_pattern;
|
|
desc->dst_addr = (uintptr_t)dst;
|
|
desc->xfer_size = nbytes;
|
|
|
|
/* Submit operation. */
|
|
movdir64b(chan->ring_ctrl.portal, desc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
spdk_idxd_submit_crc32c(struct spdk_idxd_io_channel *chan, uint32_t *dst, void *src,
|
|
uint32_t seed, uint64_t nbytes,
|
|
spdk_idxd_req_cb cb_fn, void *cb_arg)
|
|
{
|
|
struct idxd_hw_desc *desc;
|
|
|
|
/* Common prep. */
|
|
desc = _idxd_prep_command(chan, cb_fn, cb_arg);
|
|
if (desc == NULL) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Command specific. */
|
|
desc->opcode = IDXD_OPCODE_CRC32C_GEN;
|
|
desc->dst_addr = (uintptr_t)dst;
|
|
desc->src_addr = (uintptr_t)src;
|
|
desc->flags &= IDXD_CLEAR_CRC_FLAGS;
|
|
desc->crc32c.seed = seed;
|
|
desc->xfer_size = nbytes;
|
|
|
|
/* Submit operation. */
|
|
movdir64b(chan->ring_ctrl.portal, desc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
_dump_error_reg(struct spdk_idxd_io_channel *chan)
|
|
{
|
|
uint64_t sw_error_0;
|
|
uint16_t i;
|
|
|
|
sw_error_0 = _idxd_read_8(chan->idxd, IDXD_SWERR_OFFSET);
|
|
|
|
SPDK_NOTICELOG("SW Error bits set:");
|
|
for (i = 0; i < CHAR_BIT; i++) {
|
|
if ((1ULL << i) & sw_error_0) {
|
|
SPDK_NOTICELOG(" %d\n", i);
|
|
}
|
|
}
|
|
SPDK_NOTICELOG("SW Error error code: %#x\n", (uint8_t)(sw_error_0 >> 8));
|
|
SPDK_NOTICELOG("SW Error WQ index: %u\n", (uint8_t)(sw_error_0 >> 16));
|
|
SPDK_NOTICELOG("SW Error Operation: %u\n", (uint8_t)(sw_error_0 >> 32));
|
|
}
|
|
|
|
/*
|
|
* TODO: Experiment with different methods of reaping completions for performance
|
|
* once we have real silicon.
|
|
*/
|
|
void
|
|
spdk_idxd_process_events(struct spdk_idxd_io_channel *chan)
|
|
{
|
|
uint16_t index;
|
|
struct idxd_comp *comp;
|
|
uint64_t sw_error_0;
|
|
int status = 0;
|
|
|
|
for (index = 0; index < chan->ring_ctrl.max_ring_slots; index++) {
|
|
if (spdk_bit_array_get(chan->ring_ctrl.ring_slots, index)) {
|
|
comp = &chan->ring_ctrl.completions[index];
|
|
if (comp->hw.status == 1) {
|
|
struct idxd_hw_desc *desc;
|
|
|
|
sw_error_0 = _idxd_read_8(chan->idxd, IDXD_SWERR_OFFSET);
|
|
if (sw_error_0 & 0x1) {
|
|
_dump_error_reg(chan);
|
|
status = -EINVAL;
|
|
}
|
|
|
|
desc = &chan->ring_ctrl.data_desc[index];
|
|
switch (desc->opcode) {
|
|
case IDXD_OPCODE_CRC32C_GEN:
|
|
*(uint32_t *)desc->dst_addr = comp->hw.crc32c_val;
|
|
*(uint32_t *)desc->dst_addr ^= ~0;
|
|
break;
|
|
case IDXD_OPCODE_COMPARE:
|
|
if (status == 0) {
|
|
status = comp->hw.result;
|
|
}
|
|
break;
|
|
}
|
|
|
|
comp->cb_fn(comp->cb_arg, status);
|
|
comp->hw.status = status = 0;
|
|
spdk_bit_array_clear(chan->ring_ctrl.ring_slots, index);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SPDK_LOG_REGISTER_COMPONENT("idxd", SPDK_LOG_IDXD)
|