numam-spdk/lib/idxd/idxd.c
paul luse 0aca4d91e8 lib/idxd: clean up some casting and type issues
Signed-off-by: paul luse <paul.e.luse@intel.com>
Change-Id: If196c51deead9828fd75388f34b5622884c5e2d8
Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/2204
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Community-CI: Mellanox Build Bot
2020-06-17 07:21:05 +00:00

866 lines
22 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/util.h"
#include "spdk/memory.h"
#include "spdk_internal/log.h"
#include "spdk_internal/idxd.h"
#include "idxd.h"
#define ALIGN_4K 0x1000
pthread_mutex_t g_driver_lock = PTHREAD_MUTEX_INITIALIZER;
/*
* g_dev_cfg gives us 2 pre-set configurations of DSA to choose from
* via RPC.
*/
struct device_config *g_dev_cfg = NULL;
/*
* Pre-built configurations. Variations depend on various factors
* including how many different types of target latency profiles there
* are, how many different QOS requirements there might be, etc.
*/
struct device_config g_dev_cfg0 = {
.config_num = 0,
.num_groups = 4,
.num_wqs_per_group = 1,
.num_engines_per_group = 1,
.total_wqs = 4,
.total_engines = 4,
};
struct device_config g_dev_cfg1 = {
.config_num = 1,
.num_groups = 2,
.num_wqs_per_group = 2,
.num_engines_per_group = 2,
.total_wqs = 4,
.total_engines = 4,
};
static uint32_t
_idxd_read_4(struct spdk_idxd_device *idxd, uint32_t offset)
{
return spdk_mmio_read_4((uint32_t *)(idxd->reg_base + offset));
}
static void
_idxd_write_4(struct spdk_idxd_device *idxd, uint32_t offset, uint32_t value)
{
spdk_mmio_write_4((uint32_t *)(idxd->reg_base + offset), value);
}
static uint64_t
_idxd_read_8(struct spdk_idxd_device *idxd, uint32_t offset)
{
return spdk_mmio_read_8((uint64_t *)(idxd->reg_base + offset));
}
static void
_idxd_write_8(struct spdk_idxd_device *idxd, uint32_t offset, uint64_t value)
{
spdk_mmio_write_8((uint64_t *)(idxd->reg_base + offset), value);
}
struct spdk_idxd_io_channel *
spdk_idxd_get_channel(struct spdk_idxd_device *idxd)
{
struct spdk_idxd_io_channel *chan;
chan = calloc(1, sizeof(struct spdk_idxd_io_channel));
if (chan == NULL) {
SPDK_ERRLOG("Failed to allocate idxd chan\n");
return NULL;
}
chan->idxd = idxd;
return chan;
}
void
spdk_idxd_put_channel(struct spdk_idxd_io_channel *chan)
{
free(chan);
}
int
spdk_idxd_configure_chan(struct spdk_idxd_io_channel *chan)
{
uint32_t num_ring_slots;
chan->idxd->wq_id++;
if (chan->idxd->wq_id == g_dev_cfg->total_wqs) {
chan->idxd->wq_id = 0;
}
num_ring_slots = chan->idxd->queues[chan->idxd->wq_id].wqcfg.wq_size;
chan->ring_ctrl.ring_slots = spdk_bit_array_create(num_ring_slots);
if (chan->ring_ctrl.ring_slots == NULL) {
SPDK_ERRLOG("Failed to allocate bit array for ring\n");
return -ENOMEM;
}
/*
* max ring slots can change as channels come and go but we
* start off getting all of the slots for this work queue.
*/
chan->ring_ctrl.max_ring_slots = num_ring_slots;
/* Store the original size of the ring. */
chan->ring_ctrl.ring_size = num_ring_slots;
chan->ring_ctrl.data_desc = spdk_zmalloc(num_ring_slots * sizeof(struct idxd_hw_desc),
0x40, NULL,
SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (chan->ring_ctrl.data_desc == NULL) {
SPDK_ERRLOG("Failed to allocate descriptor memory\n");
spdk_bit_array_free(&chan->ring_ctrl.ring_slots);
return -ENOMEM;
}
chan->ring_ctrl.completions = spdk_zmalloc(num_ring_slots * sizeof(struct idxd_comp),
0x40, NULL,
SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (chan->ring_ctrl.completions == NULL) {
SPDK_ERRLOG("Failed to allocate completion memory\n");
spdk_bit_array_free(&chan->ring_ctrl.ring_slots);
spdk_free(chan->ring_ctrl.data_desc);
return -ENOMEM;
}
chan->ring_ctrl.portal = (char *)chan->idxd->portals + chan->idxd->wq_id * PORTAL_SIZE;
return 0;
}
static void
_idxd_drain(struct spdk_idxd_io_channel *chan)
{
uint32_t index;
int set = 0;
/*
* TODO this is a temp solution to drain until getting the drain cmd to work, this
* provides equivalent functionality but just doesn't use the device to do it.
*/
do {
spdk_idxd_process_events(chan);
set = 0;
for (index = 0; index < chan->ring_ctrl.max_ring_slots; index++) {
set |= spdk_bit_array_get(chan->ring_ctrl.ring_slots, index);
}
} while (set);
}
int
spdk_idxd_reconfigure_chan(struct spdk_idxd_io_channel *chan, uint32_t num_channels)
{
uint32_t num_ring_slots;
int rc;
_idxd_drain(chan);
assert(spdk_bit_array_count_set(chan->ring_ctrl.ring_slots) == 0);
if (num_channels == 0) {
spdk_free(chan->ring_ctrl.completions);
spdk_free(chan->ring_ctrl.data_desc);
spdk_bit_array_free(&chan->ring_ctrl.ring_slots);
return 0;
}
num_ring_slots = chan->ring_ctrl.ring_size / num_channels;
/* re-allocate our descriptor ring for hw flow control. */
rc = spdk_bit_array_resize(&chan->ring_ctrl.ring_slots, num_ring_slots);
if (rc < 0) {
SPDK_ERRLOG("Unable to resize channel bit array\n");
return -ENOMEM;
}
chan->ring_ctrl.max_ring_slots = num_ring_slots;
return rc;
}
/* Called via RPC to select a pre-defined configuration. */
void
spdk_idxd_set_config(uint32_t config_num)
{
switch (config_num) {
case 0:
g_dev_cfg = &g_dev_cfg0;
break;
case 1:
g_dev_cfg = &g_dev_cfg1;
break;
default:
g_dev_cfg = &g_dev_cfg0;
SPDK_ERRLOG("Invalid config, using default\n");
break;
}
}
static int
idxd_unmap_pci_bar(struct spdk_idxd_device *idxd, int bar)
{
int rc = 0;
void *addr = NULL;
if (bar == IDXD_MMIO_BAR) {
addr = (void *)idxd->reg_base;
} else if (bar == IDXD_WQ_BAR) {
addr = (void *)idxd->portals;
}
if (addr) {
rc = spdk_pci_device_unmap_bar(idxd->device, 0, addr);
}
return rc;
}
static int
idxd_map_pci_bars(struct spdk_idxd_device *idxd)
{
int rc;
void *addr;
uint64_t phys_addr, size;
rc = spdk_pci_device_map_bar(idxd->device, IDXD_MMIO_BAR, &addr, &phys_addr, &size);
if (rc != 0 || addr == NULL) {
SPDK_ERRLOG("pci_device_map_range failed with error code %d\n", rc);
return -1;
}
idxd->reg_base = addr;
rc = spdk_pci_device_map_bar(idxd->device, IDXD_WQ_BAR, &addr, &phys_addr, &size);
if (rc != 0 || addr == NULL) {
SPDK_ERRLOG("pci_device_map_range failed with error code %d\n", rc);
rc = idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
if (rc) {
SPDK_ERRLOG("unable to unmap MMIO bar\n");
}
return -EINVAL;
}
idxd->portals = addr;
return 0;
}
/* Used for control commands, not for descriptor submission. */
static int
idxd_wait_cmd(struct spdk_idxd_device *idxd, int _timeout)
{
uint32_t timeout = _timeout;
union idxd_cmdsts_reg cmd_status = {};
cmd_status.raw = _idxd_read_4(idxd, IDXD_CMDSTS_OFFSET);
while (cmd_status.active && --timeout) {
usleep(1);
cmd_status.raw = _idxd_read_4(idxd, IDXD_CMDSTS_OFFSET);
}
/* Check for timeout */
if (timeout == 0 && cmd_status.active) {
SPDK_ERRLOG("Command timeout, waited %u\n", _timeout);
return -EBUSY;
}
/* Check for error */
if (cmd_status.err) {
SPDK_ERRLOG("Command status reg reports error 0x%x\n", cmd_status.err);
return -EINVAL;
}
return 0;
}
static int
idxd_reset_dev(struct spdk_idxd_device *idxd)
{
int rc;
_idxd_write_4(idxd, IDXD_CMD_OFFSET, IDXD_RESET_DEVICE << IDXD_CMD_SHIFT);
rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US);
if (rc < 0) {
SPDK_ERRLOG("Error resetting device %u\n", rc);
}
return rc;
}
/*
* Build group config based on getting info from the device combined
* with the defined configuration. Once built, it is written to the
* device.
*/
static int
idxd_group_config(struct spdk_idxd_device *idxd)
{
int i;
uint64_t base_offset;
assert(g_dev_cfg->num_groups <= idxd->registers.groupcap.num_groups);
idxd->groups = calloc(idxd->registers.groupcap.num_groups, sizeof(struct idxd_group));
if (idxd->groups == NULL) {
SPDK_ERRLOG("Failed to allocate group memory\n");
return -ENOMEM;
}
assert(g_dev_cfg->total_engines <= idxd->registers.enginecap.num_engines);
for (i = 0; i < g_dev_cfg->total_engines; i++) {
idxd->groups[i % g_dev_cfg->num_groups].grpcfg.engines |= (1 << i);
}
assert(g_dev_cfg->total_wqs <= idxd->registers.wqcap.num_wqs);
for (i = 0; i < g_dev_cfg->total_wqs; i++) {
idxd->groups[i % g_dev_cfg->num_groups].grpcfg.wqs[0] |= (1 << i);
}
for (i = 0; i < g_dev_cfg->num_groups; i++) {
idxd->groups[i].idxd = idxd;
idxd->groups[i].id = i;
/* Divide BW tokens evenly */
idxd->groups[i].grpcfg.flags.tokens_allowed =
idxd->registers.groupcap.total_tokens / g_dev_cfg->num_groups;
}
/*
* Now write the group config to the device for all groups. We write
* to the max number of groups in order to 0 out the ones we didn't
* configure.
*/
for (i = 0 ; i < idxd->registers.groupcap.num_groups; i++) {
base_offset = idxd->grpcfg_offset + i * 64;
/* GRPWQCFG, work queues config */
_idxd_write_8(idxd, base_offset, idxd->groups[i].grpcfg.wqs[0]);
/* GRPENGCFG, engine config */
_idxd_write_8(idxd, base_offset + CFG_ENGINE_OFFSET, idxd->groups[i].grpcfg.engines);
/* GRPFLAGS, flags config */
_idxd_write_8(idxd, base_offset + CFG_FLAG_OFFSET, idxd->groups[i].grpcfg.flags.raw);
}
return 0;
}
/*
* Build work queue (WQ) config based on getting info from the device combined
* with the defined configuration. Once built, it is written to the device.
*/
static int
idxd_wq_config(struct spdk_idxd_device *idxd)
{
int i, j;
struct idxd_wq *queue;
u_int32_t wq_size = idxd->registers.wqcap.total_wq_size / g_dev_cfg->total_wqs;
SPDK_NOTICELOG("Total ring slots available space 0x%x, so per work queue is 0x%x\n",
idxd->registers.wqcap.total_wq_size, wq_size);
assert(g_dev_cfg->total_wqs <= IDXD_MAX_QUEUES);
assert(g_dev_cfg->total_wqs <= idxd->registers.wqcap.num_wqs);
assert(LOG2_WQ_MAX_BATCH <= idxd->registers.gencap.max_batch_shift);
assert(LOG2_WQ_MAX_XFER <= idxd->registers.gencap.max_xfer_shift);
idxd->queues = calloc(1, idxd->registers.wqcap.num_wqs * sizeof(struct idxd_wq));
if (idxd->queues == NULL) {
SPDK_ERRLOG("Failed to allocate queue memory\n");
return -ENOMEM;
}
for (i = 0; i < g_dev_cfg->total_wqs; i++) {
queue = &idxd->queues[i];
queue->wqcfg.wq_size = wq_size;
queue->wqcfg.mode = WQ_MODE_DEDICATED;
queue->wqcfg.max_batch_shift = LOG2_WQ_MAX_BATCH;
queue->wqcfg.max_xfer_shift = LOG2_WQ_MAX_XFER;
queue->wqcfg.wq_state = WQ_ENABLED;
queue->wqcfg.priority = WQ_PRIORITY_1;
/* Not part of the config struct */
queue->idxd = idxd;
queue->group = &idxd->groups[i % g_dev_cfg->num_groups];
}
/*
* Now write the work queue config to the device for all wq space
*/
for (i = 0 ; i < idxd->registers.wqcap.num_wqs; i++) {
queue = &idxd->queues[i];
for (j = 0 ; j < WQCFG_NUM_DWORDS; j++) {
_idxd_write_4(idxd, idxd->wqcfg_offset + i * 32 + j * 4,
queue->wqcfg.raw[j]);
}
}
return 0;
}
static int
idxd_device_configure(struct spdk_idxd_device *idxd)
{
int i, rc = 0;
union idxd_offsets_register offsets_reg;
union idxd_genstatus_register genstatus_reg;
/*
* Map BAR0 and BAR2
*/
rc = idxd_map_pci_bars(idxd);
if (rc) {
return rc;
}
/*
* Reset the device
*/
rc = idxd_reset_dev(idxd);
if (rc) {
goto err_reset;
}
/*
* Read in config registers
*/
idxd->registers.version = _idxd_read_4(idxd, IDXD_VERSION_OFFSET);
idxd->registers.gencap.raw = _idxd_read_8(idxd, IDXD_GENCAP_OFFSET);
idxd->registers.wqcap.raw = _idxd_read_8(idxd, IDXD_WQCAP_OFFSET);
idxd->registers.groupcap.raw = _idxd_read_8(idxd, IDXD_GRPCAP_OFFSET);
idxd->registers.enginecap.raw = _idxd_read_8(idxd, IDXD_ENGCAP_OFFSET);
for (i = 0; i < IDXD_OPCAP_WORDS; i++) {
idxd->registers.opcap.raw[i] =
_idxd_read_8(idxd, i * sizeof(uint64_t) + IDXD_OPCAP_OFFSET);
}
offsets_reg.raw[0] = _idxd_read_8(idxd, IDXD_TABLE_OFFSET);
offsets_reg.raw[1] = _idxd_read_8(idxd, IDXD_TABLE_OFFSET + sizeof(uint64_t));
idxd->grpcfg_offset = offsets_reg.grpcfg * IDXD_TABLE_OFFSET_MULT;
idxd->wqcfg_offset = offsets_reg.wqcfg * IDXD_TABLE_OFFSET_MULT;
idxd->ims_offset = offsets_reg.ims * IDXD_TABLE_OFFSET_MULT;
idxd->msix_perm_offset = offsets_reg.msix_perm * IDXD_TABLE_OFFSET_MULT;
idxd->perfmon_offset = offsets_reg.perfmon * IDXD_TABLE_OFFSET_MULT;
/*
* Configure groups and work queues.
*/
rc = idxd_group_config(idxd);
if (rc) {
goto err_group_cfg;
}
rc = idxd_wq_config(idxd);
if (rc) {
goto err_wq_cfg;
}
/*
* Enable the device
*/
genstatus_reg.raw = _idxd_read_4(idxd, IDXD_GENSTATUS_OFFSET);
assert(genstatus_reg.state == IDXD_DEVICE_STATE_DISABLED);
_idxd_write_4(idxd, IDXD_CMD_OFFSET, IDXD_ENABLE_DEV << IDXD_CMD_SHIFT);
rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US);
genstatus_reg.raw = _idxd_read_4(idxd, IDXD_GENSTATUS_OFFSET);
if ((rc < 0) || (genstatus_reg.state != IDXD_DEVICE_STATE_ENABLED)) {
rc = -EINVAL;
SPDK_ERRLOG("Error enabling device %u\n", rc);
goto err_device_enable;
}
genstatus_reg.raw = spdk_mmio_read_4((uint32_t *)(idxd->reg_base + IDXD_GENSTATUS_OFFSET));
assert(genstatus_reg.state == IDXD_DEVICE_STATE_ENABLED);
/*
* Enable the work queues that we've configured
*/
for (i = 0; i < g_dev_cfg->total_wqs; i++) {
_idxd_write_4(idxd, IDXD_CMD_OFFSET,
(IDXD_ENABLE_WQ << IDXD_CMD_SHIFT) | i);
rc = idxd_wait_cmd(idxd, IDXD_REGISTER_TIMEOUT_US);
if (rc < 0) {
SPDK_ERRLOG("Error enabling work queues 0x%x\n", rc);
goto err_wq_enable;
}
}
if ((rc == 0) && (genstatus_reg.state == IDXD_DEVICE_STATE_ENABLED)) {
SPDK_NOTICELOG("Device enabled, version 0x%x gencap: 0x%lx\n",
idxd->registers.version,
idxd->registers.gencap.raw);
}
return rc;
err_wq_enable:
err_device_enable:
free(idxd->queues);
err_wq_cfg:
free(idxd->groups);
err_group_cfg:
err_reset:
idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
return rc;
}
static void
idxd_device_destruct(struct spdk_idxd_device *idxd)
{
idxd_unmap_pci_bar(idxd, IDXD_MMIO_BAR);
idxd_unmap_pci_bar(idxd, IDXD_WQ_BAR);
free(idxd->groups);
free(idxd->queues);
free(idxd);
}
/* Caller must hold g_driver_lock */
static struct spdk_idxd_device *
idxd_attach(struct spdk_pci_device *device)
{
struct spdk_idxd_device *idxd;
uint32_t cmd_reg;
int rc;
idxd = calloc(1, sizeof(struct spdk_idxd_device));
if (idxd == NULL) {
SPDK_ERRLOG("Failed to allocate memory for idxd device.\n");
return NULL;
}
idxd->device = device;
/* Enable PCI busmaster. */
spdk_pci_device_cfg_read32(device, &cmd_reg, 4);
cmd_reg |= 0x4;
spdk_pci_device_cfg_write32(device, cmd_reg, 4);
rc = idxd_device_configure(idxd);
if (rc) {
goto err;
}
return idxd;
err:
idxd_device_destruct(idxd);
return NULL;
}
struct idxd_enum_ctx {
spdk_idxd_probe_cb probe_cb;
spdk_idxd_attach_cb attach_cb;
void *cb_ctx;
};
/* This function must only be called while holding g_driver_lock */
static int
idxd_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
{
struct idxd_enum_ctx *enum_ctx = ctx;
struct spdk_idxd_device *idxd;
if (enum_ctx->probe_cb(enum_ctx->cb_ctx, pci_dev)) {
idxd = idxd_attach(pci_dev);
if (idxd == NULL) {
SPDK_ERRLOG("idxd_attach() failed\n");
return -EINVAL;
}
enum_ctx->attach_cb(enum_ctx->cb_ctx, pci_dev, idxd);
}
return 0;
}
int
spdk_idxd_probe(void *cb_ctx, spdk_idxd_probe_cb probe_cb, spdk_idxd_attach_cb attach_cb)
{
int rc;
struct idxd_enum_ctx enum_ctx;
enum_ctx.probe_cb = probe_cb;
enum_ctx.attach_cb = attach_cb;
enum_ctx.cb_ctx = cb_ctx;
pthread_mutex_lock(&g_driver_lock);
rc = spdk_pci_enumerate(spdk_pci_idxd_get_driver(), idxd_enum_cb, &enum_ctx);
pthread_mutex_unlock(&g_driver_lock);
return rc;
}
void
spdk_idxd_detach(struct spdk_idxd_device *idxd)
{
idxd_device_destruct(idxd);
}
static struct idxd_hw_desc *
_idxd_prep_command(struct spdk_idxd_io_channel *chan,
spdk_idxd_req_cb cb_fn, void *cb_arg)
{
uint32_t index;
struct idxd_hw_desc *desc;
struct idxd_comp *comp;
index = spdk_bit_array_find_first_clear(chan->ring_ctrl.ring_slots, 0);
if (index == UINT32_MAX) {
/* ran out of ring slots */
return NULL;
}
spdk_bit_array_set(chan->ring_ctrl.ring_slots, index);
desc = &chan->ring_ctrl.data_desc[index];
comp = &chan->ring_ctrl.completions[index];
desc->flags = IDXD_FLAG_COMPLETION_ADDR_VALID | IDXD_FLAG_REQUEST_COMPLETION;
desc->completion_addr = (uintptr_t)&comp->hw;
comp->cb_arg = cb_arg;
comp->cb_fn = cb_fn;
return desc;
}
int
spdk_idxd_submit_copy(struct spdk_idxd_io_channel *chan, void *dst, const void *src,
uint64_t nbytes,
spdk_idxd_req_cb cb_fn, void *cb_arg)
{
struct idxd_hw_desc *desc;
/* Common prep. */
desc = _idxd_prep_command(chan, cb_fn, cb_arg);
if (desc == NULL) {
return -EBUSY;
}
/* Command specific. */
desc->opcode = IDXD_OPCODE_MEMMOVE;
desc->src_addr = (uintptr_t)src;
desc->dst_addr = (uintptr_t)dst;
desc->xfer_size = nbytes;
/* Submit operation. */
movdir64b(chan->ring_ctrl.portal, desc);
return 0;
}
/* Dual-cast copies the same source to two separate destination buffers. */
int
spdk_idxd_submit_dualcast(struct spdk_idxd_io_channel *chan, void *dst1, void *dst2,
const void *src, uint64_t nbytes, spdk_idxd_req_cb cb_fn, void *cb_arg)
{
struct idxd_hw_desc *desc;
if ((uintptr_t)dst1 & (ALIGN_4K - 1) || (uintptr_t)dst2 & (ALIGN_4K - 1)) {
SPDK_ERRLOG("Dualcast requires 4K alignment on dst addresses\n");
return -EINVAL;
}
/* Common prep. */
desc = _idxd_prep_command(chan, cb_fn, cb_arg);
if (desc == NULL) {
return -EBUSY;
}
/* Command specific. */
desc->opcode = IDXD_OPCODE_DUALCAST;
desc->src_addr = (uintptr_t)src;
desc->dst_addr = (uintptr_t)dst1;
desc->dest2 = (uintptr_t)dst2;
desc->xfer_size = nbytes;
/* Submit operation. */
movdir64b(chan->ring_ctrl.portal, desc);
return 0;
}
int
spdk_idxd_submit_compare(struct spdk_idxd_io_channel *chan, void *src1, const void *src2,
uint64_t nbytes,
spdk_idxd_req_cb cb_fn, void *cb_arg)
{
struct idxd_hw_desc *desc;
/* Common prep. */
desc = _idxd_prep_command(chan, cb_fn, cb_arg);
if (desc == NULL) {
return -EBUSY;
}
/* Command specific. */
desc->opcode = IDXD_OPCODE_COMPARE;
desc->src_addr = (uintptr_t)src1;
desc->src2_addr = (uintptr_t)src2;
desc->xfer_size = nbytes;
/* Submit operation. */
movdir64b(chan->ring_ctrl.portal, desc);
return 0;
}
int
spdk_idxd_submit_fill(struct spdk_idxd_io_channel *chan, void *dst, uint64_t fill_pattern,
uint64_t nbytes,
spdk_idxd_req_cb cb_fn, void *cb_arg)
{
struct idxd_hw_desc *desc;
/* Common prep. */
desc = _idxd_prep_command(chan, cb_fn, cb_arg);
if (desc == NULL) {
return -EBUSY;
}
/* Command specific. */
desc->opcode = IDXD_OPCODE_MEMFILL;
desc->pattern = fill_pattern;
desc->dst_addr = (uintptr_t)dst;
desc->xfer_size = nbytes;
/* Submit operation. */
movdir64b(chan->ring_ctrl.portal, desc);
return 0;
}
int
spdk_idxd_submit_crc32c(struct spdk_idxd_io_channel *chan, uint32_t *dst, void *src,
uint32_t seed, uint64_t nbytes,
spdk_idxd_req_cb cb_fn, void *cb_arg)
{
struct idxd_hw_desc *desc;
/* Common prep. */
desc = _idxd_prep_command(chan, cb_fn, cb_arg);
if (desc == NULL) {
return -EBUSY;
}
/* Command specific. */
desc->opcode = IDXD_OPCODE_CRC32C_GEN;
desc->dst_addr = (uintptr_t)dst;
desc->src_addr = (uintptr_t)src;
desc->flags &= IDXD_CLEAR_CRC_FLAGS;
desc->crc32c.seed = seed;
desc->xfer_size = nbytes;
/* Submit operation. */
movdir64b(chan->ring_ctrl.portal, desc);
return 0;
}
static void
_dump_error_reg(struct spdk_idxd_io_channel *chan)
{
uint64_t sw_error_0;
uint16_t i;
sw_error_0 = _idxd_read_8(chan->idxd, IDXD_SWERR_OFFSET);
SPDK_NOTICELOG("SW Error bits set:");
for (i = 0; i < CHAR_BIT; i++) {
if ((1ULL << i) & sw_error_0) {
SPDK_NOTICELOG(" %d\n", i);
}
}
SPDK_NOTICELOG("SW Error error code: %#x\n", (uint8_t)(sw_error_0 >> 8));
SPDK_NOTICELOG("SW Error WQ index: %u\n", (uint8_t)(sw_error_0 >> 16));
SPDK_NOTICELOG("SW Error Operation: %u\n", (uint8_t)(sw_error_0 >> 32));
}
/*
* TODO: Experiment with different methods of reaping completions for performance
* once we have real silicon.
*/
void
spdk_idxd_process_events(struct spdk_idxd_io_channel *chan)
{
uint16_t index;
struct idxd_comp *comp;
uint64_t sw_error_0;
int status = 0;
for (index = 0; index < chan->ring_ctrl.max_ring_slots; index++) {
if (spdk_bit_array_get(chan->ring_ctrl.ring_slots, index)) {
comp = &chan->ring_ctrl.completions[index];
if (comp->hw.status == 1) {
struct idxd_hw_desc *desc;
sw_error_0 = _idxd_read_8(chan->idxd, IDXD_SWERR_OFFSET);
if (sw_error_0 & 0x1) {
_dump_error_reg(chan);
status = -EINVAL;
}
desc = &chan->ring_ctrl.data_desc[index];
switch (desc->opcode) {
case IDXD_OPCODE_CRC32C_GEN:
*(uint32_t *)desc->dst_addr = comp->hw.crc32c_val;
*(uint32_t *)desc->dst_addr ^= ~0;
break;
case IDXD_OPCODE_COMPARE:
if (status == 0) {
status = comp->hw.result;
}
break;
}
comp->cb_fn(comp->cb_arg, status);
comp->hw.status = status = 0;
spdk_bit_array_clear(chan->ring_ctrl.ring_slots, index);
}
}
}
}
SPDK_LOG_REGISTER_COMPONENT("idxd", SPDK_LOG_IDXD)