Daniel Verkamp e3971c41ea nvme_spec: update Identify Controller SGLS field
In NVMe 1.3, the Identify Controller data SGLS field's definition was
changed; in NVMe 1.2, the first bit simply indicated whether SGLs were
supported, but in NVMe 1.3, the first two bits now indicate whether SGLs
are supported and whether they require Dword-aligned data.

Change-Id: I9181055a86f52ad939b65eca5af66a400594a696
Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
Reviewed-on: https://review.gerrithub.io/376027
Tested-by: SPDK Automated Test System <sys_sgsw@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
2017-08-29 15:05:09 -04:00

1096 lines
37 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/log.h"
#include "spdk/nvme.h"
#include "spdk/env.h"
#include "spdk/nvme_intel.h"
#include "spdk/nvmf_spec.h"
#include "spdk/pci_ids.h"
#include "spdk/util.h"
static int outstanding_commands;
struct feature {
uint32_t result;
bool valid;
};
static struct feature features[256];
static struct spdk_nvme_error_information_entry error_page[256];
static struct spdk_nvme_health_information_page health_page;
static struct spdk_nvme_intel_smart_information_page intel_smart_page;
static struct spdk_nvme_intel_temperature_page intel_temperature_page;
static struct spdk_nvme_intel_marketing_description_page intel_md_page;
static bool g_hex_dump = false;
static int g_shm_id = -1;
static int g_dpdk_mem = 64;
static int g_master_core = 0;
static char g_core_mask[16] = "0x1";
static struct spdk_nvme_transport_id g_trid;
static void
hex_dump(const void *data, size_t size)
{
size_t offset = 0, i;
const uint8_t *bytes = data;
while (size) {
printf("%08zX:", offset);
for (i = 0; i < 16; i++) {
if (i == 8) {
printf("-");
} else {
printf(" ");
}
if (i < size) {
printf("%02X", bytes[offset + i]);
} else {
printf(" ");
}
}
printf(" ");
for (i = 0; i < 16; i++) {
if (i < size) {
if (bytes[offset + i] > 0x20 && bytes[offset + i] < 0x7F) {
printf("%c", bytes[offset + i]);
} else {
printf(".");
}
}
}
printf("\n");
offset += 16;
if (size > 16) {
size -= 16;
} else {
break;
}
}
}
static void
get_feature_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
struct feature *feature = cb_arg;
int fid = feature - features;
if (spdk_nvme_cpl_is_error(cpl)) {
printf("get_feature(0x%02X) failed\n", fid);
} else {
feature->result = cpl->cdw0;
feature->valid = true;
}
outstanding_commands--;
}
static void
get_log_page_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
{
if (spdk_nvme_cpl_is_error(cpl)) {
printf("get log page failed\n");
}
outstanding_commands--;
}
static int
get_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t fid)
{
struct spdk_nvme_cmd cmd = {};
cmd.opc = SPDK_NVME_OPC_GET_FEATURES;
cmd.cdw10 = fid;
return spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, &cmd, NULL, 0, get_feature_completion, &features[fid]);
}
static void
get_features(struct spdk_nvme_ctrlr *ctrlr)
{
size_t i;
uint8_t features_to_get[] = {
SPDK_NVME_FEAT_ARBITRATION,
SPDK_NVME_FEAT_POWER_MANAGEMENT,
SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD,
SPDK_NVME_FEAT_ERROR_RECOVERY,
};
/* Submit several GET FEATURES commands and wait for them to complete */
outstanding_commands = 0;
for (i = 0; i < SPDK_COUNTOF(features_to_get); i++) {
if (get_feature(ctrlr, features_to_get[i]) == 0) {
outstanding_commands++;
} else {
printf("get_feature(0x%02X) failed to submit command\n", features_to_get[i]);
}
}
while (outstanding_commands) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
}
}
static int
get_error_log_page(struct spdk_nvme_ctrlr *ctrlr)
{
const struct spdk_nvme_ctrlr_data *cdata;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ERROR,
SPDK_NVME_GLOBAL_NS_TAG, error_page,
sizeof(*error_page) * (cdata->elpe + 1),
0,
get_log_page_completion, NULL)) {
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
return 0;
}
static int
get_health_log_page(struct spdk_nvme_ctrlr *ctrlr)
{
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_HEALTH_INFORMATION,
SPDK_NVME_GLOBAL_NS_TAG, &health_page, sizeof(health_page), 0, get_log_page_completion, NULL)) {
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
return 0;
}
static int
get_intel_smart_log_page(struct spdk_nvme_ctrlr *ctrlr)
{
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_SMART, SPDK_NVME_GLOBAL_NS_TAG,
&intel_smart_page, sizeof(intel_smart_page), 0, get_log_page_completion, NULL)) {
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
return 0;
}
static int
get_intel_temperature_log_page(struct spdk_nvme_ctrlr *ctrlr)
{
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE,
SPDK_NVME_GLOBAL_NS_TAG, &intel_temperature_page, sizeof(intel_temperature_page), 0,
get_log_page_completion, NULL)) {
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
return 0;
}
static int
get_intel_md_log_page(struct spdk_nvme_ctrlr *ctrlr)
{
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_MARKETING_DESCRIPTION,
SPDK_NVME_GLOBAL_NS_TAG, &intel_md_page, sizeof(intel_md_page), 0,
get_log_page_completion, NULL)) {
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
exit(1);
}
return 0;
}
static void
get_log_pages(struct spdk_nvme_ctrlr *ctrlr)
{
const struct spdk_nvme_ctrlr_data *cdata;
outstanding_commands = 0;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (get_error_log_page(ctrlr) == 0) {
outstanding_commands++;
} else {
printf("Get Error Log Page failed\n");
}
if (get_health_log_page(ctrlr) == 0) {
outstanding_commands++;
} else {
printf("Get Log Page (SMART/health) failed\n");
}
if (cdata->vid == SPDK_PCI_VID_INTEL) {
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_SMART)) {
if (get_intel_smart_log_page(ctrlr) == 0) {
outstanding_commands++;
} else {
printf("Get Log Page (Intel SMART/health) failed\n");
}
}
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE)) {
if (get_intel_temperature_log_page(ctrlr) == 0) {
outstanding_commands++;
} else {
printf("Get Log Page (Intel temperature) failed\n");
}
}
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_MARKETING_DESCRIPTION)) {
if (get_intel_md_log_page(ctrlr) == 0) {
outstanding_commands++;
} else {
printf("Get Log Page (Intel Marketing Description) failed\n");
}
}
}
while (outstanding_commands) {
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
}
}
static void
print_uint128_hex(uint64_t *v)
{
unsigned long long lo = v[0], hi = v[1];
if (hi) {
printf("0x%llX%016llX", hi, lo);
} else {
printf("0x%llX", lo);
}
}
static void
print_uint128_dec(uint64_t *v)
{
unsigned long long lo = v[0], hi = v[1];
if (hi) {
/* can't handle large (>64-bit) decimal values for now, so fall back to hex */
print_uint128_hex(v);
} else {
printf("%llu", (unsigned long long)lo);
}
}
/* The len should be <= 8. */
static void
print_uint_var_dec(uint8_t *array, unsigned int len)
{
uint64_t result = 0;
int i = len;
while (i > 0) {
result += (uint64_t)array[i - 1] << (8 * (i - 1));
i--;
}
printf("%lu", result);
}
static void
print_namespace(struct spdk_nvme_ns *ns)
{
const struct spdk_nvme_ns_data *nsdata;
uint32_t i;
uint32_t flags;
nsdata = spdk_nvme_ns_get_data(ns);
flags = spdk_nvme_ns_get_flags(ns);
printf("Namespace ID:%d\n", spdk_nvme_ns_get_id(ns));
if (g_hex_dump) {
hex_dump(nsdata, sizeof(*nsdata));
printf("\n");
}
if (!spdk_nvme_ns_is_active(ns)) {
printf("Inactive namespace ID\n\n");
return;
}
printf("Deallocate: %s\n",
(flags & SPDK_NVME_NS_DEALLOCATE_SUPPORTED) ? "Supported" : "Not Supported");
printf("Deallocated/Unwritten Error: %s\n",
nsdata->nsfeat.dealloc_or_unwritten_error ? "Supported" : "Not Supported");
printf("Deallocated Read Value: %s\n",
nsdata->dlfeat.bits.read_value == SPDK_NVME_DEALLOC_READ_00 ? "All 0x00" :
nsdata->dlfeat.bits.read_value == SPDK_NVME_DEALLOC_READ_FF ? "All 0xFF" :
"Unknown");
printf("Deallocate in Write Zeroes: %s\n",
nsdata->dlfeat.bits.write_zero_deallocate ? "Supported" : "Not Supported");
printf("Deallocated Guard Field: %s\n",
nsdata->dlfeat.bits.guard_value ? "CRC for Read Value" : "0xFFFF");
printf("Flush: %s\n",
(flags & SPDK_NVME_NS_FLUSH_SUPPORTED) ? "Supported" : "Not Supported");
printf("Reservation: %s\n",
(flags & SPDK_NVME_NS_RESERVATION_SUPPORTED) ? "Supported" : "Not Supported");
if (flags & SPDK_NVME_NS_DPS_PI_SUPPORTED) {
printf("End-to-End Data Protection: Supported\n");
printf("Protection Type: Type%d\n", nsdata->dps.pit);
printf("Metadata Transfered as: %s\n",
nsdata->flbas.extended ? "Extended Data LBA" : "Separate Metadata Buffer");
printf("Metadata Location: %s\n",
nsdata->dps.md_start ? "First 8 Bytes" : "Last 8 Bytes");
}
printf("Size (in LBAs): %lld (%lldM)\n",
(long long)nsdata->nsze,
(long long)nsdata->nsze / 1024 / 1024);
printf("Capacity (in LBAs): %lld (%lldM)\n",
(long long)nsdata->ncap,
(long long)nsdata->ncap / 1024 / 1024);
printf("Utilization (in LBAs): %lld (%lldM)\n",
(long long)nsdata->nuse,
(long long)nsdata->nuse / 1024 / 1024);
if (nsdata->noiob) {
printf("Optimal I/O Boundary: %u blocks\n", nsdata->noiob);
}
printf("Thin Provisioning: %s\n",
nsdata->nsfeat.thin_prov ? "Supported" : "Not Supported");
printf("Per-NS Atomic Units: %s\n",
nsdata->nsfeat.ns_atomic_write_unit ? "Yes" : "No");
if (nsdata->nawun) {
printf("Atomic Write Unit (Normal): %d\n", nsdata->nawun + 1);
}
if (nsdata->nawupf) {
printf("Atomic Write Unit (PFail): %d\n", nsdata->nawupf + 1);
}
printf("NGUID/EUI64 Never Reused: %s\n",
nsdata->nsfeat.guid_never_reused ? "Yes" : "No");
printf("Number of LBA Formats: %d\n", nsdata->nlbaf + 1);
printf("Current LBA Format: LBA Format #%02d\n",
nsdata->flbas.format);
for (i = 0; i <= nsdata->nlbaf; i++)
printf("LBA Format #%02d: Data Size: %5d Metadata Size: %5d\n",
i, 1 << nsdata->lbaf[i].lbads, nsdata->lbaf[i].ms);
printf("\n");
}
static void
print_controller(struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_transport_id *trid)
{
const struct spdk_nvme_ctrlr_data *cdata;
union spdk_nvme_cap_register cap;
union spdk_nvme_vs_register vs;
uint8_t str[512];
uint32_t i;
struct spdk_nvme_error_information_entry *error_entry;
struct spdk_pci_addr pci_addr;
struct spdk_pci_device *pci_dev;
struct spdk_pci_id pci_id;
cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
get_features(ctrlr);
get_log_pages(ctrlr);
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
printf("=====================================================\n");
if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) {
printf("NVMe over Fabrics controller at %s:%s: %s\n",
trid->traddr, trid->trsvcid, trid->subnqn);
} else {
if (spdk_pci_addr_parse(&pci_addr, trid->traddr) != 0) {
return;
}
pci_dev = spdk_pci_get_device(&pci_addr);
if (!pci_dev) {
return;
}
pci_id = spdk_pci_device_get_id(pci_dev);
printf("NVMe Controller at %04x:%02x:%02x.%x [%04x:%04x]\n",
pci_addr.domain, pci_addr.bus,
pci_addr.dev, pci_addr.func,
pci_id.vendor_id, pci_id.device_id);
}
printf("=====================================================\n");
if (g_hex_dump) {
hex_dump(cdata, sizeof(*cdata));
printf("\n");
}
printf("Controller Capabilities/Features\n");
printf("================================\n");
printf("Vendor ID: %04x\n", cdata->vid);
printf("Subsystem Vendor ID: %04x\n", cdata->ssvid);
snprintf(str, sizeof(cdata->sn) + 1, "%s", cdata->sn);
printf("Serial Number: %s\n", str);
snprintf(str, sizeof(cdata->mn) + 1, "%s", cdata->mn);
printf("Model Number: %s\n", str);
snprintf(str, sizeof(cdata->fr) + 1, "%s", cdata->fr);
printf("Firmware Version: %s\n", str);
printf("Recommended Arb Burst: %d\n", cdata->rab);
printf("IEEE OUI Identifier: %02x %02x %02x\n",
cdata->ieee[0], cdata->ieee[1], cdata->ieee[2]);
printf("Multi-path I/O\n");
printf(" May have multiple subsystem ports: %s\n", cdata->cmic.multi_port ? "Yes" : "No");
printf(" May be connected to multiple hosts: %s\n", cdata->cmic.multi_host ? "Yes" : "No");
printf(" Associated with SR-IOV VF: %s\n", cdata->cmic.sr_iov ? "Yes" : "No");
printf("Max Data Transfer Size: ");
if (cdata->mdts == 0)
printf("Unlimited\n");
else
printf("%" PRIu64 "\n", (uint64_t)1 << (12 + cap.bits.mpsmin + cdata->mdts));
if (features[SPDK_NVME_FEAT_ERROR_RECOVERY].valid) {
unsigned tler = features[SPDK_NVME_FEAT_ERROR_RECOVERY].result & 0xFFFF;
printf("Error Recovery Timeout: ");
if (tler == 0) {
printf("Unlimited\n");
} else {
printf("%u milliseconds\n", tler * 100);
}
}
printf("NVMe Specification Version (VS): %u.%u", vs.bits.mjr, vs.bits.mnr);
if (vs.bits.ter) {
printf(".%u", vs.bits.ter);
}
printf("\n");
if (cdata->ver.raw != 0) {
printf("NVMe Specification Version (Identify): %u.%u", cdata->ver.bits.mjr, cdata->ver.bits.mnr);
if (cdata->ver.bits.ter) {
printf(".%u", cdata->ver.bits.ter);
}
printf("\n");
}
printf("Maximum Queue Entries: %u\n", cap.bits.mqes + 1);
printf("Contiguous Queues Required: %s\n", cap.bits.cqr ? "Yes" : "No");
printf("Arbitration Mechanisms Supported\n");
printf(" Weighted Round Robin: %s\n",
cap.bits.ams & SPDK_NVME_CAP_AMS_WRR ? "Supported" : "Not Supported");
printf(" Vendor Specific: %s\n",
cap.bits.ams & SPDK_NVME_CAP_AMS_VS ? "Supported" : "Not Supported");
printf("Reset Timeout: %" PRIu64 " ms\n", (uint64_t)500 * cap.bits.to);
printf("Doorbell Stride: %" PRIu64 " bytes\n",
(uint64_t)1 << (2 + cap.bits.dstrd));
printf("NVM Subsystem Reset: %s\n",
cap.bits.nssrs ? "Supported" : "Not Supported");
printf("Command Sets Supported\n");
printf(" NVM Command Set: %s\n",
cap.bits.css_nvm ? "Supported" : "Not Supported");
printf("Memory Page Size Minimum: %" PRIu64 " bytes\n",
(uint64_t)1 << (12 + cap.bits.mpsmin));
printf("Memory Page Size Maximum: %" PRIu64 " bytes\n",
(uint64_t)1 << (12 + cap.bits.mpsmax));
printf("Optional Asynchronous Events Supported\n");
printf(" Namespace Attribute Notices: %s\n",
cdata->oaes.ns_attribute_notices ? "Supported" : "Not Supported");
printf(" Firmware Activation Notices: %s\n",
cdata->oaes.fw_activation_notices ? "Supported" : "Not Supported");
printf("128-bit Host Identifier: %s\n",
cdata->ctratt.host_id_exhid_supported ? "Supported" : "Not Supported");
printf("\n");
printf("Admin Command Set Attributes\n");
printf("============================\n");
printf("Security Send/Receive: %s\n",
cdata->oacs.security ? "Supported" : "Not Supported");
printf("Format NVM: %s\n",
cdata->oacs.format ? "Supported" : "Not Supported");
printf("Firmware Activate/Download: %s\n",
cdata->oacs.firmware ? "Supported" : "Not Supported");
printf("Namespace Management: %s\n",
cdata->oacs.ns_manage ? "Supported" : "Not Supported");
printf("Device Self-Test: %s\n",
cdata->oacs.device_self_test ? "Supported" : "Not Supported");
printf("Directives: %s\n",
cdata->oacs.directives ? "Supported" : "Not Supported");
printf("NVMe-MI: %s\n",
cdata->oacs.nvme_mi ? "Supported" : "Not Supported");
printf("Virtualization Management: %s\n",
cdata->oacs.virtualization_management ? "Supported" : "Not Supported");
printf("Doorbell Buffer Config: %s\n",
cdata->oacs.doorbell_buffer_config ? "Supported" : "Not Supported");
printf("Abort Command Limit: %d\n", cdata->acl + 1);
printf("Async Event Request Limit: %d\n", cdata->aerl + 1);
printf("Number of Firmware Slots: ");
if (cdata->oacs.firmware != 0)
printf("%d\n", cdata->frmw.num_slots);
else
printf("N/A\n");
printf("Firmware Slot 1 Read-Only: ");
if (cdata->oacs.firmware != 0)
printf("%s\n", cdata->frmw.slot1_ro ? "Yes" : "No");
else
printf("N/A\n");
if (cdata->fwug == 0x00) {
printf("Firmware Update Granularity: No Information Provided\n");
} else if (cdata->fwug == 0xFF) {
printf("Firmware Update Granularity: No Restriction\n");
} else {
printf("Firmware Update Granularity: %u KiB\n",
cdata->fwug * 4);
}
printf("Per-Namespace SMART Log: %s\n",
cdata->lpa.ns_smart ? "Yes" : "No");
printf("Command Effects Log Page: %s\n",
cdata->lpa.celp ? "Supported" : "Not Supported");
printf("Get Log Page Extended Data: %s\n",
cdata->lpa.edlp ? "Supported" : "Not Supported");
printf("Telemetry Log Pages: %s\n",
cdata->lpa.telemetry ? "Supported" : "Not Supported");
printf("Error Log Page Entries Supported: %d\n", cdata->elpe + 1);
if (cdata->kas == 0) {
printf("Keep Alive: Not Supported\n");
} else {
printf("Keep Alive: Supported\n");
printf("Keep Alive Granularity: %u ms\n",
cdata->kas * 100);
}
printf("\n");
printf("NVM Command Set Attributes\n");
printf("==========================\n");
printf("Submission Queue Entry Size\n");
printf(" Max: %d\n", 1 << cdata->sqes.max);
printf(" Min: %d\n", 1 << cdata->sqes.min);
printf("Completion Queue Entry Size\n");
printf(" Max: %d\n", 1 << cdata->cqes.max);
printf(" Min: %d\n", 1 << cdata->cqes.min);
printf("Number of Namespaces: %d\n", cdata->nn);
printf("Compare Command: %s\n",
cdata->oncs.compare ? "Supported" : "Not Supported");
printf("Write Uncorrectable Command: %s\n",
cdata->oncs.write_unc ? "Supported" : "Not Supported");
printf("Dataset Management Command: %s\n",
cdata->oncs.dsm ? "Supported" : "Not Supported");
printf("Write Zeroes Command: %s\n",
cdata->oncs.write_zeroes ? "Supported" : "Not Supported");
printf("Set Features Save Field: %s\n",
cdata->oncs.set_features_save ? "Supported" : "Not Supported");
printf("Reservations: %s\n",
cdata->oncs.reservations ? "Supported" : "Not Supported");
printf("Timestamp: %s\n",
cdata->oncs.timestamp ? "Supported" : "Not Supported");
printf("Volatile Write Cache: %s\n",
cdata->vwc.present ? "Present" : "Not Present");
printf("Atomic Write Unit (Normal): %d\n", cdata->awun + 1);
printf("Atomic Write Unit (PFail): %d\n", cdata->awupf + 1);
printf("Scatter-Gather List\n");
printf(" SGL Command Set: %s\n",
cdata->sgls.supported == SPDK_NVME_SGLS_SUPPORTED ? "Supported" :
cdata->sgls.supported == SPDK_NVME_SGLS_SUPPORTED_DWORD_ALIGNED ? "Supported (Dword aligned)" :
"Not Supported");
printf(" SGL Keyed: %s\n",
cdata->sgls.keyed_sgl ? "Supported" : "Not Supported");
printf(" SGL Bit Bucket Descriptor: %s\n",
cdata->sgls.bit_bucket_descriptor ? "Supported" : "Not Supported");
printf(" SGL Metadata Pointer: %s\n",
cdata->sgls.metadata_pointer ? "Supported" : "Not Supported");
printf(" Oversized SGL: %s\n",
cdata->sgls.oversized_sgl ? "Supported" : "Not Supported");
printf(" SGL Metadata Address: %s\n",
cdata->sgls.metadata_address ? "Supported" : "Not Supported");
printf(" SGL Offset: %s\n",
cdata->sgls.sgl_offset ? "Supported" : "Not Supported");
printf("\n");
printf("Error Log\n");
printf("=========\n");
for (i = 0; i <= cdata->elpe; i++) {
error_entry = &error_page[i];
if (error_entry->error_count == 0) {
continue;
}
if (i != 0) {
printf("-----------\n");
}
printf("Entry: %u\n", i);
printf("Error Count: 0x%"PRIx64"\n", error_entry->error_count);
printf("Submission Queue Id: 0x%x\n", error_entry->sqid);
printf("Command Id: 0x%x\n", error_entry->cid);
printf("Phase Bit: %x\n", error_entry->status.p);
printf("Status Code: 0x%x\n", error_entry->status.sc);
printf("Status Code Type: 0x%x\n", error_entry->status.sct);
printf("Do Not Retry: %x\n", error_entry->status.dnr);
printf("Error Location: 0x%x\n", error_entry->error_location);
printf("LBA: 0x%"PRIx64"\n", error_entry->lba);
printf("Namespace: 0x%x\n", error_entry->nsid);
printf("Vendor Log Page: 0x%x\n", error_entry->vendor_specific);
}
printf("\n");
if (features[SPDK_NVME_FEAT_ARBITRATION].valid) {
uint32_t arb = features[SPDK_NVME_FEAT_ARBITRATION].result;
unsigned ab, lpw, mpw, hpw;
ab = arb & 0x7;
lpw = ((arb >> 8) & 0xFF) + 1;
mpw = ((arb >> 16) & 0xFF) + 1;
hpw = ((arb >> 24) & 0xFF) + 1;
printf("Arbitration\n");
printf("===========\n");
printf("Arbitration Burst: ");
if (ab == 0x7) {
printf("no limit\n");
} else {
printf("%u\n", 1u << ab);
}
printf("Low Priority Weight: %u\n", lpw);
printf("Medium Priority Weight: %u\n", mpw);
printf("High Priority Weight: %u\n", hpw);
printf("\n");
}
if (features[SPDK_NVME_FEAT_POWER_MANAGEMENT].valid) {
unsigned ps = features[SPDK_NVME_FEAT_POWER_MANAGEMENT].result & 0x1F;
printf("Power Management\n");
printf("================\n");
printf("Number of Power States: %u\n", cdata->npss + 1);
printf("Current Power State: Power State #%u\n", ps);
for (i = 0; i <= cdata->npss; i++) {
const struct spdk_nvme_power_state *psd = &cdata->psd[i];
printf("Power State #%u: ", i);
if (psd->mps) {
/* MP scale is 0.0001 W */
printf("Max Power: %u.%04u W\n",
psd->mp / 10000,
psd->mp % 10000);
} else {
/* MP scale is 0.01 W */
printf("Max Power: %3u.%02u W\n",
psd->mp / 100,
psd->mp % 100);
}
/* TODO: print other power state descriptor fields */
}
printf("Non-Operational Permissive Mode: %s\n",
cdata->ctratt.non_operational_power_state_permissive_mode ? "Supported" : "Not Supported");
printf("\n");
}
if (features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].valid) {
printf("Health Information\n");
printf("==================\n");
if (g_hex_dump) {
hex_dump(&health_page, sizeof(health_page));
printf("\n");
}
printf("Critical Warnings:\n");
printf(" Available Spare Space: %s\n",
health_page.critical_warning.bits.available_spare ? "WARNING" : "OK");
printf(" Temperature: %s\n",
health_page.critical_warning.bits.temperature ? "WARNING" : "OK");
printf(" Device Reliability: %s\n",
health_page.critical_warning.bits.device_reliability ? "WARNING" : "OK");
printf(" Read Only: %s\n",
health_page.critical_warning.bits.read_only ? "Yes" : "No");
printf(" Volatile Memory Backup: %s\n",
health_page.critical_warning.bits.volatile_memory_backup ? "WARNING" : "OK");
printf("Current Temperature: %u Kelvin (%u Celsius)\n",
health_page.temperature,
health_page.temperature - 273);
printf("Temperature Threshold: %u Kelvin (%u Celsius)\n",
features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].result,
features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].result - 273);
printf("Available Spare: %u%%\n", health_page.available_spare);
printf("Available Spare Threshold: %u%%\n", health_page.available_spare_threshold);
printf("Life Percentage Used: %u%%\n", health_page.percentage_used);
printf("Data Units Read: ");
print_uint128_dec(health_page.data_units_read);
printf("\n");
printf("Data Units Written: ");
print_uint128_dec(health_page.data_units_written);
printf("\n");
printf("Host Read Commands: ");
print_uint128_dec(health_page.host_read_commands);
printf("\n");
printf("Host Write Commands: ");
print_uint128_dec(health_page.host_write_commands);
printf("\n");
printf("Controller Busy Time: ");
print_uint128_dec(health_page.controller_busy_time);
printf(" minutes\n");
printf("Power Cycles: ");
print_uint128_dec(health_page.power_cycles);
printf("\n");
printf("Power On Hours: ");
print_uint128_dec(health_page.power_on_hours);
printf(" hours\n");
printf("Unsafe Shutdowns: ");
print_uint128_dec(health_page.unsafe_shutdowns);
printf("\n");
printf("Unrecoverable Media Errors: ");
print_uint128_dec(health_page.media_errors);
printf("\n");
printf("Lifetime Error Log Entries: ");
print_uint128_dec(health_page.num_error_info_log_entries);
printf("\n");
printf("Warning Temperature Time: %u minutes\n", health_page.warning_temp_time);
printf("Critical Temperature Time: %u minutes\n", health_page.critical_temp_time);
for (i = 0; i < 8; i++) {
if (health_page.temp_sensor[i] != 0) {
printf("Temperature Sensor %d: %u Kelvin (%u Celsius)\n",
i + 1, health_page.temp_sensor[i],
health_page.temp_sensor[i] - 273);
}
}
printf("\n");
}
if (cdata->hctma.bits.supported) {
printf("Host Controlled Thermal Management\n");
printf("==================================\n");
printf("Minimum Thermal Management Temperature: ");
if (cdata->mntmt) {
printf("%u Kelvin (%u Celsius)\n", cdata->mntmt, cdata->mntmt - 273);
} else {
printf("Not Reported\n");
}
printf("Maximum Thermal Managment Temperature: ");
if (cdata->mxtmt) {
printf("%u Kelvin (%u Celsius)\n", cdata->mxtmt, cdata->mxtmt - 273);
} else {
printf("Not Reported\n");
}
printf("\n");
}
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_SMART)) {
size_t i = 0;
printf("Intel Health Information\n");
printf("==================\n");
for (i = 0;
i < SPDK_COUNTOF(intel_smart_page.attributes); i++) {
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_PROGRAM_FAIL_COUNT) {
printf("Program Fail Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_ERASE_FAIL_COUNT) {
printf("Erase Fail Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_WEAR_LEVELING_COUNT) {
printf("Wear Leveling Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: \n");
printf(" Min: ");
print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[0], 2);
printf("\n");
printf(" Max: ");
print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[2], 2);
printf("\n");
printf(" Avg: ");
print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[4], 2);
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_E2E_ERROR_COUNT) {
printf("End to End Error Detection Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_CRC_ERROR_COUNT) {
printf("CRC Error Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_MEDIA_WEAR) {
printf("Timed Workload, Media Wear:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_HOST_READ_PERCENTAGE) {
printf("Timed Workload, Host Read/Write Ratio:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
printf("%%");
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_TIMER) {
printf("Timed Workload, Timer:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_THERMAL_THROTTLE_STATUS) {
printf("Thermal Throttle Status:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: \n");
printf(" Percentage: %d%%\n", intel_smart_page.attributes[i].raw_value[0]);
printf(" Throttling Event Count: ");
print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[1], 4);
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_RETRY_BUFFER_OVERFLOW_COUNTER) {
printf("Retry Buffer Overflow Counter:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_PLL_LOCK_LOSS_COUNT) {
printf("PLL Lock Loss Count:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_NAND_BYTES_WRITTEN) {
printf("NAND Bytes Written:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
printf("\n");
}
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_HOST_BYTES_WRITTEN) {
printf("Host Bytes Written:\n");
printf(" Normalized Value : %d\n",
intel_smart_page.attributes[i].normalized_value);
printf(" Current Raw Value: ");
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
printf("\n");
}
}
printf("\n");
}
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE)) {
printf("Intel Temperature Information\n");
printf("==================\n");
printf("Current Temperature: %lu\n", intel_temperature_page.current_temperature);
printf("Overtemp shutdown Flag for last critical component temperature: %lu\n",
intel_temperature_page.shutdown_flag_last);
printf("Overtemp shutdown Flag for life critical component temperature: %lu\n",
intel_temperature_page.shutdown_flag_life);
printf("Highest temperature: %lu\n", intel_temperature_page.highest_temperature);
printf("Lowest temperature: %lu\n", intel_temperature_page.lowest_temperature);
printf("Specified Maximum Operating Temperature: %lu\n",
intel_temperature_page.specified_max_op_temperature);
printf("Specified Minimum Operating Temperature: %lu\n",
intel_temperature_page.specified_min_op_temperature);
printf("Estimated offset: %ld\n", intel_temperature_page.estimated_offset);
printf("\n");
printf("\n");
}
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_MARKETING_DESCRIPTION)) {
printf("Intel Marketing Information\n");
printf("==================\n");
snprintf(str, sizeof(intel_md_page.marketing_product), "%s", intel_md_page.marketing_product);
printf("Marketing Product Information: %s\n", str);
printf("\n");
printf("\n");
}
for (i = 1; i <= spdk_nvme_ctrlr_get_num_ns(ctrlr); i++) {
print_namespace(spdk_nvme_ctrlr_get_ns(ctrlr, i));
}
}
static void
usage(const char *program_name)
{
printf("%s [options]", program_name);
printf("\n");
printf("options:\n");
printf(" -r trid remote NVMe over Fabrics target address\n");
printf(" Format: 'key:value [key:value] ...'\n");
printf(" Keys:\n");
printf(" trtype Transport type (e.g. RDMA)\n");
printf(" adrfam Address family (e.g. IPv4, IPv6)\n");
printf(" traddr Transport address (e.g. 192.168.100.8)\n");
printf(" trsvcid Transport service identifier (e.g. 4420)\n");
printf(" subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN);
printf(" Example: -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420'\n");
spdk_tracelog_usage(stdout, "-t");
printf(" -i shared memory group ID\n");
printf(" -p core number in decimal to run this application which started from 0\n");
printf(" -d DPDK huge memory size in MB\n");
printf(" -x print hex dump of raw data\n");
printf(" -v verbose (enable warnings)\n");
printf(" -H show this usage\n");
}
static int
parse_args(int argc, char **argv)
{
int op, rc;
g_trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
snprintf(g_trid.subnqn, sizeof(g_trid.subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
while ((op = getopt(argc, argv, "d:i:p:r:t:xH")) != -1) {
switch (op) {
case 'd':
g_dpdk_mem = atoi(optarg);
break;
case 'i':
g_shm_id = atoi(optarg);
break;
case 'p':
g_master_core = atoi(optarg);
if (g_master_core < 0) {
fprintf(stderr, "Invalid core number\n");
return 1;
}
snprintf(g_core_mask, sizeof(g_core_mask), "0x%llx", 1ULL << g_master_core);
break;
case 'r':
if (spdk_nvme_transport_id_parse(&g_trid, optarg) != 0) {
fprintf(stderr, "Error parsing transport address\n");
return 1;
}
break;
case 't':
rc = spdk_log_set_trace_flag(optarg);
if (rc < 0) {
fprintf(stderr, "unknown flag\n");
usage(argv[0]);
exit(EXIT_FAILURE);
}
spdk_log_set_print_level(SPDK_LOG_DEBUG);
#ifndef DEBUG
fprintf(stderr, "%s must be rebuilt with CONFIG_DEBUG=y for -t flag.\n",
argv[0]);
usage(argv[0]);
return 0;
#endif
break;
case 'x':
g_hex_dump = true;
break;
case 'H':
default:
usage(argv[0]);
return 1;
}
}
return 0;
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
print_controller(ctrlr, trid);
spdk_nvme_detach(ctrlr);
}
int main(int argc, char **argv)
{
int rc;
struct spdk_env_opts opts;
rc = parse_args(argc, argv);
if (rc != 0) {
return rc;
}
spdk_env_opts_init(&opts);
opts.name = "identify";
opts.shm_id = g_shm_id;
opts.mem_size = g_dpdk_mem;
opts.mem_channel = 1;
opts.master_core = g_master_core;
opts.core_mask = g_core_mask;
if (g_trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
opts.no_pci = true;
}
spdk_env_init(&opts);
rc = 0;
if (spdk_nvme_probe(&g_trid, NULL, probe_cb, attach_cb, NULL) != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
rc = 1;
}
return rc;
}