f6b19841da
This is the same fix as done for lib/nvme. Signed-off-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com> Change-Id: I9ca5e1ea9dbdba45b51b311e9a36f278b1b62770 Reviewed-on: https://review.spdk.io/gerrit/c/spdk/spdk/+/8437 Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: <dongx.yi@intel.com> Reviewed-by: Ziye Yang <ziye.yang@intel.com> Reviewed-by: Aleksey Marchuk <alexeymar@mellanox.com> Reviewed-by: Monica Kenguva <monica.kenguva@intel.com> Community-CI: Broadcom CI <spdk-ci.pdl@broadcom.com> Community-CI: Mellanox Build Bot Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
2296 lines
77 KiB
C
2296 lines
77 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) Intel Corporation. All rights reserved.
|
|
* Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "spdk/stdinc.h"
|
|
|
|
#include "spdk/endian.h"
|
|
#include "spdk/log.h"
|
|
#include "spdk/nvme.h"
|
|
#include "spdk/vmd.h"
|
|
#include "spdk/nvme_ocssd.h"
|
|
#include "spdk/nvme_zns.h"
|
|
#include "spdk/env.h"
|
|
#include "spdk/nvme_intel.h"
|
|
#include "spdk/nvmf_spec.h"
|
|
#include "spdk/pci_ids.h"
|
|
#include "spdk/string.h"
|
|
#include "spdk/util.h"
|
|
#include "spdk/uuid.h"
|
|
|
|
#define MAX_DISCOVERY_LOG_ENTRIES ((uint64_t)1000)
|
|
|
|
#define NUM_CHUNK_INFO_ENTRIES 8
|
|
#define MAX_OCSSD_PU 128
|
|
#define MAX_ZONE_DESC_ENTRIES 8
|
|
|
|
static int outstanding_commands;
|
|
|
|
struct feature {
|
|
uint32_t result;
|
|
bool valid;
|
|
};
|
|
|
|
static struct feature features[256] = {};
|
|
|
|
static struct spdk_nvme_error_information_entry error_page[256];
|
|
|
|
static struct spdk_nvme_health_information_page health_page;
|
|
|
|
static struct spdk_nvme_firmware_page firmware_page;
|
|
|
|
static struct spdk_nvme_ana_page *g_ana_log_page;
|
|
|
|
static struct spdk_nvme_ana_group_descriptor *g_copied_ana_desc;
|
|
|
|
static size_t g_ana_log_page_size;
|
|
|
|
static struct spdk_nvme_cmds_and_effect_log_page cmd_effects_log_page;
|
|
|
|
static struct spdk_nvme_intel_smart_information_page intel_smart_page;
|
|
|
|
static struct spdk_nvme_intel_temperature_page intel_temperature_page;
|
|
|
|
static struct spdk_nvme_intel_marketing_description_page intel_md_page;
|
|
|
|
static struct spdk_nvmf_discovery_log_page *g_discovery_page;
|
|
static size_t g_discovery_page_size;
|
|
static uint64_t g_discovery_page_numrec;
|
|
|
|
static struct spdk_ocssd_geometry_data geometry_data;
|
|
|
|
static struct spdk_ocssd_chunk_information_entry *g_ocssd_chunk_info_page;
|
|
|
|
static int64_t g_zone_report_limit = 8;
|
|
|
|
static bool g_hex_dump = false;
|
|
|
|
static int g_shm_id = -1;
|
|
|
|
static int g_dpdk_mem = 0;
|
|
|
|
static bool g_dpdk_mem_single_seg = false;
|
|
|
|
static int g_main_core = 0;
|
|
|
|
static char g_core_mask[20] = "0x1";
|
|
|
|
static struct spdk_nvme_transport_id g_trid;
|
|
static char g_hostnqn[SPDK_NVMF_NQN_MAX_LEN + 1];
|
|
|
|
static int g_controllers_found = 0;
|
|
|
|
static bool g_vmd = false;
|
|
|
|
static bool g_ocssd_verbose = false;
|
|
|
|
static struct spdk_nvme_detach_ctx *g_detach_ctx = NULL;
|
|
|
|
static void
|
|
hex_dump(const void *data, size_t size)
|
|
{
|
|
size_t offset = 0, i;
|
|
const uint8_t *bytes = data;
|
|
|
|
while (size) {
|
|
printf("%08zX:", offset);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
if (i == 8) {
|
|
printf("-");
|
|
} else {
|
|
printf(" ");
|
|
}
|
|
|
|
if (i < size) {
|
|
printf("%02X", bytes[offset + i]);
|
|
} else {
|
|
printf(" ");
|
|
}
|
|
}
|
|
|
|
printf(" ");
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
if (i < size) {
|
|
if (bytes[offset + i] > 0x20 && bytes[offset + i] < 0x7F) {
|
|
printf("%c", bytes[offset + i]);
|
|
} else {
|
|
printf(".");
|
|
}
|
|
}
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
offset += 16;
|
|
if (size > 16) {
|
|
size -= 16;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
get_feature_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct feature *feature = cb_arg;
|
|
int fid = feature - features;
|
|
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
printf("get_feature(0x%02X) failed\n", fid);
|
|
} else {
|
|
feature->result = cpl->cdw0;
|
|
feature->valid = true;
|
|
}
|
|
outstanding_commands--;
|
|
}
|
|
|
|
static void
|
|
get_log_page_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
printf("get log page failed\n");
|
|
}
|
|
outstanding_commands--;
|
|
}
|
|
|
|
static void
|
|
get_ocssd_geometry_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
printf("get ocssd geometry failed\n");
|
|
}
|
|
outstanding_commands--;
|
|
}
|
|
|
|
static void
|
|
get_zns_zone_report_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
printf("get zns zone report failed\n");
|
|
}
|
|
|
|
outstanding_commands--;
|
|
}
|
|
|
|
static int
|
|
get_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t fid, uint32_t nsid)
|
|
{
|
|
struct spdk_nvme_cmd cmd = {};
|
|
struct feature *feature = &features[fid];
|
|
|
|
feature->valid = false;
|
|
|
|
cmd.opc = SPDK_NVME_OPC_GET_FEATURES;
|
|
cmd.cdw10_bits.get_features.fid = fid;
|
|
cmd.nsid = nsid;
|
|
|
|
return spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, &cmd, NULL, 0, get_feature_completion, feature);
|
|
}
|
|
|
|
static void
|
|
get_features(struct spdk_nvme_ctrlr *ctrlr, uint8_t *features_to_get, size_t num_features,
|
|
uint32_t nsid)
|
|
{
|
|
size_t i;
|
|
|
|
/* Submit only one GET FEATURES at a time. There is a known issue #1799
|
|
* with Google Cloud Platform NVMe SSDs that do not handle overlapped
|
|
* GET FEATURES commands correctly.
|
|
*/
|
|
outstanding_commands = 0;
|
|
for (i = 0; i < num_features; i++) {
|
|
if (!spdk_nvme_ctrlr_is_ocssd_supported(ctrlr) &&
|
|
features_to_get[i] == SPDK_OCSSD_FEAT_MEDIA_FEEDBACK) {
|
|
continue;
|
|
}
|
|
if (get_feature(ctrlr, features_to_get[i], nsid) == 0) {
|
|
outstanding_commands++;
|
|
} else {
|
|
printf("get_feature(0x%02X) failed to submit command\n", features_to_get[i]);
|
|
}
|
|
|
|
while (outstanding_commands) {
|
|
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
get_ctrlr_features(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
uint8_t features_to_get[] = {
|
|
SPDK_NVME_FEAT_ARBITRATION,
|
|
SPDK_NVME_FEAT_POWER_MANAGEMENT,
|
|
SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD,
|
|
SPDK_NVME_FEAT_NUMBER_OF_QUEUES,
|
|
SPDK_OCSSD_FEAT_MEDIA_FEEDBACK,
|
|
};
|
|
|
|
get_features(ctrlr, features_to_get, SPDK_COUNTOF(features_to_get), 0);
|
|
}
|
|
|
|
static void
|
|
get_ns_features(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid)
|
|
{
|
|
uint8_t features_to_get[] = {
|
|
SPDK_NVME_FEAT_ERROR_RECOVERY,
|
|
};
|
|
|
|
get_features(ctrlr, features_to_get, SPDK_COUNTOF(features_to_get), nsid);
|
|
}
|
|
|
|
static int
|
|
get_error_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ERROR,
|
|
SPDK_NVME_GLOBAL_NS_TAG, error_page,
|
|
sizeof(*error_page) * (cdata->elpe + 1),
|
|
0,
|
|
get_log_page_completion, NULL)) {
|
|
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
|
|
exit(1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_health_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_HEALTH_INFORMATION,
|
|
SPDK_NVME_GLOBAL_NS_TAG, &health_page, sizeof(health_page), 0, get_log_page_completion, NULL)) {
|
|
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
|
|
exit(1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_firmware_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_FIRMWARE_SLOT,
|
|
SPDK_NVME_GLOBAL_NS_TAG, &firmware_page, sizeof(firmware_page), 0, get_log_page_completion, NULL)) {
|
|
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
|
|
exit(1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_ana_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS,
|
|
SPDK_NVME_GLOBAL_NS_TAG, g_ana_log_page, g_ana_log_page_size, 0,
|
|
get_log_page_completion, NULL)) {
|
|
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
|
|
exit(1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_cmd_effects_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG,
|
|
SPDK_NVME_GLOBAL_NS_TAG, &cmd_effects_log_page, sizeof(cmd_effects_log_page), 0,
|
|
get_log_page_completion, NULL)) {
|
|
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
|
|
exit(1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_intel_smart_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_SMART, SPDK_NVME_GLOBAL_NS_TAG,
|
|
&intel_smart_page, sizeof(intel_smart_page), 0, get_log_page_completion, NULL)) {
|
|
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
|
|
exit(1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_intel_temperature_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE,
|
|
SPDK_NVME_GLOBAL_NS_TAG, &intel_temperature_page, sizeof(intel_temperature_page), 0,
|
|
get_log_page_completion, NULL)) {
|
|
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
|
|
exit(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_intel_md_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_MARKETING_DESCRIPTION,
|
|
SPDK_NVME_GLOBAL_NS_TAG, &intel_md_page, sizeof(intel_md_page), 0,
|
|
get_log_page_completion, NULL)) {
|
|
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
|
|
exit(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
get_discovery_log_page_header_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl)
|
|
{
|
|
struct spdk_nvmf_discovery_log_page *new_discovery_page;
|
|
struct spdk_nvme_ctrlr *ctrlr = cb_arg;
|
|
uint16_t recfmt;
|
|
uint64_t remaining;
|
|
uint64_t offset;
|
|
|
|
outstanding_commands--;
|
|
if (spdk_nvme_cpl_is_error(cpl)) {
|
|
/* Return without printing anything - this may not be a discovery controller */
|
|
free(g_discovery_page);
|
|
g_discovery_page = NULL;
|
|
return;
|
|
}
|
|
|
|
/* Got the first 4K of the discovery log page */
|
|
recfmt = from_le16(&g_discovery_page->recfmt);
|
|
if (recfmt != 0) {
|
|
printf("Unrecognized discovery log record format %" PRIu16 "\n", recfmt);
|
|
return;
|
|
}
|
|
|
|
g_discovery_page_numrec = from_le64(&g_discovery_page->numrec);
|
|
|
|
/* Pick an arbitrary limit to avoid ridiculously large buffer size. */
|
|
if (g_discovery_page_numrec > MAX_DISCOVERY_LOG_ENTRIES) {
|
|
printf("Discovery log has %" PRIu64 " entries - limiting to %" PRIu64 ".\n",
|
|
g_discovery_page_numrec, MAX_DISCOVERY_LOG_ENTRIES);
|
|
g_discovery_page_numrec = MAX_DISCOVERY_LOG_ENTRIES;
|
|
}
|
|
|
|
/*
|
|
* Now that we now how many entries should be in the log page, we can allocate
|
|
* the full log page buffer.
|
|
*/
|
|
g_discovery_page_size += g_discovery_page_numrec * sizeof(struct
|
|
spdk_nvmf_discovery_log_page_entry);
|
|
new_discovery_page = realloc(g_discovery_page, g_discovery_page_size);
|
|
if (new_discovery_page == NULL) {
|
|
free(g_discovery_page);
|
|
printf("Discovery page allocation failed!\n");
|
|
return;
|
|
}
|
|
|
|
g_discovery_page = new_discovery_page;
|
|
|
|
/* Retrieve the rest of the discovery log page */
|
|
offset = offsetof(struct spdk_nvmf_discovery_log_page, entries);
|
|
remaining = g_discovery_page_size - offset;
|
|
while (remaining) {
|
|
uint32_t size;
|
|
|
|
/* Retrieve up to 4 KB at a time */
|
|
size = spdk_min(remaining, 4096);
|
|
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_DISCOVERY,
|
|
0, (char *)g_discovery_page + offset, size, offset,
|
|
get_log_page_completion, NULL)) {
|
|
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
|
|
exit(1);
|
|
}
|
|
|
|
offset += size;
|
|
remaining -= size;
|
|
outstanding_commands++;
|
|
}
|
|
}
|
|
|
|
static int
|
|
get_discovery_log_page(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
/* Allocate the initial discovery log page buffer - this will be resized later. */
|
|
g_discovery_page_size = sizeof(*g_discovery_page);
|
|
g_discovery_page = calloc(1, g_discovery_page_size);
|
|
if (g_discovery_page == NULL) {
|
|
printf("Discovery log page allocation failed!\n");
|
|
exit(1);
|
|
}
|
|
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_DISCOVERY,
|
|
0, g_discovery_page, g_discovery_page_size, 0,
|
|
get_discovery_log_page_header_completion, ctrlr)) {
|
|
printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n");
|
|
exit(1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
get_log_pages(struct spdk_nvme_ctrlr *ctrlr)
|
|
{
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
outstanding_commands = 0;
|
|
bool is_discovery = spdk_nvme_ctrlr_is_discovery(ctrlr);
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
|
|
if (!is_discovery) {
|
|
/*
|
|
* Only attempt to retrieve the following log pages
|
|
* when the NVM subsystem that's being targeted is
|
|
* NOT the Discovery Controller which only fields
|
|
* a Discovery Log Page.
|
|
*/
|
|
if (get_error_log_page(ctrlr) == 0) {
|
|
outstanding_commands++;
|
|
} else {
|
|
printf("Get Error Log Page failed\n");
|
|
}
|
|
|
|
if (get_health_log_page(ctrlr) == 0) {
|
|
outstanding_commands++;
|
|
} else {
|
|
printf("Get Log Page (SMART/health) failed\n");
|
|
}
|
|
|
|
if (get_firmware_log_page(ctrlr) == 0) {
|
|
outstanding_commands++;
|
|
} else {
|
|
printf("Get Log Page (Firmware Slot Information) failed\n");
|
|
}
|
|
}
|
|
|
|
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS)) {
|
|
/* We always set RGO (Return Groups Only) to 0 in this tool, an ANA group
|
|
* descriptor is returned only if that ANA group contains namespaces
|
|
* that are attached to the controller processing the command, and
|
|
* namespaces attached to the controller shall be members of an ANA group.
|
|
* Hence the following size should be enough.
|
|
*/
|
|
g_ana_log_page_size = sizeof(struct spdk_nvme_ana_page) + cdata->nanagrpid *
|
|
sizeof(struct spdk_nvme_ana_group_descriptor) + cdata->nn *
|
|
sizeof(uint32_t);
|
|
g_ana_log_page = calloc(1, g_ana_log_page_size);
|
|
if (g_ana_log_page == NULL) {
|
|
exit(1);
|
|
}
|
|
g_copied_ana_desc = calloc(1, g_ana_log_page_size);
|
|
if (g_copied_ana_desc == NULL) {
|
|
exit(1);
|
|
}
|
|
if (get_ana_log_page(ctrlr) == 0) {
|
|
outstanding_commands++;
|
|
} else {
|
|
printf("Get Log Page (Asymmetric Namespace Access) failed\n");
|
|
}
|
|
}
|
|
if (cdata->lpa.celp) {
|
|
if (get_cmd_effects_log_page(ctrlr) == 0) {
|
|
outstanding_commands++;
|
|
} else {
|
|
printf("Get Log Page (Commands Supported and Effects) failed\n");
|
|
}
|
|
}
|
|
|
|
if (cdata->vid == SPDK_PCI_VID_INTEL) {
|
|
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_SMART)) {
|
|
if (get_intel_smart_log_page(ctrlr) == 0) {
|
|
outstanding_commands++;
|
|
} else {
|
|
printf("Get Log Page (Intel SMART/health) failed\n");
|
|
}
|
|
}
|
|
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE)) {
|
|
if (get_intel_temperature_log_page(ctrlr) == 0) {
|
|
outstanding_commands++;
|
|
} else {
|
|
printf("Get Log Page (Intel temperature) failed\n");
|
|
}
|
|
}
|
|
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_MARKETING_DESCRIPTION)) {
|
|
if (get_intel_md_log_page(ctrlr) == 0) {
|
|
outstanding_commands++;
|
|
} else {
|
|
printf("Get Log Page (Intel Marketing Description) failed\n");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (is_discovery && (get_discovery_log_page(ctrlr) == 0)) {
|
|
outstanding_commands++;
|
|
}
|
|
|
|
while (outstanding_commands) {
|
|
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
|
|
}
|
|
}
|
|
|
|
static int
|
|
get_ocssd_chunk_info_log_page(struct spdk_nvme_ns *ns)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
|
|
int nsid = spdk_nvme_ns_get_id(ns);
|
|
uint32_t num_entry = geometry_data.num_grp * geometry_data.num_pu * geometry_data.num_chk;
|
|
uint32_t xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns);
|
|
uint32_t buf_size = 0;
|
|
uint64_t buf_offset = 0;
|
|
outstanding_commands = 0;
|
|
|
|
assert(num_entry != 0);
|
|
if (!g_ocssd_verbose) {
|
|
num_entry = spdk_min(num_entry, NUM_CHUNK_INFO_ENTRIES);
|
|
}
|
|
|
|
g_ocssd_chunk_info_page = calloc(num_entry, sizeof(struct spdk_ocssd_chunk_information_entry));
|
|
assert(g_ocssd_chunk_info_page != NULL);
|
|
|
|
buf_size = num_entry * sizeof(struct spdk_ocssd_chunk_information_entry);
|
|
while (buf_size > 0) {
|
|
xfer_size = spdk_min(buf_size, xfer_size);
|
|
if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_OCSSD_LOG_CHUNK_INFO,
|
|
nsid, (void *) g_ocssd_chunk_info_page + buf_offset,
|
|
xfer_size, buf_offset, get_log_page_completion, NULL) == 0) {
|
|
outstanding_commands++;
|
|
} else {
|
|
printf("get_ocssd_chunk_info_log_page() failed\n");
|
|
return -1;
|
|
}
|
|
|
|
buf_size -= xfer_size;
|
|
buf_offset += xfer_size;
|
|
}
|
|
|
|
while (outstanding_commands) {
|
|
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
get_ocssd_geometry(struct spdk_nvme_ns *ns, struct spdk_ocssd_geometry_data *geometry_data)
|
|
{
|
|
struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns);
|
|
int nsid = spdk_nvme_ns_get_id(ns);
|
|
outstanding_commands = 0;
|
|
|
|
if (spdk_nvme_ocssd_ctrlr_cmd_geometry(ctrlr, nsid, geometry_data,
|
|
sizeof(*geometry_data), get_ocssd_geometry_completion, NULL)) {
|
|
printf("Get OpenChannel SSD geometry failed\n");
|
|
exit(1);
|
|
} else {
|
|
outstanding_commands++;
|
|
}
|
|
|
|
while (outstanding_commands) {
|
|
spdk_nvme_ctrlr_process_admin_completions(ctrlr);
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_hex_be(const void *v, size_t size)
|
|
{
|
|
const uint8_t *buf = v;
|
|
|
|
while (size--) {
|
|
printf("%02X", *buf++);
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_uint128_hex(uint64_t *v)
|
|
{
|
|
unsigned long long lo = v[0], hi = v[1];
|
|
if (hi) {
|
|
printf("0x%llX%016llX", hi, lo);
|
|
} else {
|
|
printf("0x%llX", lo);
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_uint128_dec(uint64_t *v)
|
|
{
|
|
unsigned long long lo = v[0], hi = v[1];
|
|
if (hi) {
|
|
/* can't handle large (>64-bit) decimal values for now, so fall back to hex */
|
|
print_uint128_hex(v);
|
|
} else {
|
|
printf("%llu", (unsigned long long)lo);
|
|
}
|
|
}
|
|
|
|
/* The len should be <= 8. */
|
|
static void
|
|
print_uint_var_dec(uint8_t *array, unsigned int len)
|
|
{
|
|
uint64_t result = 0;
|
|
int i = len;
|
|
|
|
while (i > 0) {
|
|
result += (uint64_t)array[i - 1] << (8 * (i - 1));
|
|
i--;
|
|
}
|
|
printf("%" PRIu64, result);
|
|
}
|
|
|
|
/* Print ASCII string as defined by the NVMe spec */
|
|
static void
|
|
print_ascii_string(const void *buf, size_t size)
|
|
{
|
|
const uint8_t *str = buf;
|
|
|
|
/* Trim trailing spaces */
|
|
while (size > 0 && str[size - 1] == ' ') {
|
|
size--;
|
|
}
|
|
|
|
while (size--) {
|
|
if (*str >= 0x20 && *str <= 0x7E) {
|
|
printf("%c", *str);
|
|
} else {
|
|
printf(".");
|
|
}
|
|
str++;
|
|
}
|
|
}
|
|
|
|
/* Underline a "line" with the given marker, e.g. print_uline("=", printf(...)); */
|
|
static void
|
|
print_uline(char marker, int line_len)
|
|
{
|
|
for (int i = 1; i < line_len; ++i) {
|
|
putchar(marker);
|
|
}
|
|
putchar('\n');
|
|
}
|
|
|
|
static void
|
|
print_ocssd_chunk_info(struct spdk_ocssd_chunk_information_entry *chk_info, int chk_num)
|
|
{
|
|
int i;
|
|
char *cs_str, *ct_str;
|
|
|
|
printf("OCSSD Chunk Info Glance\n");
|
|
printf("======================\n");
|
|
|
|
for (i = 0; i < chk_num; i++) {
|
|
cs_str = chk_info[i].cs.free ? "Free" :
|
|
chk_info[i].cs.closed ? "Closed" :
|
|
chk_info[i].cs.open ? "Open" :
|
|
chk_info[i].cs.offline ? "Offline" : "Unknown";
|
|
ct_str = chk_info[i].ct.seq_write ? "Sequential Write" :
|
|
chk_info[i].ct.rnd_write ? "Random Write" : "Unknown";
|
|
|
|
printf("------------\n");
|
|
printf("Chunk index: %d\n", i);
|
|
printf("Chunk state: %s(0x%x)\n", cs_str, *(uint8_t *) & (chk_info[i].cs));
|
|
printf("Chunk type (write mode): %s\n", ct_str);
|
|
printf("Chunk type (size_deviate): %s\n", chk_info[i].ct.size_deviate ? "Yes" : "No");
|
|
printf("Wear-level Index: %d\n", chk_info[i].wli);
|
|
printf("Starting LBA: %" PRIu64 "\n", chk_info[i].slba);
|
|
printf("Number of blocks in chunk: %" PRIu64 "\n", chk_info[i].cnlb);
|
|
printf("Write Pointer: %" PRIu64 "\n", chk_info[i].wp);
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_ocssd_chunk_info_verbose(struct spdk_ocssd_chunk_information_entry *chk_info)
|
|
{
|
|
uint32_t pu, chk, i;
|
|
uint32_t cnt_free, cnt_closed, cnt_open, cnt_offline;
|
|
uint32_t max_pu = spdk_min(MAX_OCSSD_PU, (geometry_data.num_grp * geometry_data.num_pu));
|
|
char cs_str[MAX_OCSSD_PU + 1], cs;
|
|
|
|
assert(chk_info != NULL);
|
|
printf("OCSSD Chunk Info Verbose\n");
|
|
printf("======================\n");
|
|
|
|
printf("%4s %-*s %3s %3s %3s %3s\n", "band", max_pu, "chunk state", "fr", "cl", "op", "of");
|
|
for (chk = 0; chk < geometry_data.num_chk; chk++) {
|
|
cnt_free = cnt_closed = cnt_open = cnt_offline = 0;
|
|
for (pu = 0; pu < max_pu; pu++) {
|
|
i = (pu * geometry_data.num_chk) + chk;
|
|
if (chk_info[i].cs.free) {
|
|
cnt_free++;
|
|
cs = 'f';
|
|
} else if (chk_info[i].cs.closed) {
|
|
cnt_closed++;
|
|
cs = 'c';
|
|
} else if (chk_info[i].cs.open) {
|
|
cnt_open++;
|
|
cs = 'o';
|
|
} else if (chk_info[i].cs.offline) {
|
|
cnt_offline++;
|
|
cs = 'l';
|
|
} else {
|
|
cs = '.';
|
|
}
|
|
cs_str[pu] = cs;
|
|
}
|
|
cs_str[pu] = 0;
|
|
printf("%4d %s %3d %3d %3d %3d\n", chk, cs_str, cnt_free, cnt_closed, cnt_open, cnt_offline);
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_ocssd_geometry(struct spdk_ocssd_geometry_data *geometry_data)
|
|
{
|
|
printf("Namespace OCSSD Geometry\n");
|
|
printf("=======================\n");
|
|
|
|
if (geometry_data->mjr < 2) {
|
|
printf("Open-Channel Spec version is less than 2.0\n");
|
|
printf("OC version: maj:%d\n", geometry_data->mjr);
|
|
return;
|
|
}
|
|
|
|
printf("OC version: maj:%d min:%d\n", geometry_data->mjr, geometry_data->mnr);
|
|
printf("LBA format:\n");
|
|
printf(" Group bits: %d\n", geometry_data->lbaf.grp_len);
|
|
printf(" PU bits: %d\n", geometry_data->lbaf.pu_len);
|
|
printf(" Chunk bits: %d\n", geometry_data->lbaf.chk_len);
|
|
printf(" Logical block bits: %d\n", geometry_data->lbaf.lbk_len);
|
|
|
|
printf("Media and Controller Capabilities:\n");
|
|
printf(" Namespace supports Vector Chunk Copy: %s\n",
|
|
geometry_data->mccap.vec_chk_cpy ? "Supported" : "Not Supported");
|
|
printf(" Namespace supports multiple resets a free chunk: %s\n",
|
|
geometry_data->mccap.multi_reset ? "Supported" : "Not Supported");
|
|
|
|
printf("Wear-level Index Delta Threshold: %d\n", geometry_data->wit);
|
|
printf("Groups (channels): %d\n", geometry_data->num_grp);
|
|
printf("PUs (LUNs) per group: %d\n", geometry_data->num_pu);
|
|
printf("Chunks per LUN: %d\n", geometry_data->num_chk);
|
|
printf("Logical blks per chunk: %d\n", geometry_data->clba);
|
|
printf("MIN write size: %d\n", geometry_data->ws_min);
|
|
printf("OPT write size: %d\n", geometry_data->ws_opt);
|
|
printf("Cache min write size: %d\n", geometry_data->mw_cunits);
|
|
printf("Max open chunks: %d\n", geometry_data->maxoc);
|
|
printf("Max open chunks per PU: %d\n", geometry_data->maxocpu);
|
|
printf("\n");
|
|
}
|
|
|
|
static void
|
|
print_zns_zone(struct spdk_nvme_zns_zone_desc *desc)
|
|
{
|
|
printf("ZSLBA: 0x%016"PRIx64" ZCAP: 0x%016"PRIx64" WP: 0x%016"PRIx64" ZS: %x ZT: %x ZA: %x\n",
|
|
desc->zslba, desc->zcap, desc->wp, desc->zs, desc->zt, desc->za.raw);
|
|
}
|
|
|
|
static void
|
|
get_and_print_zns_zone_report(struct spdk_nvme_ns *ns, struct spdk_nvme_qpair *qpair)
|
|
{
|
|
struct spdk_nvme_zns_zone_report *report_buf;
|
|
size_t report_bufsize;
|
|
uint64_t zone_size_lba = spdk_nvme_zns_ns_get_zone_size_sectors(ns);
|
|
uint64_t total_zones = spdk_nvme_zns_ns_get_num_zones(ns);
|
|
uint64_t max_zones_per_buf, zones_to_print, i;
|
|
uint64_t handled_zones = 0;
|
|
uint64_t slba = 0;
|
|
|
|
outstanding_commands = 0;
|
|
|
|
report_bufsize = spdk_nvme_ns_get_max_io_xfer_size(ns);
|
|
report_buf = calloc(1, report_bufsize);
|
|
if (!report_buf) {
|
|
printf("Zone report allocation failed!\n");
|
|
exit(1);
|
|
}
|
|
|
|
zones_to_print = g_zone_report_limit ? spdk_min(total_zones, (uint64_t)g_zone_report_limit) : \
|
|
total_zones;
|
|
|
|
print_uline('=', printf("NVMe ZNS Zone Report (first %zu of %zu)\n", zones_to_print, total_zones));
|
|
|
|
while (handled_zones < zones_to_print) {
|
|
memset(report_buf, 0, report_bufsize);
|
|
|
|
if (spdk_nvme_zns_report_zones(ns, qpair, report_buf, report_bufsize,
|
|
slba, SPDK_NVME_ZRA_LIST_ALL, true,
|
|
get_zns_zone_report_completion, NULL)) {
|
|
fprintf(stderr, "spdk_nvme_zns_report_zones() failed\n");
|
|
exit(1);
|
|
} else {
|
|
outstanding_commands++;
|
|
}
|
|
|
|
while (outstanding_commands) {
|
|
spdk_nvme_qpair_process_completions(qpair, 0);
|
|
}
|
|
|
|
max_zones_per_buf = (report_bufsize - sizeof(*report_buf)) / sizeof(report_buf->descs[0]);
|
|
if (report_buf->nr_zones > max_zones_per_buf) {
|
|
fprintf(stderr, "nr_zones too big\n");
|
|
exit(1);
|
|
}
|
|
|
|
if (!report_buf->nr_zones) {
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < report_buf->nr_zones && handled_zones < zones_to_print; i++) {
|
|
print_zns_zone(&report_buf->descs[i]);
|
|
slba += zone_size_lba;
|
|
handled_zones++;
|
|
}
|
|
}
|
|
|
|
free(report_buf);
|
|
}
|
|
|
|
static void
|
|
print_zns_ns_data(const struct spdk_nvme_zns_ns_data *nsdata_zns)
|
|
{
|
|
printf("ZNS Specific Namespace Data\n");
|
|
printf("===========================\n");
|
|
printf("Variable Zone Capacity: %s\n",
|
|
nsdata_zns->zoc.variable_zone_capacity ? "Yes" : "No");
|
|
printf("Zone Active Excursions: %s\n",
|
|
nsdata_zns->zoc.zone_active_excursions ? "Yes" : "No");
|
|
printf("Read Across Zone Boundaries: %s\n",
|
|
nsdata_zns->ozcs.read_across_zone_boundaries ? "Yes" : "No");
|
|
if (nsdata_zns->mar == 0xffffffff) {
|
|
printf("Max Active Resources: No Limit\n");
|
|
} else {
|
|
printf("Max Active Resources: %"PRIu32"\n",
|
|
nsdata_zns->mar + 1);
|
|
}
|
|
if (nsdata_zns->mor == 0xffffffff) {
|
|
printf("Max Open Resources: No Limit\n");
|
|
} else {
|
|
printf("Max Open Resources: %"PRIu32"\n",
|
|
nsdata_zns->mor + 1);
|
|
}
|
|
if (nsdata_zns->rrl == 0) {
|
|
printf("Reset Recommended Limit: Not Reported\n");
|
|
} else {
|
|
printf("Reset Recommended Limit: %"PRIu32"\n",
|
|
nsdata_zns->rrl);
|
|
}
|
|
if (nsdata_zns->frl == 0) {
|
|
printf("Finish Recommended Limit: Not Reported\n");
|
|
} else {
|
|
printf("Finish Recommended Limit: %"PRIu32"\n",
|
|
nsdata_zns->frl);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static const char *
|
|
csi_name(enum spdk_nvme_csi csi)
|
|
{
|
|
switch (csi) {
|
|
case SPDK_NVME_CSI_NVM:
|
|
return "NVM";
|
|
case SPDK_NVME_CSI_KV:
|
|
return "KV";
|
|
case SPDK_NVME_CSI_ZNS:
|
|
return "ZNS";
|
|
default:
|
|
if (csi >= 0x30 && csi <= 0x3f) {
|
|
return "Vendor specific";
|
|
}
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_namespace(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
|
|
{
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
const struct spdk_nvme_ns_data *nsdata;
|
|
const struct spdk_nvme_zns_ns_data *nsdata_zns;
|
|
const struct spdk_uuid *uuid;
|
|
uint32_t i;
|
|
uint32_t flags;
|
|
char uuid_str[SPDK_UUID_STRING_LEN];
|
|
uint32_t blocksize;
|
|
enum spdk_nvme_dealloc_logical_block_read_value dlfeat_read_value;
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
nsdata = spdk_nvme_ns_get_data(ns);
|
|
nsdata_zns = spdk_nvme_zns_ns_get_data(ns);
|
|
flags = spdk_nvme_ns_get_flags(ns);
|
|
|
|
printf("Namespace ID:%d\n", spdk_nvme_ns_get_id(ns));
|
|
|
|
if (g_hex_dump) {
|
|
hex_dump(nsdata, sizeof(*nsdata));
|
|
printf("\n");
|
|
}
|
|
|
|
/* This function is only called for active namespaces. */
|
|
assert(spdk_nvme_ns_is_active(ns));
|
|
|
|
if (features[SPDK_NVME_FEAT_ERROR_RECOVERY].valid) {
|
|
unsigned tler = features[SPDK_NVME_FEAT_ERROR_RECOVERY].result & 0xFFFF;
|
|
printf("Error Recovery Timeout: ");
|
|
if (tler == 0) {
|
|
printf("Unlimited\n");
|
|
} else {
|
|
printf("%u milliseconds\n", tler * 100);
|
|
}
|
|
}
|
|
|
|
printf("Command Set Identifier: %s (%02Xh)\n",
|
|
csi_name(spdk_nvme_ns_get_csi(ns)), spdk_nvme_ns_get_csi(ns));
|
|
printf("Deallocate: %s\n",
|
|
(flags & SPDK_NVME_NS_DEALLOCATE_SUPPORTED) ? "Supported" : "Not Supported");
|
|
printf("Deallocated/Unwritten Error: %s\n",
|
|
nsdata->nsfeat.dealloc_or_unwritten_error ? "Supported" : "Not Supported");
|
|
dlfeat_read_value = spdk_nvme_ns_get_dealloc_logical_block_read_value(ns);
|
|
printf("Deallocated Read Value: %s\n",
|
|
dlfeat_read_value == SPDK_NVME_DEALLOC_READ_00 ? "All 0x00" :
|
|
dlfeat_read_value == SPDK_NVME_DEALLOC_READ_FF ? "All 0xFF" :
|
|
"Unknown");
|
|
printf("Deallocate in Write Zeroes: %s\n",
|
|
nsdata->dlfeat.bits.write_zero_deallocate ? "Supported" : "Not Supported");
|
|
printf("Deallocated Guard Field: %s\n",
|
|
nsdata->dlfeat.bits.guard_value ? "CRC for Read Value" : "0xFFFF");
|
|
printf("Flush: %s\n",
|
|
(flags & SPDK_NVME_NS_FLUSH_SUPPORTED) ? "Supported" : "Not Supported");
|
|
printf("Reservation: %s\n",
|
|
(flags & SPDK_NVME_NS_RESERVATION_SUPPORTED) ? "Supported" : "Not Supported");
|
|
if (flags & SPDK_NVME_NS_DPS_PI_SUPPORTED) {
|
|
printf("End-to-End Data Protection: Supported\n");
|
|
printf("Protection Type: Type%d\n", nsdata->dps.pit);
|
|
printf("Protection Information Transferred as: %s\n",
|
|
nsdata->dps.md_start ? "First 8 Bytes" : "Last 8 Bytes");
|
|
}
|
|
if (nsdata->lbaf[nsdata->flbas.format].ms > 0) {
|
|
printf("Metadata Transferred as: %s\n",
|
|
nsdata->flbas.extended ? "Extended Data LBA" : "Separate Metadata Buffer");
|
|
}
|
|
printf("Namespace Sharing Capabilities: %s\n",
|
|
nsdata->nmic.can_share ? "Multiple Controllers" : "Private");
|
|
blocksize = 1 << nsdata->lbaf[nsdata->flbas.format].lbads;
|
|
printf("Size (in LBAs): %lld (%lldGiB)\n",
|
|
(long long)nsdata->nsze,
|
|
(long long)nsdata->nsze * blocksize / 1024 / 1024 / 1024);
|
|
printf("Capacity (in LBAs): %lld (%lldGiB)\n",
|
|
(long long)nsdata->ncap,
|
|
(long long)nsdata->ncap * blocksize / 1024 / 1024 / 1024);
|
|
printf("Utilization (in LBAs): %lld (%lldGiB)\n",
|
|
(long long)nsdata->nuse,
|
|
(long long)nsdata->nuse * blocksize / 1024 / 1024 / 1024);
|
|
if (nsdata->noiob) {
|
|
printf("Optimal I/O Boundary: %u blocks\n", nsdata->noiob);
|
|
}
|
|
if (!spdk_mem_all_zero(nsdata->nguid, sizeof(nsdata->nguid))) {
|
|
printf("NGUID: ");
|
|
print_hex_be(nsdata->nguid, sizeof(nsdata->nguid));
|
|
printf("\n");
|
|
}
|
|
if (!spdk_mem_all_zero(&nsdata->eui64, sizeof(nsdata->eui64))) {
|
|
printf("EUI64: ");
|
|
print_hex_be(&nsdata->eui64, sizeof(nsdata->eui64));
|
|
printf("\n");
|
|
}
|
|
uuid = spdk_nvme_ns_get_uuid(ns);
|
|
if (uuid) {
|
|
spdk_uuid_fmt_lower(uuid_str, sizeof(uuid_str), uuid);
|
|
printf("UUID: %s\n", uuid_str);
|
|
}
|
|
printf("Thin Provisioning: %s\n",
|
|
nsdata->nsfeat.thin_prov ? "Supported" : "Not Supported");
|
|
printf("Per-NS Atomic Units: %s\n",
|
|
nsdata->nsfeat.ns_atomic_write_unit ? "Yes" : "No");
|
|
if (nsdata->nsfeat.ns_atomic_write_unit) {
|
|
if (nsdata->nawun) {
|
|
printf(" Atomic Write Unit (Normal): %d\n", nsdata->nawun + 1);
|
|
}
|
|
|
|
if (nsdata->nawupf) {
|
|
printf(" Atomic Write Unit (PFail): %d\n", nsdata->nawupf + 1);
|
|
}
|
|
|
|
if (nsdata->npwg) {
|
|
printf(" Preferred Write Granularity: %d\n", nsdata->npwg + 1);
|
|
}
|
|
|
|
if (nsdata->nacwu) {
|
|
printf(" Atomic Compare & Write Unit: %d\n", nsdata->nacwu + 1);
|
|
}
|
|
|
|
printf(" Atomic Boundary Size (Normal): %d\n", nsdata->nabsn);
|
|
printf(" Atomic Boundary Size (PFail): %d\n", nsdata->nabspf);
|
|
printf(" Atomic Boundary Offset: %d\n", nsdata->nabo);
|
|
}
|
|
|
|
if (cdata->oncs.copy) {
|
|
printf("Maximum Single Source Range Length: %d\n", nsdata->mssrl);
|
|
printf("Maximum Copy Length: %d\n", nsdata->mcl);
|
|
printf("Maximum Source Range Count: %d\n", nsdata->msrc + 1);
|
|
}
|
|
|
|
printf("NGUID/EUI64 Never Reused: %s\n",
|
|
nsdata->nsfeat.guid_never_reused ? "Yes" : "No");
|
|
|
|
if (cdata->cmic.ana_reporting) {
|
|
printf("ANA group ID: %u\n", nsdata->anagrpid);
|
|
}
|
|
|
|
printf("Number of LBA Formats: %d\n", nsdata->nlbaf + 1);
|
|
printf("Current LBA Format: LBA Format #%02d\n",
|
|
nsdata->flbas.format);
|
|
for (i = 0; i <= nsdata->nlbaf; i++) {
|
|
printf("LBA Format #%02d: Data Size: %5d Metadata Size: %5d\n",
|
|
i, 1 << nsdata->lbaf[i].lbads, nsdata->lbaf[i].ms);
|
|
if (spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS) {
|
|
printf("LBA Format Extension #%02d: Zone Size (in LBAs): 0x%"PRIx64" Zone Descriptor Extension Size: %d bytes\n",
|
|
i, nsdata_zns->lbafe[i].zsze, nsdata_zns->lbafe[i].zdes << 6);
|
|
}
|
|
|
|
}
|
|
printf("\n");
|
|
|
|
if (spdk_nvme_ctrlr_is_ocssd_supported(ctrlr)) {
|
|
get_ocssd_geometry(ns, &geometry_data);
|
|
print_ocssd_geometry(&geometry_data);
|
|
get_ocssd_chunk_info_log_page(ns);
|
|
if (g_ocssd_verbose) {
|
|
print_ocssd_chunk_info_verbose(g_ocssd_chunk_info_page);
|
|
} else {
|
|
print_ocssd_chunk_info(g_ocssd_chunk_info_page, NUM_CHUNK_INFO_ENTRIES);
|
|
}
|
|
} else if (spdk_nvme_ns_get_csi(ns) == SPDK_NVME_CSI_ZNS) {
|
|
struct spdk_nvme_qpair *qpair = spdk_nvme_ctrlr_alloc_io_qpair(ctrlr, NULL, 0);
|
|
if (qpair == NULL) {
|
|
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair() failed\n");
|
|
exit(1);
|
|
}
|
|
print_zns_ns_data(nsdata_zns);
|
|
get_and_print_zns_zone_report(ns, qpair);
|
|
spdk_nvme_ctrlr_free_io_qpair(qpair);
|
|
}
|
|
}
|
|
|
|
static const char *
|
|
admin_opc_name(uint8_t opc)
|
|
{
|
|
switch (opc) {
|
|
case SPDK_NVME_OPC_DELETE_IO_SQ:
|
|
return "Delete I/O Submission Queue";
|
|
case SPDK_NVME_OPC_CREATE_IO_SQ:
|
|
return "Create I/O Submission Queue";
|
|
case SPDK_NVME_OPC_GET_LOG_PAGE:
|
|
return "Get Log Page";
|
|
case SPDK_NVME_OPC_DELETE_IO_CQ:
|
|
return "Delete I/O Completion Queue";
|
|
case SPDK_NVME_OPC_CREATE_IO_CQ:
|
|
return "Create I/O Completion Queue";
|
|
case SPDK_NVME_OPC_IDENTIFY:
|
|
return "Identify";
|
|
case SPDK_NVME_OPC_ABORT:
|
|
return "Abort";
|
|
case SPDK_NVME_OPC_SET_FEATURES:
|
|
return "Set Features";
|
|
case SPDK_NVME_OPC_GET_FEATURES:
|
|
return "Get Features";
|
|
case SPDK_NVME_OPC_ASYNC_EVENT_REQUEST:
|
|
return "Asynchronous Event Request";
|
|
case SPDK_NVME_OPC_NS_MANAGEMENT:
|
|
return "Namespace Management";
|
|
case SPDK_NVME_OPC_FIRMWARE_COMMIT:
|
|
return "Firmware Commit";
|
|
case SPDK_NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD:
|
|
return "Firmware Image Download";
|
|
case SPDK_NVME_OPC_DEVICE_SELF_TEST:
|
|
return "Device Self-test";
|
|
case SPDK_NVME_OPC_NS_ATTACHMENT:
|
|
return "Namespace Attachment";
|
|
case SPDK_NVME_OPC_KEEP_ALIVE:
|
|
return "Keep Alive";
|
|
case SPDK_NVME_OPC_DIRECTIVE_SEND:
|
|
return "Directive Send";
|
|
case SPDK_NVME_OPC_DIRECTIVE_RECEIVE:
|
|
return "Directive Receive";
|
|
case SPDK_NVME_OPC_VIRTUALIZATION_MANAGEMENT:
|
|
return "Virtualization Management";
|
|
case SPDK_NVME_OPC_NVME_MI_SEND:
|
|
return "NVMe-MI Send";
|
|
case SPDK_NVME_OPC_NVME_MI_RECEIVE:
|
|
return "NVMe-MI Receive";
|
|
case SPDK_NVME_OPC_DOORBELL_BUFFER_CONFIG:
|
|
return "Doorbell Buffer Config";
|
|
case SPDK_NVME_OPC_FORMAT_NVM:
|
|
return "Format NVM";
|
|
case SPDK_NVME_OPC_SECURITY_SEND:
|
|
return "Security Send";
|
|
case SPDK_NVME_OPC_SECURITY_RECEIVE:
|
|
return "Security Receive";
|
|
case SPDK_NVME_OPC_SANITIZE:
|
|
return "Sanitize";
|
|
default:
|
|
if (opc >= 0xC0) {
|
|
return "Vendor specific";
|
|
}
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
static const char *
|
|
io_opc_name(uint8_t opc)
|
|
{
|
|
switch (opc) {
|
|
case SPDK_NVME_OPC_FLUSH:
|
|
return "Flush";
|
|
case SPDK_NVME_OPC_WRITE:
|
|
return "Write";
|
|
case SPDK_NVME_OPC_READ:
|
|
return "Read";
|
|
case SPDK_NVME_OPC_WRITE_UNCORRECTABLE:
|
|
return "Write Uncorrectable";
|
|
case SPDK_NVME_OPC_COMPARE:
|
|
return "Compare";
|
|
case SPDK_NVME_OPC_WRITE_ZEROES:
|
|
return "Write Zeroes";
|
|
case SPDK_NVME_OPC_DATASET_MANAGEMENT:
|
|
return "Dataset Management";
|
|
case SPDK_NVME_OPC_RESERVATION_REGISTER:
|
|
return "Reservation Register";
|
|
case SPDK_NVME_OPC_RESERVATION_REPORT:
|
|
return "Reservation Report";
|
|
case SPDK_NVME_OPC_RESERVATION_ACQUIRE:
|
|
return "Reservation Acquire";
|
|
case SPDK_NVME_OPC_RESERVATION_RELEASE:
|
|
return "Reservation Release";
|
|
default:
|
|
if (opc >= 0x80) {
|
|
return "Vendor specific";
|
|
}
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_controller(struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_transport_id *trid)
|
|
{
|
|
const struct spdk_nvme_ctrlr_data *cdata;
|
|
union spdk_nvme_cap_register cap;
|
|
union spdk_nvme_vs_register vs;
|
|
union spdk_nvme_cmbsz_register cmbsz;
|
|
union spdk_nvme_pmrcap_register pmrcap;
|
|
uint8_t str[512];
|
|
uint32_t i, j;
|
|
struct spdk_nvme_error_information_entry *error_entry;
|
|
struct spdk_pci_addr pci_addr;
|
|
struct spdk_pci_device *pci_dev;
|
|
struct spdk_pci_id pci_id;
|
|
uint32_t nsid;
|
|
uint64_t pmrsz;
|
|
uint8_t *orig_desc;
|
|
struct spdk_nvme_ana_group_descriptor *copied_desc;
|
|
uint32_t desc_size, copy_len;
|
|
|
|
|
|
cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr);
|
|
vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr);
|
|
cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr);
|
|
pmrcap = spdk_nvme_ctrlr_get_regs_pmrcap(ctrlr);
|
|
pmrsz = spdk_nvme_ctrlr_get_pmrsz(ctrlr);
|
|
|
|
if (!spdk_nvme_ctrlr_is_discovery(ctrlr)) {
|
|
/*
|
|
* Discovery Controller only supports the
|
|
* IDENTIFY and GET_LOG_PAGE cmd set, so only
|
|
* attempt GET_FEATURES when NOT targeting a
|
|
* Discovery Controller.
|
|
*/
|
|
get_ctrlr_features(ctrlr);
|
|
}
|
|
get_log_pages(ctrlr);
|
|
|
|
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
|
|
|
|
printf("=====================================================\n");
|
|
if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) {
|
|
printf("NVMe over Fabrics controller at %s:%s: %s\n",
|
|
trid->traddr, trid->trsvcid, trid->subnqn);
|
|
} else {
|
|
if (spdk_pci_addr_parse(&pci_addr, trid->traddr) != 0) {
|
|
return;
|
|
}
|
|
|
|
pci_dev = spdk_nvme_ctrlr_get_pci_device(ctrlr);
|
|
if (!pci_dev) {
|
|
return;
|
|
}
|
|
|
|
pci_id = spdk_pci_device_get_id(pci_dev);
|
|
|
|
printf("NVMe Controller at %04x:%02x:%02x.%x [%04x:%04x]\n",
|
|
pci_addr.domain, pci_addr.bus,
|
|
pci_addr.dev, pci_addr.func,
|
|
pci_id.vendor_id, pci_id.device_id);
|
|
}
|
|
printf("=====================================================\n");
|
|
|
|
if (g_hex_dump) {
|
|
hex_dump(cdata, sizeof(*cdata));
|
|
printf("\n");
|
|
}
|
|
|
|
printf("Controller Capabilities/Features\n");
|
|
printf("================================\n");
|
|
printf("Vendor ID: %04x\n", cdata->vid);
|
|
printf("Subsystem Vendor ID: %04x\n", cdata->ssvid);
|
|
printf("Serial Number: ");
|
|
print_ascii_string(cdata->sn, sizeof(cdata->sn));
|
|
printf("\n");
|
|
printf("Model Number: ");
|
|
print_ascii_string(cdata->mn, sizeof(cdata->mn));
|
|
printf("\n");
|
|
printf("Firmware Version: ");
|
|
print_ascii_string(cdata->fr, sizeof(cdata->fr));
|
|
printf("\n");
|
|
printf("Recommended Arb Burst: %d\n", cdata->rab);
|
|
printf("IEEE OUI Identifier: %02x %02x %02x\n",
|
|
cdata->ieee[0], cdata->ieee[1], cdata->ieee[2]);
|
|
printf("Multi-path I/O\n");
|
|
printf(" May have multiple subsystem ports: %s\n", cdata->cmic.multi_port ? "Yes" : "No");
|
|
printf(" May have multiple controllers: %s\n", cdata->cmic.multi_ctrlr ? "Yes" : "No");
|
|
printf(" Associated with SR-IOV VF: %s\n", cdata->cmic.sr_iov ? "Yes" : "No");
|
|
printf("Max Data Transfer Size: ");
|
|
if (cdata->mdts == 0) {
|
|
printf("Unlimited\n");
|
|
} else {
|
|
printf("%" PRIu64 "\n", (uint64_t)1 << (12 + cap.bits.mpsmin + cdata->mdts));
|
|
}
|
|
printf("Max Number of Namespaces: %d\n", cdata->nn);
|
|
printf("NVMe Specification Version (VS): %u.%u", vs.bits.mjr, vs.bits.mnr);
|
|
if (vs.bits.ter) {
|
|
printf(".%u", vs.bits.ter);
|
|
}
|
|
printf("\n");
|
|
if (cdata->ver.raw != 0) {
|
|
printf("NVMe Specification Version (Identify): %u.%u", cdata->ver.bits.mjr, cdata->ver.bits.mnr);
|
|
if (cdata->ver.bits.ter) {
|
|
printf(".%u", cdata->ver.bits.ter);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
printf("Maximum Queue Entries: %u\n", cap.bits.mqes + 1);
|
|
printf("Contiguous Queues Required: %s\n", cap.bits.cqr ? "Yes" : "No");
|
|
printf("Arbitration Mechanisms Supported\n");
|
|
printf(" Weighted Round Robin: %s\n",
|
|
cap.bits.ams & SPDK_NVME_CAP_AMS_WRR ? "Supported" : "Not Supported");
|
|
printf(" Vendor Specific: %s\n",
|
|
cap.bits.ams & SPDK_NVME_CAP_AMS_VS ? "Supported" : "Not Supported");
|
|
printf("Reset Timeout: %" PRIu64 " ms\n", (uint64_t)500 * cap.bits.to);
|
|
printf("Doorbell Stride: %" PRIu64 " bytes\n",
|
|
(uint64_t)1 << (2 + cap.bits.dstrd));
|
|
printf("NVM Subsystem Reset: %s\n",
|
|
cap.bits.nssrs ? "Supported" : "Not Supported");
|
|
printf("Command Sets Supported\n");
|
|
printf(" NVM Command Set: %s\n",
|
|
cap.bits.css & SPDK_NVME_CAP_CSS_NVM ? "Supported" : "Not Supported");
|
|
printf("Boot Partition: %s\n",
|
|
cap.bits.bps ? "Supported" : "Not Supported");
|
|
printf("Memory Page Size Minimum: %" PRIu64 " bytes\n",
|
|
(uint64_t)1 << (12 + cap.bits.mpsmin));
|
|
printf("Memory Page Size Maximum: %" PRIu64 " bytes\n",
|
|
(uint64_t)1 << (12 + cap.bits.mpsmax));
|
|
printf("Persistent Memory Region: %s\n",
|
|
cap.bits.pmrs ? "Supported" : "Not Supported");
|
|
|
|
printf("Optional Asynchronous Events Supported\n");
|
|
printf(" Namespace Attribute Notices: %s\n",
|
|
cdata->oaes.ns_attribute_notices ? "Supported" : "Not Supported");
|
|
printf(" Firmware Activation Notices: %s\n",
|
|
cdata->oaes.fw_activation_notices ? "Supported" : "Not Supported");
|
|
|
|
printf("128-bit Host Identifier: %s\n",
|
|
cdata->ctratt.host_id_exhid_supported ? "Supported" : "Not Supported");
|
|
printf("\n");
|
|
|
|
printf("Controller Memory Buffer Support\n");
|
|
printf("================================\n");
|
|
if (cmbsz.raw != 0) {
|
|
uint64_t size = cmbsz.bits.sz;
|
|
|
|
/* Convert the size to bytes by multiplying by the granularity.
|
|
By spec, szu is at most 6 and sz is 20 bits, so size requires
|
|
at most 56 bits. */
|
|
size *= (0x1000 << (cmbsz.bits.szu * 4));
|
|
|
|
printf("Supported: Yes\n");
|
|
printf("Total Size: %" PRIu64 " bytes\n", size);
|
|
printf("Submission Queues in CMB: %s\n",
|
|
cmbsz.bits.sqs ? "Supported" : "Not Supported");
|
|
printf("Completion Queues in CMB: %s\n",
|
|
cmbsz.bits.cqs ? "Supported" : "Not Supported");
|
|
printf("Read data and metadata in CMB %s\n",
|
|
cmbsz.bits.rds ? "Supported" : "Not Supported");
|
|
printf("Write data and metadata in CMB: %s\n",
|
|
cmbsz.bits.wds ? "Supported" : "Not Supported");
|
|
} else {
|
|
printf("Supported: No\n");
|
|
}
|
|
printf("\n");
|
|
|
|
printf("Persistent Memory Region Support\n");
|
|
printf("================================\n");
|
|
if (cap.bits.pmrs != 0) {
|
|
printf("Supported: Yes\n");
|
|
printf("Total Size: %" PRIu64 " bytes\n", pmrsz);
|
|
printf("Read data and metadata in PMR %s\n",
|
|
pmrcap.bits.rds ? "Supported" : "Not Supported");
|
|
printf("Write data and metadata in PMR: %s\n",
|
|
pmrcap.bits.wds ? "Supported" : "Not Supported");
|
|
} else {
|
|
printf("Supported: No\n");
|
|
}
|
|
printf("\n");
|
|
|
|
printf("Admin Command Set Attributes\n");
|
|
printf("============================\n");
|
|
printf("Security Send/Receive: %s\n",
|
|
cdata->oacs.security ? "Supported" : "Not Supported");
|
|
printf("Format NVM: %s\n",
|
|
cdata->oacs.format ? "Supported" : "Not Supported");
|
|
printf("Firmware Activate/Download: %s\n",
|
|
cdata->oacs.firmware ? "Supported" : "Not Supported");
|
|
printf("Namespace Management: %s\n",
|
|
cdata->oacs.ns_manage ? "Supported" : "Not Supported");
|
|
printf("Device Self-Test: %s\n",
|
|
cdata->oacs.device_self_test ? "Supported" : "Not Supported");
|
|
printf("Directives: %s\n",
|
|
cdata->oacs.directives ? "Supported" : "Not Supported");
|
|
printf("NVMe-MI: %s\n",
|
|
cdata->oacs.nvme_mi ? "Supported" : "Not Supported");
|
|
printf("Virtualization Management: %s\n",
|
|
cdata->oacs.virtualization_management ? "Supported" : "Not Supported");
|
|
printf("Doorbell Buffer Config: %s\n",
|
|
cdata->oacs.doorbell_buffer_config ? "Supported" : "Not Supported");
|
|
printf("Abort Command Limit: %d\n", cdata->acl + 1);
|
|
printf("Async Event Request Limit: %d\n", cdata->aerl + 1);
|
|
printf("Number of Firmware Slots: ");
|
|
if (cdata->oacs.firmware != 0) {
|
|
printf("%d\n", cdata->frmw.num_slots);
|
|
} else {
|
|
printf("N/A\n");
|
|
}
|
|
printf("Firmware Slot 1 Read-Only: ");
|
|
if (cdata->oacs.firmware != 0) {
|
|
printf("%s\n", cdata->frmw.slot1_ro ? "Yes" : "No");
|
|
} else {
|
|
printf("N/A\n");
|
|
}
|
|
if (cdata->fwug == 0x00) {
|
|
printf("Firmware Update Granularity: No Information Provided\n");
|
|
} else if (cdata->fwug == 0xFF) {
|
|
printf("Firmware Update Granularity: No Restriction\n");
|
|
} else {
|
|
printf("Firmware Update Granularity: %u KiB\n",
|
|
cdata->fwug * 4);
|
|
}
|
|
printf("Per-Namespace SMART Log: %s\n",
|
|
cdata->lpa.ns_smart ? "Yes" : "No");
|
|
if (cdata->cmic.ana_reporting == 0) {
|
|
printf("Asymmetric Namespace Access Log Page: Not Supported\n");
|
|
} else {
|
|
printf("Asymmetric Namespace Access Log Page: Supported\n");
|
|
printf("ANA Transition Time : %u sec\n", cdata->anatt);
|
|
printf("\n");
|
|
printf("Aymmetric Namespace Access Capabilities\n");
|
|
printf(" ANA Optimized State : %s\n",
|
|
cdata->anacap.ana_optimized_state ? "Supported" : "Not Supported");
|
|
printf(" ANA Non-Optimized State : %s\n",
|
|
cdata->anacap.ana_non_optimized_state ? "Supported" : "Not Supported");
|
|
printf(" ANA Inaccessible State : %s\n",
|
|
cdata->anacap.ana_inaccessible_state ? "Supported" : "Not Supported");
|
|
printf(" ANA Persistent Loss State : %s\n",
|
|
cdata->anacap.ana_persistent_loss_state ? "Supported" : "Not Supported");
|
|
printf(" ANA Change State : %s\n",
|
|
cdata->anacap.ana_change_state ? "Supported" : "Not Supported");
|
|
printf(" ANAGRPID is not changed : %s\n",
|
|
cdata->anacap.no_change_anagrpid ? "Yes" : "No");
|
|
printf(" Non-Zero ANAGRPID for NS Mgmt Cmd : %s\n",
|
|
cdata->anacap.non_zero_anagrpid ? "Supported" : "Not Supported");
|
|
printf("\n");
|
|
printf("ANA Group Identifier Maximum : %u\n", cdata->anagrpmax);
|
|
printf("Number of ANA Group Identifiers : %u\n", cdata->nanagrpid);
|
|
printf("Max Number of Allowed Namespaces : %u\n", cdata->mnan);
|
|
}
|
|
printf("Command Effects Log Page: %s\n",
|
|
cdata->lpa.celp ? "Supported" : "Not Supported");
|
|
printf("Get Log Page Extended Data: %s\n",
|
|
cdata->lpa.edlp ? "Supported" : "Not Supported");
|
|
printf("Telemetry Log Pages: %s\n",
|
|
cdata->lpa.telemetry ? "Supported" : "Not Supported");
|
|
printf("Error Log Page Entries Supported: %d\n", cdata->elpe + 1);
|
|
if (cdata->kas == 0) {
|
|
printf("Keep Alive: Not Supported\n");
|
|
} else {
|
|
printf("Keep Alive: Supported\n");
|
|
printf("Keep Alive Granularity: %u ms\n",
|
|
cdata->kas * 100);
|
|
}
|
|
printf("\n");
|
|
|
|
printf("NVM Command Set Attributes\n");
|
|
printf("==========================\n");
|
|
printf("Submission Queue Entry Size\n");
|
|
printf(" Max: %d\n", 1 << cdata->sqes.max);
|
|
printf(" Min: %d\n", 1 << cdata->sqes.min);
|
|
printf("Completion Queue Entry Size\n");
|
|
printf(" Max: %d\n", 1 << cdata->cqes.max);
|
|
printf(" Min: %d\n", 1 << cdata->cqes.min);
|
|
printf("Number of Namespaces: %d\n", cdata->nn);
|
|
printf("Compare Command: %s\n",
|
|
cdata->oncs.compare ? "Supported" : "Not Supported");
|
|
printf("Write Uncorrectable Command: %s\n",
|
|
cdata->oncs.write_unc ? "Supported" : "Not Supported");
|
|
printf("Dataset Management Command: %s\n",
|
|
cdata->oncs.dsm ? "Supported" : "Not Supported");
|
|
printf("Write Zeroes Command: %s\n",
|
|
cdata->oncs.write_zeroes ? "Supported" : "Not Supported");
|
|
printf("Set Features Save Field: %s\n",
|
|
cdata->oncs.set_features_save ? "Supported" : "Not Supported");
|
|
printf("Reservations: %s\n",
|
|
cdata->oncs.reservations ? "Supported" : "Not Supported");
|
|
printf("Timestamp: %s\n",
|
|
cdata->oncs.timestamp ? "Supported" : "Not Supported");
|
|
printf("Copy: %s\n",
|
|
cdata->oncs.copy ? "Supported" : "Not Supported");
|
|
printf("Volatile Write Cache: %s\n",
|
|
cdata->vwc.present ? "Present" : "Not Present");
|
|
printf("Atomic Write Unit (Normal): %d\n", cdata->awun + 1);
|
|
printf("Atomic Write Unit (PFail): %d\n", cdata->awupf + 1);
|
|
printf("Atomic Compare & Write Unit: %d\n", cdata->acwu + 1);
|
|
printf("Fused Compare & Write: %s\n",
|
|
cdata->fuses.compare_and_write ? "Supported" : "Not Supported");
|
|
printf("Scatter-Gather List\n");
|
|
printf(" SGL Command Set: %s\n",
|
|
cdata->sgls.supported == SPDK_NVME_SGLS_SUPPORTED ? "Supported" :
|
|
cdata->sgls.supported == SPDK_NVME_SGLS_SUPPORTED_DWORD_ALIGNED ? "Supported (Dword aligned)" :
|
|
"Not Supported");
|
|
printf(" SGL Keyed: %s\n",
|
|
cdata->sgls.keyed_sgl ? "Supported" : "Not Supported");
|
|
printf(" SGL Bit Bucket Descriptor: %s\n",
|
|
cdata->sgls.bit_bucket_descriptor ? "Supported" : "Not Supported");
|
|
printf(" SGL Metadata Pointer: %s\n",
|
|
cdata->sgls.metadata_pointer ? "Supported" : "Not Supported");
|
|
printf(" Oversized SGL: %s\n",
|
|
cdata->sgls.oversized_sgl ? "Supported" : "Not Supported");
|
|
printf(" SGL Metadata Address: %s\n",
|
|
cdata->sgls.metadata_address ? "Supported" : "Not Supported");
|
|
printf(" SGL Offset: %s\n",
|
|
cdata->sgls.sgl_offset ? "Supported" : "Not Supported");
|
|
printf(" Transport SGL Data Block: %s\n",
|
|
cdata->sgls.transport_sgl ? "Supported" : "Not Supported");
|
|
printf("Replay Protected Memory Block:");
|
|
if (cdata->rpmbs.num_rpmb_units > 0) {
|
|
printf(" Supported\n");
|
|
printf(" Number of RPMB Units: %d\n", cdata->rpmbs.num_rpmb_units);
|
|
printf(" Authentication Method: %s\n", cdata->rpmbs.auth_method == 0 ? "HMAC SHA-256" : "Unknown");
|
|
printf(" Total Size (in 128KB units) = %d\n", cdata->rpmbs.total_size + 1);
|
|
printf(" Access Size (in 512B units) = %d\n", cdata->rpmbs.access_size + 1);
|
|
} else {
|
|
printf(" Not Supported\n");
|
|
}
|
|
printf("\n");
|
|
|
|
printf("Firmware Slot Information\n");
|
|
printf("=========================\n");
|
|
if (g_hex_dump) {
|
|
hex_dump(&firmware_page, sizeof(firmware_page));
|
|
printf("\n");
|
|
}
|
|
printf("Active slot: %u\n", firmware_page.afi.active_slot);
|
|
if (firmware_page.afi.next_reset_slot) {
|
|
printf("Next controller reset slot: %u\n", firmware_page.afi.next_reset_slot);
|
|
}
|
|
for (i = 0; i < 7; i++) {
|
|
if (!spdk_mem_all_zero(firmware_page.revision[i], sizeof(firmware_page.revision[i]))) {
|
|
printf("Slot %u Firmware Revision: ", i + 1);
|
|
print_ascii_string(firmware_page.revision[i], sizeof(firmware_page.revision[i]));
|
|
printf("\n");
|
|
}
|
|
}
|
|
printf("\n");
|
|
|
|
if (g_ana_log_page) {
|
|
printf("Asymmetric Namespace Access\n");
|
|
printf("===========================\n");
|
|
if (g_hex_dump) {
|
|
hex_dump(g_ana_log_page, g_ana_log_page_size);
|
|
printf("\n");
|
|
}
|
|
|
|
printf("Change Count : %" PRIx64 "\n", g_ana_log_page->change_count);
|
|
printf("Number of ANA Group Descriptors : %u\n", g_ana_log_page->num_ana_group_desc);
|
|
|
|
copied_desc = g_copied_ana_desc;
|
|
orig_desc = (uint8_t *)g_ana_log_page + sizeof(struct spdk_nvme_ana_page);
|
|
copy_len = g_ana_log_page_size - sizeof(struct spdk_nvme_ana_page);
|
|
|
|
for (i = 0; i < g_ana_log_page->num_ana_group_desc; i++) {
|
|
memcpy(copied_desc, orig_desc, copy_len);
|
|
|
|
printf("ANA Group Descriptor : %u\n", i);
|
|
printf(" ANA Group ID : %u\n", copied_desc->ana_group_id);
|
|
printf(" Number of NSID Values : %u\n", copied_desc->num_of_nsid);
|
|
printf(" Change Count : %" PRIx64 "\n", copied_desc->change_count);
|
|
printf(" ANA State : %u\n", copied_desc->ana_state);
|
|
for (j = 0; j < copied_desc->num_of_nsid; j++) {
|
|
printf(" Namespace Identifier : %u\n", copied_desc->nsid[j]);
|
|
}
|
|
|
|
desc_size = sizeof(struct spdk_nvme_ana_group_descriptor) +
|
|
copied_desc->num_of_nsid * sizeof(uint32_t);
|
|
orig_desc += desc_size;
|
|
copy_len -= desc_size;
|
|
}
|
|
free(g_ana_log_page);
|
|
free(g_copied_ana_desc);
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
if (cdata->lpa.celp) {
|
|
printf("Commands Supported and Effects\n");
|
|
printf("==============================\n");
|
|
|
|
if (g_hex_dump) {
|
|
hex_dump(&cmd_effects_log_page, sizeof(cmd_effects_log_page));
|
|
printf("\n");
|
|
}
|
|
|
|
printf("Admin Commands\n");
|
|
printf("--------------\n");
|
|
for (i = 0; i < SPDK_COUNTOF(cmd_effects_log_page.admin_cmds_supported); i++) {
|
|
struct spdk_nvme_cmds_and_effect_entry *cmd = &cmd_effects_log_page.admin_cmds_supported[i];
|
|
if (cmd->csupp) {
|
|
printf("%30s (%02Xh): Supported %s%s%s%s%s\n",
|
|
admin_opc_name(i), i,
|
|
cmd->lbcc ? "LBA-Change " : "",
|
|
cmd->ncc ? "NS-Cap-Change " : "",
|
|
cmd->nic ? "NS-Inventory-Change " : "",
|
|
cmd->ccc ? "Ctrlr-Cap-Change " : "",
|
|
cmd->cse == 0 ? "" : cmd->cse == 1 ? "Per-NS-Exclusive" : cmd->cse == 2 ? "All-NS-Exclusive" : "");
|
|
}
|
|
}
|
|
|
|
printf("I/O Commands\n");
|
|
printf("------------\n");
|
|
for (i = 0; i < SPDK_COUNTOF(cmd_effects_log_page.io_cmds_supported); i++) {
|
|
struct spdk_nvme_cmds_and_effect_entry *cmd = &cmd_effects_log_page.io_cmds_supported[i];
|
|
if (cmd->csupp) {
|
|
printf("%30s (%02Xh): Supported %s%s%s%s%s\n",
|
|
io_opc_name(i), i,
|
|
cmd->lbcc ? "LBA-Change " : "",
|
|
cmd->ncc ? "NS-Cap-Change " : "",
|
|
cmd->nic ? "NS-Inventory-Change " : "",
|
|
cmd->ccc ? "Ctrlr-Cap-Change " : "",
|
|
cmd->cse == 0 ? "" : cmd->cse == 1 ? "Per-NS-Exclusive" : cmd->cse == 2 ? "All-NS-Exclusive" : "");
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
printf("Error Log\n");
|
|
printf("=========\n");
|
|
for (i = 0; i <= cdata->elpe; i++) {
|
|
error_entry = &error_page[i];
|
|
if (error_entry->error_count == 0) {
|
|
continue;
|
|
}
|
|
if (i != 0) {
|
|
printf("-----------\n");
|
|
}
|
|
|
|
printf("Entry: %u\n", i);
|
|
printf("Error Count: 0x%"PRIx64"\n", error_entry->error_count);
|
|
printf("Submission Queue Id: 0x%x\n", error_entry->sqid);
|
|
printf("Command Id: 0x%x\n", error_entry->cid);
|
|
printf("Phase Bit: %x\n", error_entry->status.p);
|
|
printf("Status Code: 0x%x\n", error_entry->status.sc);
|
|
printf("Status Code Type: 0x%x\n", error_entry->status.sct);
|
|
printf("Do Not Retry: %x\n", error_entry->status.dnr);
|
|
printf("Error Location: 0x%x\n", error_entry->error_location);
|
|
printf("LBA: 0x%"PRIx64"\n", error_entry->lba);
|
|
printf("Namespace: 0x%x\n", error_entry->nsid);
|
|
printf("Vendor Log Page: 0x%x\n", error_entry->vendor_specific);
|
|
|
|
}
|
|
printf("\n");
|
|
|
|
if (features[SPDK_NVME_FEAT_ARBITRATION].valid) {
|
|
uint32_t arb = features[SPDK_NVME_FEAT_ARBITRATION].result;
|
|
unsigned ab, lpw, mpw, hpw;
|
|
|
|
ab = arb & 0x7;
|
|
lpw = ((arb >> 8) & 0xFF) + 1;
|
|
mpw = ((arb >> 16) & 0xFF) + 1;
|
|
hpw = ((arb >> 24) & 0xFF) + 1;
|
|
|
|
printf("Arbitration\n");
|
|
printf("===========\n");
|
|
printf("Arbitration Burst: ");
|
|
if (ab == 0x7) {
|
|
printf("no limit\n");
|
|
} else {
|
|
printf("%u\n", 1u << ab);
|
|
}
|
|
|
|
if (cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) {
|
|
printf("Low Priority Weight: %u\n", lpw);
|
|
printf("Medium Priority Weight: %u\n", mpw);
|
|
printf("High Priority Weight: %u\n", hpw);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (features[SPDK_NVME_FEAT_POWER_MANAGEMENT].valid) {
|
|
unsigned ps = features[SPDK_NVME_FEAT_POWER_MANAGEMENT].result & 0x1F;
|
|
printf("Power Management\n");
|
|
printf("================\n");
|
|
printf("Number of Power States: %u\n", cdata->npss + 1);
|
|
printf("Current Power State: Power State #%u\n", ps);
|
|
for (i = 0; i <= cdata->npss; i++) {
|
|
const struct spdk_nvme_power_state psd = cdata->psd[i];
|
|
printf("Power State #%u: ", i);
|
|
if (psd.mps) {
|
|
/* MP scale is 0.0001 W */
|
|
printf("Max Power: %u.%04u W\n",
|
|
psd.mp / 10000,
|
|
psd.mp % 10000);
|
|
} else {
|
|
/* MP scale is 0.01 W */
|
|
printf("Max Power: %3u.%02u W\n",
|
|
psd.mp / 100,
|
|
psd.mp % 100);
|
|
}
|
|
/* TODO: print other power state descriptor fields */
|
|
}
|
|
printf("Non-Operational Permissive Mode: %s\n",
|
|
cdata->ctratt.non_operational_power_state_permissive_mode ? "Supported" : "Not Supported");
|
|
printf("\n");
|
|
}
|
|
|
|
if (features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].valid) {
|
|
printf("Health Information\n");
|
|
printf("==================\n");
|
|
|
|
if (g_hex_dump) {
|
|
hex_dump(&health_page, sizeof(health_page));
|
|
printf("\n");
|
|
}
|
|
|
|
printf("Critical Warnings:\n");
|
|
printf(" Available Spare Space: %s\n",
|
|
health_page.critical_warning.bits.available_spare ? "WARNING" : "OK");
|
|
printf(" Temperature: %s\n",
|
|
health_page.critical_warning.bits.temperature ? "WARNING" : "OK");
|
|
printf(" Device Reliability: %s\n",
|
|
health_page.critical_warning.bits.device_reliability ? "WARNING" : "OK");
|
|
printf(" Read Only: %s\n",
|
|
health_page.critical_warning.bits.read_only ? "Yes" : "No");
|
|
printf(" Volatile Memory Backup: %s\n",
|
|
health_page.critical_warning.bits.volatile_memory_backup ? "WARNING" : "OK");
|
|
printf("Current Temperature: %u Kelvin (%d Celsius)\n",
|
|
health_page.temperature,
|
|
(int)health_page.temperature - 273);
|
|
printf("Temperature Threshold: %u Kelvin (%d Celsius)\n",
|
|
features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].result,
|
|
(int)features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].result - 273);
|
|
printf("Available Spare: %u%%\n", health_page.available_spare);
|
|
printf("Available Spare Threshold: %u%%\n", health_page.available_spare_threshold);
|
|
printf("Life Percentage Used: %u%%\n", health_page.percentage_used);
|
|
printf("Data Units Read: ");
|
|
print_uint128_dec(health_page.data_units_read);
|
|
printf("\n");
|
|
printf("Data Units Written: ");
|
|
print_uint128_dec(health_page.data_units_written);
|
|
printf("\n");
|
|
printf("Host Read Commands: ");
|
|
print_uint128_dec(health_page.host_read_commands);
|
|
printf("\n");
|
|
printf("Host Write Commands: ");
|
|
print_uint128_dec(health_page.host_write_commands);
|
|
printf("\n");
|
|
printf("Controller Busy Time: ");
|
|
print_uint128_dec(health_page.controller_busy_time);
|
|
printf(" minutes\n");
|
|
printf("Power Cycles: ");
|
|
print_uint128_dec(health_page.power_cycles);
|
|
printf("\n");
|
|
printf("Power On Hours: ");
|
|
print_uint128_dec(health_page.power_on_hours);
|
|
printf(" hours\n");
|
|
printf("Unsafe Shutdowns: ");
|
|
print_uint128_dec(health_page.unsafe_shutdowns);
|
|
printf("\n");
|
|
printf("Unrecoverable Media Errors: ");
|
|
print_uint128_dec(health_page.media_errors);
|
|
printf("\n");
|
|
printf("Lifetime Error Log Entries: ");
|
|
print_uint128_dec(health_page.num_error_info_log_entries);
|
|
printf("\n");
|
|
printf("Warning Temperature Time: %u minutes\n", health_page.warning_temp_time);
|
|
printf("Critical Temperature Time: %u minutes\n", health_page.critical_temp_time);
|
|
for (i = 0; i < 8; i++) {
|
|
if (health_page.temp_sensor[i] != 0) {
|
|
printf("Temperature Sensor %d: %u Kelvin (%d Celsius)\n",
|
|
i + 1, health_page.temp_sensor[i],
|
|
(int)health_page.temp_sensor[i] - 273);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (features[SPDK_NVME_FEAT_NUMBER_OF_QUEUES].valid) {
|
|
uint32_t result = features[SPDK_NVME_FEAT_NUMBER_OF_QUEUES].result;
|
|
|
|
printf("Number of Queues\n");
|
|
printf("================\n");
|
|
printf("Number of I/O Submission Queues: %u\n", (result & 0xFFFF) + 1);
|
|
printf("Number of I/O Completion Queues: %u\n", (result & 0xFFFF0000 >> 16) + 1);
|
|
printf("\n");
|
|
}
|
|
|
|
if (features[SPDK_OCSSD_FEAT_MEDIA_FEEDBACK].valid) {
|
|
uint32_t result = features[SPDK_OCSSD_FEAT_MEDIA_FEEDBACK].result;
|
|
|
|
printf("OCSSD Media Feedback\n");
|
|
printf("=======================\n");
|
|
printf("High ECC status: %u\n", (result & 0x1));
|
|
printf("Vector High ECC status: %u\n", (result & 0x2 >> 1));
|
|
printf("\n");
|
|
}
|
|
|
|
if (cdata->hctma.bits.supported) {
|
|
printf("Host Controlled Thermal Management\n");
|
|
printf("==================================\n");
|
|
printf("Minimum Thermal Management Temperature: ");
|
|
if (cdata->mntmt) {
|
|
printf("%u Kelvin (%d Celsius)\n", cdata->mntmt, (int)cdata->mntmt - 273);
|
|
} else {
|
|
printf("Not Reported\n");
|
|
}
|
|
printf("Maximum Thermal Managment Temperature: ");
|
|
if (cdata->mxtmt) {
|
|
printf("%u Kelvin (%d Celsius)\n", cdata->mxtmt, (int)cdata->mxtmt - 273);
|
|
} else {
|
|
printf("Not Reported\n");
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_SMART)) {
|
|
size_t i = 0;
|
|
|
|
printf("Intel Health Information\n");
|
|
printf("==================\n");
|
|
for (i = 0;
|
|
i < SPDK_COUNTOF(intel_smart_page.attributes); i++) {
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_PROGRAM_FAIL_COUNT) {
|
|
printf("Program Fail Count:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value: ");
|
|
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_ERASE_FAIL_COUNT) {
|
|
printf("Erase Fail Count:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value: ");
|
|
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_WEAR_LEVELING_COUNT) {
|
|
printf("Wear Leveling Count:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value:\n");
|
|
printf(" Min: ");
|
|
print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[0], 2);
|
|
printf("\n");
|
|
printf(" Max: ");
|
|
print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[2], 2);
|
|
printf("\n");
|
|
printf(" Avg: ");
|
|
print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[4], 2);
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_E2E_ERROR_COUNT) {
|
|
printf("End to End Error Detection Count:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value: ");
|
|
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_CRC_ERROR_COUNT) {
|
|
printf("CRC Error Count:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value: ");
|
|
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_MEDIA_WEAR) {
|
|
printf("Timed Workload, Media Wear:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value: ");
|
|
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_HOST_READ_PERCENTAGE) {
|
|
printf("Timed Workload, Host Read/Write Ratio:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value: ");
|
|
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
|
|
printf("%%");
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_TIMER) {
|
|
printf("Timed Workload, Timer:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value: ");
|
|
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_THERMAL_THROTTLE_STATUS) {
|
|
printf("Thermal Throttle Status:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value:\n");
|
|
printf(" Percentage: %d%%\n", intel_smart_page.attributes[i].raw_value[0]);
|
|
printf(" Throttling Event Count: ");
|
|
print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[1], 4);
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_RETRY_BUFFER_OVERFLOW_COUNTER) {
|
|
printf("Retry Buffer Overflow Counter:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value: ");
|
|
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_PLL_LOCK_LOSS_COUNT) {
|
|
printf("PLL Lock Loss Count:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value: ");
|
|
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_NAND_BYTES_WRITTEN) {
|
|
printf("NAND Bytes Written:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value: ");
|
|
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
|
|
printf("\n");
|
|
}
|
|
if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_HOST_BYTES_WRITTEN) {
|
|
printf("Host Bytes Written:\n");
|
|
printf(" Normalized Value : %d\n",
|
|
intel_smart_page.attributes[i].normalized_value);
|
|
printf(" Current Raw Value: ");
|
|
print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6);
|
|
printf("\n");
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE)) {
|
|
printf("Intel Temperature Information\n");
|
|
printf("==================\n");
|
|
printf("Current Temperature: %" PRIu64 "\n", intel_temperature_page.current_temperature);
|
|
printf("Overtemp shutdown Flag for last critical component temperature: %" PRIu64 "\n",
|
|
intel_temperature_page.shutdown_flag_last);
|
|
printf("Overtemp shutdown Flag for life critical component temperature: %" PRIu64 "\n",
|
|
intel_temperature_page.shutdown_flag_life);
|
|
printf("Highest temperature: %" PRIu64 "\n", intel_temperature_page.highest_temperature);
|
|
printf("Lowest temperature: %" PRIu64 "\n", intel_temperature_page.lowest_temperature);
|
|
printf("Specified Maximum Operating Temperature: %" PRIu64 "\n",
|
|
intel_temperature_page.specified_max_op_temperature);
|
|
printf("Specified Minimum Operating Temperature: %" PRIu64 "\n",
|
|
intel_temperature_page.specified_min_op_temperature);
|
|
printf("Estimated offset: %" PRId64 "\n", (int64_t)intel_temperature_page.estimated_offset);
|
|
printf("\n");
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_MARKETING_DESCRIPTION)) {
|
|
printf("Intel Marketing Information\n");
|
|
printf("==================\n");
|
|
snprintf(str, sizeof(intel_md_page.marketing_product), "%s", intel_md_page.marketing_product);
|
|
printf("Marketing Product Information: %s\n", str);
|
|
printf("\n");
|
|
printf("\n");
|
|
}
|
|
|
|
if (spdk_nvme_zns_ctrlr_get_data(ctrlr)) {
|
|
printf("ZNS Specific Controller Data\n");
|
|
printf("============================\n");
|
|
printf("Zone Append Size Limit: %u\n",
|
|
spdk_nvme_zns_ctrlr_get_data(ctrlr)->zasl);
|
|
printf("\n");
|
|
printf("\n");
|
|
}
|
|
|
|
printf("Active Namespaces\n");
|
|
printf("=================\n");
|
|
for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr);
|
|
nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) {
|
|
get_ns_features(ctrlr, nsid);
|
|
print_namespace(ctrlr, spdk_nvme_ctrlr_get_ns(ctrlr, nsid));
|
|
}
|
|
|
|
if (g_discovery_page) {
|
|
printf("Discovery Log Page\n");
|
|
printf("==================\n");
|
|
|
|
if (g_hex_dump) {
|
|
hex_dump(g_discovery_page, g_discovery_page_size);
|
|
printf("\n");
|
|
}
|
|
|
|
printf("Generation Counter: %" PRIu64 "\n",
|
|
from_le64(&g_discovery_page->genctr));
|
|
printf("Number of Records: %" PRIu64 "\n",
|
|
from_le64(&g_discovery_page->numrec));
|
|
printf("Record Format: %" PRIu16 "\n",
|
|
from_le16(&g_discovery_page->recfmt));
|
|
printf("\n");
|
|
|
|
for (i = 0; i < g_discovery_page_numrec; i++) {
|
|
struct spdk_nvmf_discovery_log_page_entry *entry = &g_discovery_page->entries[i];
|
|
|
|
printf("Discovery Log Entry %u\n", i);
|
|
printf("----------------------\n");
|
|
printf("Transport Type: %u (%s)\n",
|
|
entry->trtype, spdk_nvme_transport_id_trtype_str(entry->trtype));
|
|
printf("Address Family: %u (%s)\n",
|
|
entry->adrfam, spdk_nvme_transport_id_adrfam_str(entry->adrfam));
|
|
printf("Subsystem Type: %u (%s)\n",
|
|
entry->subtype,
|
|
entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY ? "Discovery Service" :
|
|
entry->subtype == SPDK_NVMF_SUBTYPE_NVME ? "NVM Subsystem" :
|
|
"Unknown");
|
|
printf("Transport Requirements:\n");
|
|
printf(" Secure Channel: %s\n",
|
|
entry->treq.secure_channel == SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_SPECIFIED ? "Not Specified" :
|
|
entry->treq.secure_channel == SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED ? "Required" :
|
|
entry->treq.secure_channel == SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED ? "Not Required" :
|
|
"Reserved");
|
|
printf("Port ID: %" PRIu16 " (0x%04" PRIx16 ")\n",
|
|
from_le16(&entry->portid), from_le16(&entry->portid));
|
|
printf("Controller ID: %" PRIu16 " (0x%04" PRIx16 ")\n",
|
|
from_le16(&entry->cntlid), from_le16(&entry->cntlid));
|
|
printf("Admin Max SQ Size: %" PRIu16 "\n",
|
|
from_le16(&entry->asqsz));
|
|
snprintf(str, sizeof(entry->trsvcid) + 1, "%s", entry->trsvcid);
|
|
printf("Transport Service Identifier: %s\n", str);
|
|
snprintf(str, sizeof(entry->subnqn) + 1, "%s", entry->subnqn);
|
|
printf("NVM Subsystem Qualified Name: %s\n", str);
|
|
snprintf(str, sizeof(entry->traddr) + 1, "%s", entry->traddr);
|
|
printf("Transport Address: %s\n", str);
|
|
|
|
if (entry->trtype == SPDK_NVMF_TRTYPE_RDMA) {
|
|
printf("Transport Specific Address Subtype - RDMA\n");
|
|
printf(" RDMA QP Service Type: %u (%s)\n",
|
|
entry->tsas.rdma.rdma_qptype,
|
|
entry->tsas.rdma.rdma_qptype == SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED ? "Reliable Connected" :
|
|
entry->tsas.rdma.rdma_qptype == SPDK_NVMF_RDMA_QPTYPE_RELIABLE_DATAGRAM ? "Reliable Datagram" :
|
|
"Unknown");
|
|
printf(" RDMA Provider Type: %u (%s)\n",
|
|
entry->tsas.rdma.rdma_prtype,
|
|
entry->tsas.rdma.rdma_prtype == SPDK_NVMF_RDMA_PRTYPE_NONE ? "No provider specified" :
|
|
entry->tsas.rdma.rdma_prtype == SPDK_NVMF_RDMA_PRTYPE_IB ? "InfiniBand" :
|
|
entry->tsas.rdma.rdma_prtype == SPDK_NVMF_RDMA_PRTYPE_ROCE ? "InfiniBand RoCE" :
|
|
entry->tsas.rdma.rdma_prtype == SPDK_NVMF_RDMA_PRTYPE_ROCE2 ? "InfiniBand RoCE v2" :
|
|
entry->tsas.rdma.rdma_prtype == SPDK_NVMF_RDMA_PRTYPE_IWARP ? "iWARP" :
|
|
"Unknown");
|
|
printf(" RDMA CM Service: %u (%s)\n",
|
|
entry->tsas.rdma.rdma_cms,
|
|
entry->tsas.rdma.rdma_cms == SPDK_NVMF_RDMA_CMS_RDMA_CM ? "RDMA_CM" :
|
|
"Unknown");
|
|
if (entry->adrfam == SPDK_NVMF_ADRFAM_IB) {
|
|
printf(" RDMA Partition Key: %" PRIu32 "\n",
|
|
from_le32(&entry->tsas.rdma.rdma_pkey));
|
|
}
|
|
}
|
|
}
|
|
free(g_discovery_page);
|
|
g_discovery_page = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
usage(const char *program_name)
|
|
{
|
|
printf("%s [options]", program_name);
|
|
printf("\n");
|
|
printf("options:\n");
|
|
printf(" -r trid remote NVMe over Fabrics target address\n");
|
|
printf(" Format: 'key:value [key:value] ...'\n");
|
|
printf(" Keys:\n");
|
|
printf(" trtype Transport type (e.g. RDMA)\n");
|
|
printf(" adrfam Address family (e.g. IPv4, IPv6)\n");
|
|
printf(" traddr Transport address (e.g. 192.168.100.8)\n");
|
|
printf(" trsvcid Transport service identifier (e.g. 4420)\n");
|
|
printf(" subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN);
|
|
printf(" hostnqn Host NQN\n");
|
|
printf(" Example: -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420'\n");
|
|
|
|
spdk_log_usage(stdout, "-L");
|
|
|
|
printf(" -i shared memory group ID\n");
|
|
printf(" -p core number in decimal to run this application which started from 0\n");
|
|
printf(" -d DPDK huge memory size in MB\n");
|
|
printf(" -g use single file descriptor for DPDK memory segments\n");
|
|
printf(" -x print hex dump of raw data\n");
|
|
printf(" -z For NVMe Zoned Namespaces, dump the full zone report (-z) or the first N entries (-z N)\n");
|
|
printf(" -V enumerate VMD\n");
|
|
printf(" -H show this usage\n");
|
|
}
|
|
|
|
static int
|
|
parse_args(int argc, char **argv)
|
|
{
|
|
int op, rc;
|
|
char *hostnqn;
|
|
|
|
spdk_nvme_trid_populate_transport(&g_trid, SPDK_NVME_TRANSPORT_PCIE);
|
|
snprintf(g_trid.subnqn, sizeof(g_trid.subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN);
|
|
|
|
while ((op = getopt(argc, argv, "d:gi:op:r:xz::HL:V")) != -1) {
|
|
switch (op) {
|
|
case 'd':
|
|
g_dpdk_mem = spdk_strtol(optarg, 10);
|
|
if (g_dpdk_mem < 0) {
|
|
fprintf(stderr, "Invalid DPDK memory size\n");
|
|
return g_dpdk_mem;
|
|
}
|
|
break;
|
|
case 'g':
|
|
g_dpdk_mem_single_seg = true;
|
|
break;
|
|
case 'i':
|
|
g_shm_id = spdk_strtol(optarg, 10);
|
|
if (g_shm_id < 0) {
|
|
fprintf(stderr, "Invalid shared memory ID\n");
|
|
return g_shm_id;
|
|
}
|
|
break;
|
|
case 'o':
|
|
g_ocssd_verbose = true;
|
|
break;
|
|
case 'p':
|
|
g_main_core = spdk_strtol(optarg, 10);
|
|
if (g_main_core < 0) {
|
|
fprintf(stderr, "Invalid core number\n");
|
|
return g_main_core;
|
|
}
|
|
snprintf(g_core_mask, sizeof(g_core_mask), "0x%llx", 1ULL << g_main_core);
|
|
break;
|
|
case 'r':
|
|
if (spdk_nvme_transport_id_parse(&g_trid, optarg) != 0) {
|
|
fprintf(stderr, "Error parsing transport address\n");
|
|
return 1;
|
|
}
|
|
|
|
assert(optarg != NULL);
|
|
hostnqn = strcasestr(optarg, "hostnqn:");
|
|
if (hostnqn) {
|
|
size_t len;
|
|
|
|
hostnqn += strlen("hostnqn:");
|
|
|
|
len = strcspn(hostnqn, " \t\n");
|
|
if (len > (sizeof(g_hostnqn) - 1)) {
|
|
fprintf(stderr, "Host NQN is too long\n");
|
|
return 1;
|
|
}
|
|
|
|
memcpy(g_hostnqn, hostnqn, len);
|
|
g_hostnqn[len] = '\0';
|
|
}
|
|
break;
|
|
case 'x':
|
|
g_hex_dump = true;
|
|
break;
|
|
case 'z':
|
|
if (optarg == NULL && argv[optind] != NULL && argv[optind][0] != '-') {
|
|
g_zone_report_limit = spdk_strtol(argv[optind], 10);
|
|
++optind;
|
|
} else if (optarg) {
|
|
g_zone_report_limit = spdk_strtol(optarg, 10);
|
|
} else {
|
|
g_zone_report_limit = 0;
|
|
}
|
|
if (g_zone_report_limit < 0) {
|
|
fprintf(stderr, "Invalid Zone Report limit\n");
|
|
return g_zone_report_limit;
|
|
}
|
|
break;
|
|
case 'L':
|
|
rc = spdk_log_set_flag(optarg);
|
|
if (rc < 0) {
|
|
fprintf(stderr, "unknown flag\n");
|
|
usage(argv[0]);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
#ifdef DEBUG
|
|
spdk_log_set_print_level(SPDK_LOG_DEBUG);
|
|
#endif
|
|
break;
|
|
case 'H':
|
|
usage(argv[0]);
|
|
exit(EXIT_SUCCESS);
|
|
case 'V':
|
|
g_vmd = true;
|
|
break;
|
|
default:
|
|
usage(argv[0]);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
memcpy(opts->hostnqn, g_hostnqn, sizeof(opts->hostnqn));
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
|
|
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
|
|
{
|
|
g_controllers_found++;
|
|
print_controller(ctrlr, trid);
|
|
spdk_nvme_detach_async(ctrlr, &g_detach_ctx);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
int rc;
|
|
struct spdk_env_opts opts;
|
|
struct spdk_nvme_ctrlr *ctrlr;
|
|
|
|
rc = parse_args(argc, argv);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
spdk_env_opts_init(&opts);
|
|
opts.name = "identify";
|
|
opts.shm_id = g_shm_id;
|
|
opts.mem_size = g_dpdk_mem;
|
|
opts.mem_channel = 1;
|
|
opts.main_core = g_main_core;
|
|
opts.core_mask = g_core_mask;
|
|
opts.hugepage_single_segments = g_dpdk_mem_single_seg;
|
|
if (g_trid.trtype != SPDK_NVME_TRANSPORT_PCIE) {
|
|
opts.no_pci = true;
|
|
}
|
|
if (spdk_env_init(&opts) < 0) {
|
|
fprintf(stderr, "Unable to initialize SPDK env\n");
|
|
return 1;
|
|
}
|
|
|
|
if (g_vmd && spdk_vmd_init()) {
|
|
fprintf(stderr, "Failed to initialize VMD."
|
|
" Some NVMe devices can be unavailable.\n");
|
|
}
|
|
|
|
/* A specific trid is required. */
|
|
if (strlen(g_trid.traddr) != 0) {
|
|
struct spdk_nvme_ctrlr_opts opts;
|
|
|
|
spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
|
|
memcpy(opts.hostnqn, g_hostnqn, sizeof(opts.hostnqn));
|
|
ctrlr = spdk_nvme_connect(&g_trid, &opts, sizeof(opts));
|
|
if (!ctrlr) {
|
|
fprintf(stderr, "spdk_nvme_connect() failed\n");
|
|
return 1;
|
|
}
|
|
|
|
g_controllers_found++;
|
|
print_controller(ctrlr, &g_trid);
|
|
spdk_nvme_detach_async(ctrlr, &g_detach_ctx);
|
|
} else if (spdk_nvme_probe(&g_trid, NULL, probe_cb, attach_cb, NULL) != 0) {
|
|
fprintf(stderr, "spdk_nvme_probe() failed\n");
|
|
return 1;
|
|
}
|
|
|
|
if (g_detach_ctx) {
|
|
spdk_nvme_detach_poll(g_detach_ctx);
|
|
}
|
|
|
|
if (g_controllers_found == 0) {
|
|
fprintf(stderr, "No NVMe controllers found.\n");
|
|
}
|
|
|
|
if (g_vmd) {
|
|
spdk_vmd_fini();
|
|
}
|
|
|
|
return 0;
|
|
}
|