Seth Howell 88179a6554 env/memory: use spdk_iommu_is_enabled internally
This will help keep the definition of that function fresh as things
change around it over time.

Change-Id: Id30864df132459a0ff889a725aa70abe072f3087
Signed-off-by: Seth Howell <seth.howell@intel.com>
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/446972
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com>
2019-03-05 06:45:11 +00:00

1394 lines
36 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "env_internal.h"
#include <rte_config.h>
#include <rte_eal_memconfig.h>
#include "spdk_internal/assert.h"
#include "spdk_internal/memory.h"
#include "spdk/assert.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/util.h"
#include "spdk/env_dpdk.h"
#ifdef __FreeBSD__
#define SPDK_VFIO_ENABLED 0
#else
#include <linux/version.h>
/*
* DPDK versions before 17.11 don't provide a way to get VFIO information in the public API,
* and we can't link to internal symbols when built against shared library DPDK,
* so disable VFIO entirely in that case.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) && \
(RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3) || !defined(RTE_BUILD_SHARED_LIB))
#define SPDK_VFIO_ENABLED 1
#include <linux/vfio.h>
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
#include <rte_vfio.h>
#else
/* Internal DPDK function forward declaration */
int pci_vfio_is_enabled(void);
#endif
struct spdk_vfio_dma_map {
struct vfio_iommu_type1_dma_map map;
struct vfio_iommu_type1_dma_unmap unmap;
TAILQ_ENTRY(spdk_vfio_dma_map) tailq;
};
struct vfio_cfg {
int fd;
bool enabled;
bool noiommu_enabled;
unsigned device_ref;
TAILQ_HEAD(, spdk_vfio_dma_map) maps;
pthread_mutex_t mutex;
};
static struct vfio_cfg g_vfio = {
.fd = -1,
.enabled = false,
.noiommu_enabled = false,
.device_ref = 0,
.maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps),
.mutex = PTHREAD_MUTEX_INITIALIZER
};
#else
#define SPDK_VFIO_ENABLED 0
#endif
#endif
#if DEBUG
#define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
#else
#define DEBUG_PRINT(...)
#endif
#define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB))
#define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB))
#define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB))
#define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1))
/* Page is registered */
#define REG_MAP_REGISTERED (1ULL << 62)
/* A notification region barrier. The 2MB translation entry that's marked
* with this flag must be unregistered separately. This allows contiguous
* regions to be unregistered in the same chunks they were registered.
*/
#define REG_MAP_NOTIFY_START (1ULL << 63)
/* Translation of a single 2MB page. */
struct map_2mb {
uint64_t translation_2mb;
};
/* Second-level map table indexed by bits [21..29] of the virtual address.
* Each entry contains the address translation or error for entries that haven't
* been retrieved yet.
*/
struct map_1gb {
struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)];
};
/* Top-level map table indexed by bits [30..47] of the virtual address.
* Each entry points to a second-level map table or NULL.
*/
struct map_256tb {
struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)];
};
/* Page-granularity memory address translation */
struct spdk_mem_map {
struct map_256tb map_256tb;
pthread_mutex_t mutex;
uint64_t default_translation;
struct spdk_mem_map_ops ops;
void *cb_ctx;
TAILQ_ENTRY(spdk_mem_map) tailq;
};
/* Registrations map. The 64 bit translations are bit fields with the
* following layout (starting with the low bits):
* 0 - 61 : reserved
* 62 - 63 : flags
*/
static struct spdk_mem_map *g_mem_reg_map;
static TAILQ_HEAD(, spdk_mem_map) g_spdk_mem_maps = TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps);
static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER;
/*
* Walk the currently registered memory via the main memory registration map
* and call the new map's notify callback for each virtually contiguous region.
*/
static int
spdk_mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action)
{
size_t idx_256tb;
uint64_t idx_1gb;
uint64_t contig_start = UINT64_MAX;
uint64_t contig_end = UINT64_MAX;
struct map_1gb *map_1gb;
int rc;
if (!g_mem_reg_map) {
return -EINVAL;
}
/* Hold the memory registration map mutex so no new registrations can be added while we are looping. */
pthread_mutex_lock(&g_mem_reg_map->mutex);
for (idx_256tb = 0;
idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]);
idx_256tb++) {
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
if (!map_1gb) {
if (contig_start != UINT64_MAX) {
/* End of of a virtually contiguous range */
rc = map->ops.notify_cb(map->cb_ctx, map, action,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
/* Don't bother handling unregister failures. It can't be any worse */
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
goto err_unregister;
}
}
contig_start = UINT64_MAX;
continue;
}
for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) {
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
(contig_start == UINT64_MAX ||
(map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_start == UINT64_MAX) {
contig_start = vaddr;
}
contig_end = vaddr;
} else {
if (contig_start != UINT64_MAX) {
/* End of of a virtually contiguous range */
rc = map->ops.notify_cb(map->cb_ctx, map, action,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
/* Don't bother handling unregister failures. It can't be any worse */
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
goto err_unregister;
}
/* This page might be a part of a neighbour region, so process
* it again. The idx_1gb will be incremented immediately.
*/
idx_1gb--;
}
contig_start = UINT64_MAX;
}
}
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
return 0;
err_unregister:
/* Unwind to the first empty translation so we don't unregister
* a region that just failed to register.
*/
idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1);
idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1);
contig_start = UINT64_MAX;
contig_end = UINT64_MAX;
/* Unregister any memory we managed to register before the failure */
for (; idx_256tb < SIZE_MAX; idx_256tb--) {
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
if (!map_1gb) {
if (contig_end != UINT64_MAX) {
/* End of of a virtually contiguous range */
map->ops.notify_cb(map->cb_ctx, map,
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
}
contig_end = UINT64_MAX;
continue;
}
for (; idx_1gb < UINT64_MAX; idx_1gb--) {
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
(contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_end == UINT64_MAX) {
contig_end = vaddr;
}
contig_start = vaddr;
} else {
if (contig_end != UINT64_MAX) {
/* End of of a virtually contiguous range */
map->ops.notify_cb(map->cb_ctx, map,
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
idx_1gb++;
}
contig_end = UINT64_MAX;
}
}
idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1;
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
return rc;
}
struct spdk_mem_map *
spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx)
{
struct spdk_mem_map *map;
int rc;
map = calloc(1, sizeof(*map));
if (map == NULL) {
return NULL;
}
if (pthread_mutex_init(&map->mutex, NULL)) {
free(map);
return NULL;
}
map->default_translation = default_translation;
map->cb_ctx = cb_ctx;
if (ops) {
map->ops = *ops;
}
if (ops && ops->notify_cb) {
pthread_mutex_lock(&g_spdk_mem_map_mutex);
rc = spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
DEBUG_PRINT("Initial mem_map notify failed\n");
pthread_mutex_destroy(&map->mutex);
free(map);
return NULL;
}
TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
return map;
}
void
spdk_mem_map_free(struct spdk_mem_map **pmap)
{
struct spdk_mem_map *map;
size_t i;
if (!pmap) {
return;
}
map = *pmap;
if (!map) {
return;
}
if (map->ops.notify_cb) {
pthread_mutex_lock(&g_spdk_mem_map_mutex);
spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER);
TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) {
free(map->map_256tb.map[i]);
}
pthread_mutex_destroy(&map->mutex);
free(map);
*pmap = NULL;
}
int
spdk_mem_register(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
uint64_t reg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
if (len == 0) {
return 0;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
if (reg & REG_MAP_REGISTERED) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EBUSY;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB,
seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED);
seg_len += VALUE_2MB;
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
int
spdk_mem_unregister(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
uint64_t reg, newreg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
/* The first page must be a start of a region. Also check if it's
* registered to make sure we don't return -ERANGE for non-registered
* regions.
*/
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -ERANGE;
}
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
if ((reg & REG_MAP_REGISTERED) == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EINVAL;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
/* If the next page is registered, it must be a start of a region as well,
* otherwise we'd be unregistering only a part of a region.
*/
if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -ERANGE;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0);
if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
seg_vaddr = vaddr;
seg_len = VALUE_2MB;
} else {
seg_len += VALUE_2MB;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
if (seg_len > 0) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
static struct map_1gb *
spdk_mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb)
{
struct map_1gb *map_1gb;
uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb);
size_t i;
if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) {
return NULL;
}
map_1gb = map->map_256tb.map[idx_256tb];
if (!map_1gb) {
pthread_mutex_lock(&map->mutex);
/* Recheck to make sure nobody else got the mutex first. */
map_1gb = map->map_256tb.map[idx_256tb];
if (!map_1gb) {
map_1gb = malloc(sizeof(struct map_1gb));
if (map_1gb) {
/* initialize all entries to default translation */
for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) {
map_1gb->map[i].translation_2mb = map->default_translation;
}
map->map_256tb.map[idx_256tb] = map_1gb;
}
}
pthread_mutex_unlock(&map->mutex);
if (!map_1gb) {
DEBUG_PRINT("allocation failed\n");
return NULL;
}
}
return map_1gb;
}
int
spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size,
uint64_t translation)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
return -EINVAL;
}
/* For now, only 2 MB-aligned registrations are supported */
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
map_2mb->translation_2mb = translation;
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
int
spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
return -EINVAL;
}
/* For now, only 2 MB-aligned registrations are supported */
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
map_2mb->translation_2mb = map->default_translation;
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
inline uint64_t
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size)
{
const struct map_1gb *map_1gb;
const struct map_2mb *map_2mb;
uint64_t idx_256tb;
uint64_t idx_1gb;
uint64_t vfn_2mb;
uint64_t cur_size;
uint64_t prev_translation;
uint64_t orig_translation;
if (spdk_unlikely(vaddr & ~MASK_256TB)) {
DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr);
return map->default_translation;
}
vfn_2mb = vaddr >> SHIFT_2MB;
idx_256tb = MAP_256TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_256tb.map[idx_256tb];
if (spdk_unlikely(!map_1gb)) {
return map->default_translation;
}
cur_size = VALUE_2MB - _2MB_OFFSET(vaddr);
map_2mb = &map_1gb->map[idx_1gb];
if (size == NULL || map->ops.are_contiguous == NULL ||
map_2mb->translation_2mb == map->default_translation) {
if (size != NULL) {
*size = spdk_min(*size, cur_size);
}
return map_2mb->translation_2mb;
}
orig_translation = map_2mb->translation_2mb;
prev_translation = orig_translation;
while (cur_size < *size) {
vfn_2mb++;
idx_256tb = MAP_256TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_256tb.map[idx_256tb];
if (spdk_unlikely(!map_1gb)) {
break;
}
map_2mb = &map_1gb->map[idx_1gb];
if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) {
break;
}
cur_size += VALUE_2MB;
prev_translation = map_2mb->translation_2mb;
}
*size = spdk_min(*size, cur_size);
return orig_translation;
}
#if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0)
static void
memory_hotplug_cb(enum rte_mem_event event_type,
const void *addr, size_t len, void *arg)
{
if (event_type == RTE_MEM_EVENT_ALLOC) {
spdk_mem_register((void *)addr, len);
#if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0)
if (!spdk_env_dpdk_external_init()) {
return;
}
#endif
/* Prior to DPDK 19.02, we have to worry about DPDK
* freeing memory in different units than it was allocated.
* That doesn't work with things like RDMA MRs. So for
* those versions of DPDK, mark each segment so that DPDK
* won't later free it. That ensures we don't have to deal
* with that scenario.
*
* DPDK 19.02 added the --match-allocations RTE flag to
* avoid this condition.
*
* Note: if the user initialized DPDK separately, we can't
* be sure that --match-allocations was specified, so need
* to still mark the segments so they aren't freed.
*/
while (len > 0) {
struct rte_memseg *seg;
seg = rte_mem_virt2memseg(addr, NULL);
assert(seg != NULL);
seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
addr = (void *)((uintptr_t)addr + seg->hugepage_sz);
len -= seg->hugepage_sz;
}
} else if (event_type == RTE_MEM_EVENT_FREE) {
spdk_mem_unregister((void *)addr, len);
}
}
static int
memory_iter_cb(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, size_t len, void *arg)
{
return spdk_mem_register(ms->addr, len);
}
#endif
int
spdk_mem_map_init(void)
{
g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL);
if (g_mem_reg_map == NULL) {
DEBUG_PRINT("memory registration map allocation failed\n");
return -1;
}
/*
* Walk all DPDK memory segments and register them
* with the master memory map
*/
#if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0)
rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL);
rte_memseg_contig_walk(memory_iter_cb, NULL);
#else
struct rte_mem_config *mcfg;
size_t seg_idx;
mcfg = rte_eal_get_configuration()->mem_config;
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
struct rte_memseg *seg = &mcfg->memseg[seg_idx];
if (seg->addr == NULL) {
break;
}
spdk_mem_register(seg->addr, seg->len);
}
#endif
return 0;
}
bool
spdk_iommu_is_enabled(void)
{
#if SPDK_VFIO_ENABLED
return g_vfio.enabled && !g_vfio.noiommu_enabled;
#else
return false;
#endif
}
struct spdk_vtophys_pci_device {
struct rte_pci_device *pci_device;
TAILQ_ENTRY(spdk_vtophys_pci_device) tailq;
};
static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER;
static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices =
TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices);
static struct spdk_mem_map *g_vtophys_map;
#if SPDK_VFIO_ENABLED
static int
vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size)
{
struct spdk_vfio_dma_map *dma_map;
int ret;
dma_map = calloc(1, sizeof(*dma_map));
if (dma_map == NULL) {
return -ENOMEM;
}
dma_map->map.argsz = sizeof(dma_map->map);
dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;
dma_map->map.vaddr = vaddr;
dma_map->map.iova = iova;
dma_map->map.size = size;
dma_map->unmap.argsz = sizeof(dma_map->unmap);
dma_map->unmap.flags = 0;
dma_map->unmap.iova = iova;
dma_map->unmap.size = size;
pthread_mutex_lock(&g_vfio.mutex);
if (g_vfio.device_ref == 0) {
/* VFIO requires at least one device (IOMMU group) to be added to
* a VFIO container before it is possible to perform any IOMMU
* operations on that container. This memory will be mapped once
* the first device (IOMMU group) is hotplugged.
*
* Since the vfio container is managed internally by DPDK, it is
* also possible that some device is already in that container, but
* it's not managed by SPDK - e.g. an NIC attached internally
* inside DPDK. We could map the memory straight away in such
* scenario, but there's no need to do it. DPDK devices clearly
* don't need our mappings and hence we defer the mapping
* unconditionally until the first SPDK-managed device is
* hotplugged.
*/
goto out_insert;
}
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
if (ret) {
DEBUG_PRINT("Cannot set up DMA mapping, error %d\n", errno);
pthread_mutex_unlock(&g_vfio.mutex);
free(dma_map);
return ret;
}
out_insert:
TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq);
pthread_mutex_unlock(&g_vfio.mutex);
return 0;
}
static int
vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size)
{
struct spdk_vfio_dma_map *dma_map;
int ret;
pthread_mutex_lock(&g_vfio.mutex);
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
if (dma_map->map.iova == iova) {
break;
}
}
if (dma_map == NULL) {
DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova);
pthread_mutex_unlock(&g_vfio.mutex);
return -ENXIO;
}
/** don't support partial or multiple-page unmap for now */
assert(dma_map->map.size == size);
if (g_vfio.device_ref == 0) {
/* Memory is not mapped anymore, just remove it's references */
goto out_remove;
}
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap);
if (ret) {
DEBUG_PRINT("Cannot clear DMA mapping, error %d\n", errno);
pthread_mutex_unlock(&g_vfio.mutex);
return ret;
}
out_remove:
TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq);
pthread_mutex_unlock(&g_vfio.mutex);
free(dma_map);
return 0;
}
#endif
static uint64_t
vtophys_get_paddr_memseg(uint64_t vaddr)
{
uintptr_t paddr;
struct rte_memseg *seg;
#if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0)
seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL);
if (seg != NULL) {
paddr = seg->phys_addr;
if (paddr == RTE_BAD_IOVA) {
return SPDK_VTOPHYS_ERROR;
}
paddr += (vaddr - (uintptr_t)seg->addr);
return paddr;
}
#else
struct rte_mem_config *mcfg;
uint32_t seg_idx;
mcfg = rte_eal_get_configuration()->mem_config;
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
seg = &mcfg->memseg[seg_idx];
if (seg->addr == NULL) {
break;
}
if (vaddr >= (uintptr_t)seg->addr &&
vaddr < ((uintptr_t)seg->addr + seg->len)) {
paddr = seg->phys_addr;
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
if (paddr == RTE_BAD_IOVA) {
#else
if (paddr == RTE_BAD_PHYS_ADDR) {
#endif
return SPDK_VTOPHYS_ERROR;
}
paddr += (vaddr - (uintptr_t)seg->addr);
return paddr;
}
}
#endif
return SPDK_VTOPHYS_ERROR;
}
/* Try to get the paddr from /proc/self/pagemap */
static uint64_t
vtophys_get_paddr_pagemap(uint64_t vaddr)
{
uintptr_t paddr;
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
#define BAD_ADDR RTE_BAD_IOVA
#define VTOPHYS rte_mem_virt2iova
#else
#define BAD_ADDR RTE_BAD_PHYS_ADDR
#define VTOPHYS rte_mem_virt2phy
#endif
/*
* Note: the virt2phy/virt2iova functions have changed over time, such
* that older versions may return 0 while recent versions will never
* return 0 but RTE_BAD_PHYS_ADDR/IOVA instead. To support older and
* newer versions, check for both return values.
*/
paddr = VTOPHYS((void *)vaddr);
if (paddr == 0 || paddr == BAD_ADDR) {
/*
* The vaddr may be valid but doesn't have a backing page
* assigned yet. Touch the page to ensure a backing page
* gets assigned, then try to translate again.
*/
rte_atomic64_read((rte_atomic64_t *)vaddr);
paddr = VTOPHYS((void *)vaddr);
}
if (paddr == 0 || paddr == BAD_ADDR) {
/* Unable to get to the physical address. */
return SPDK_VTOPHYS_ERROR;
}
#undef BAD_ADDR
#undef VTOPHYS
return paddr;
}
/* Try to get the paddr from pci devices */
static uint64_t
vtophys_get_paddr_pci(uint64_t vaddr)
{
struct spdk_vtophys_pci_device *vtophys_dev;
uintptr_t paddr;
struct rte_pci_device *dev;
struct rte_mem_resource *res;
unsigned r;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
dev = vtophys_dev->pci_device;
for (r = 0; r < PCI_MAX_RESOURCE; r++) {
res = &dev->mem_resource[r];
if (res->phys_addr && vaddr >= (uint64_t)res->addr &&
vaddr < (uint64_t)res->addr + res->len) {
paddr = res->phys_addr + (vaddr - (uint64_t)res->addr);
DEBUG_PRINT("%s: %p -> %p\n", __func__, (void *)vaddr,
(void *)paddr);
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
return paddr;
}
}
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
return SPDK_VTOPHYS_ERROR;
}
static int
spdk_vtophys_notify(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action,
void *vaddr, size_t len)
{
int rc = 0, pci_phys = 0;
uint64_t paddr;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
while (len > 0) {
/* Get the physical address from the DPDK memsegs */
paddr = vtophys_get_paddr_memseg((uint64_t)vaddr);
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
if (paddr == SPDK_VTOPHYS_ERROR) {
/* This is not an address that DPDK is managing. */
#if SPDK_VFIO_ENABLED
if (spdk_iommu_is_enabled()) {
/* We'll use the virtual address as the iova. DPDK
* currently uses physical addresses as the iovas (or counts
* up from 0 if it can't get physical addresses), so
* the range of user space virtual addresses and physical
* addresses will never overlap.
*/
paddr = (uint64_t)vaddr;
rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB);
if (rc) {
return -EFAULT;
}
} else
#endif
{
/* Get the physical address from /proc/self/pagemap. */
paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr);
if (paddr == SPDK_VTOPHYS_ERROR) {
/* Get the physical address from PCI devices */
paddr = vtophys_get_paddr_pci((uint64_t)vaddr);
if (paddr == SPDK_VTOPHYS_ERROR) {
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
return -EFAULT;
}
pci_phys = 1;
}
}
}
/* Since PCI paddr can break the 2MiB physical alignment skip this check for that. */
if (!pci_phys && (paddr & MASK_2MB)) {
DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr);
return -EINVAL;
}
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
#if SPDK_VFIO_ENABLED
if (paddr == SPDK_VTOPHYS_ERROR) {
/*
* This is not an address that DPDK is managing. If vfio is enabled,
* we need to unmap the range from the IOMMU
*/
if (spdk_iommu_is_enabled()) {
uint64_t buffer_len = VALUE_2MB;
paddr = spdk_mem_map_translate(map, (uint64_t)vaddr, &buffer_len);
if (buffer_len != VALUE_2MB) {
return -EINVAL;
}
rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB);
if (rc) {
return -EFAULT;
}
}
}
#endif
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB);
break;
default:
SPDK_UNREACHABLE();
}
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
return rc;
}
#if SPDK_VFIO_ENABLED
static bool
spdk_vfio_enabled(void)
{
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
return rte_vfio_is_enabled("vfio_pci");
#else
return pci_vfio_is_enabled();
#endif
}
/* Check if IOMMU is enabled on the system */
static bool
has_iommu_groups(void)
{
struct dirent *d;
int count = 0;
DIR *dir = opendir("/sys/kernel/iommu_groups");
if (dir == NULL) {
return false;
}
while (count < 3 && (d = readdir(dir)) != NULL) {
count++;
}
closedir(dir);
/* there will always be ./ and ../ entries */
return count > 2;
}
static bool
spdk_vfio_noiommu_enabled(void)
{
return rte_vfio_noiommu_is_enabled();
}
static void
spdk_vtophys_iommu_init(void)
{
char proc_fd_path[PATH_MAX + 1];
char link_path[PATH_MAX + 1];
const char vfio_path[] = "/dev/vfio/vfio";
DIR *dir;
struct dirent *d;
if (!spdk_vfio_enabled()) {
return;
}
if (spdk_vfio_noiommu_enabled()) {
g_vfio.noiommu_enabled = true;
} else if (!has_iommu_groups()) {
return;
}
dir = opendir("/proc/self/fd");
if (!dir) {
DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno);
return;
}
while ((d = readdir(dir)) != NULL) {
if (d->d_type != DT_LNK) {
continue;
}
snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name);
if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) {
continue;
}
if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) {
sscanf(d->d_name, "%d", &g_vfio.fd);
break;
}
}
closedir(dir);
if (g_vfio.fd < 0) {
DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n");
return;
}
g_vfio.enabled = true;
return;
}
#endif
void
spdk_vtophys_pci_device_added(struct rte_pci_device *pci_device)
{
struct spdk_vtophys_pci_device *vtophys_dev;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
vtophys_dev = calloc(1, sizeof(*vtophys_dev));
if (vtophys_dev) {
vtophys_dev->pci_device = pci_device;
TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq);
} else {
DEBUG_PRINT("Memory allocation error\n");
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
#if SPDK_VFIO_ENABLED
struct spdk_vfio_dma_map *dma_map;
int ret;
if (!g_vfio.enabled) {
return;
}
pthread_mutex_lock(&g_vfio.mutex);
g_vfio.device_ref++;
if (g_vfio.device_ref > 1) {
pthread_mutex_unlock(&g_vfio.mutex);
return;
}
/* This is the first SPDK device using DPDK vfio. This means that the first
* IOMMU group might have been just been added to the DPDK vfio container.
* From this point it is certain that the memory can be mapped now.
*/
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
if (ret) {
DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno);
break;
}
}
pthread_mutex_unlock(&g_vfio.mutex);
#endif
}
void
spdk_vtophys_pci_device_removed(struct rte_pci_device *pci_device)
{
struct spdk_vtophys_pci_device *vtophys_dev;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
if (vtophys_dev->pci_device == pci_device) {
TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq);
free(vtophys_dev);
break;
}
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
#if SPDK_VFIO_ENABLED
struct spdk_vfio_dma_map *dma_map;
int ret;
if (!g_vfio.enabled) {
return;
}
pthread_mutex_lock(&g_vfio.mutex);
assert(g_vfio.device_ref > 0);
g_vfio.device_ref--;
if (g_vfio.device_ref > 0) {
pthread_mutex_unlock(&g_vfio.mutex);
return;
}
/* This is the last SPDK device using DPDK vfio. If DPDK doesn't have
* any additional devices using it's vfio container, all the mappings
* will be automatically removed by the Linux vfio driver. We unmap
* the memory manually to be able to easily re-map it later regardless
* of other, external factors.
*/
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap);
if (ret) {
DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno);
break;
}
}
pthread_mutex_unlock(&g_vfio.mutex);
#endif
}
int
spdk_vtophys_init(void)
{
const struct spdk_mem_map_ops vtophys_map_ops = {
.notify_cb = spdk_vtophys_notify,
.are_contiguous = NULL
};
#if SPDK_VFIO_ENABLED
spdk_vtophys_iommu_init();
#endif
g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL);
if (g_vtophys_map == NULL) {
DEBUG_PRINT("vtophys map allocation failed\n");
return -1;
}
return 0;
}
uint64_t
spdk_vtophys(void *buf, uint64_t *size)
{
uint64_t vaddr, paddr_2mb;
vaddr = (uint64_t)buf;
paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, size);
/*
* SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR,
* we will still bitwise-or it with the buf offset below, but the result will still be
* SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being
* unaligned) we must now check the return value before addition.
*/
SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s");
if (paddr_2mb == SPDK_VTOPHYS_ERROR) {
return SPDK_VTOPHYS_ERROR;
} else {
return paddr_2mb + (vaddr & MASK_2MB);
}
}
static int
spdk_bus_scan(void)
{
return 0;
}
static int
spdk_bus_probe(void)
{
return 0;
}
static struct rte_device *
spdk_bus_find_device(const struct rte_device *start,
rte_dev_cmp_t cmp, const void *data)
{
return NULL;
}
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
static enum rte_iova_mode
spdk_bus_get_iommu_class(void) {
/* Since we register our PCI drivers after EAL init, we have no chance
* of switching into RTE_IOVA_VA (virtual addresses as iova) iommu
* class. DPDK uses RTE_IOVA_PA by default because for some platforms
* it's the only supported mode, but then SPDK does not support those
* platforms and doesn't mind defaulting to RTE_IOVA_VA. The rte_pci bus
* will force RTE_IOVA_PA if RTE_IOVA_VA simply can not be used
* (i.e. at least one device on the system is bound to uio_pci_generic),
* so we simply return RTE_IOVA_VA here.
*/
return RTE_IOVA_VA;
}
#endif
struct rte_bus spdk_bus = {
.scan = spdk_bus_scan,
.probe = spdk_bus_probe,
.find_device = spdk_bus_find_device,
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
.get_iommu_class = spdk_bus_get_iommu_class,
#endif
};
RTE_REGISTER_BUS(spdk, spdk_bus);