numam-spdk/lib/reduce/reduce.c
paul luse 34146a7a52 lib/reduce: change and move the max IOVEC define for reduce
Changed to 17 from 32 per conversation with Jim and moved to
header file so it can be shared with the vbdev module.

Change-Id: Ic516b6466bf21d21d8073e9180deaa9929c6b742
Signed-off-by: paul luse <paul.e.luse@intel.com>
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/463368
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Broadcom SPDK FC-NVMe CI <spdk-ci.pdl@broadcom.com>
2019-07-29 04:36:59 +00:00

1606 lines
48 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/reduce.h"
#include "spdk/env.h"
#include "spdk/string.h"
#include "spdk/bit_array.h"
#include "spdk/util.h"
#include "spdk_internal/log.h"
#include "libpmem.h"
/* Always round up the size of the PM region to the nearest cacheline. */
#define REDUCE_PM_SIZE_ALIGNMENT 64
/* Offset into the backing device where the persistent memory file's path is stored. */
#define REDUCE_BACKING_DEV_PATH_OFFSET 4096
#define REDUCE_EMPTY_MAP_ENTRY -1ULL
#define REDUCE_NUM_VOL_REQUESTS 256
/* Structure written to offset 0 of both the pm file and the backing device. */
struct spdk_reduce_vol_superblock {
uint8_t signature[8];
struct spdk_reduce_vol_params params;
uint8_t reserved[4048];
};
SPDK_STATIC_ASSERT(sizeof(struct spdk_reduce_vol_superblock) == 4096, "size incorrect");
#define SPDK_REDUCE_SIGNATURE "SPDKREDU"
/* null terminator counts one */
SPDK_STATIC_ASSERT(sizeof(SPDK_REDUCE_SIGNATURE) - 1 ==
sizeof(((struct spdk_reduce_vol_superblock *)0)->signature), "size incorrect");
#define REDUCE_PATH_MAX 4096
/**
* Describes a persistent memory file used to hold metadata associated with a
* compressed volume.
*/
struct spdk_reduce_pm_file {
char path[REDUCE_PATH_MAX];
void *pm_buf;
int pm_is_pmem;
uint64_t size;
};
#define REDUCE_IO_READV 1
#define REDUCE_IO_WRITEV 2
struct spdk_reduce_chunk_map {
uint32_t compressed_size;
uint32_t reserved;
uint64_t io_unit_index[0];
};
struct spdk_reduce_vol_request {
/**
* Scratch buffer used for uncompressed chunk. This is used for:
* 1) source buffer for compression operations
* 2) destination buffer for decompression operations
* 3) data buffer when writing uncompressed chunk to disk
* 4) data buffer when reading uncompressed chunk from disk
*/
uint8_t *decomp_buf;
struct iovec *decomp_buf_iov;
/**
* These are used to construct the iovecs that are sent to
* the decomp engine, they point to a mix of the scratch buffer
* and user buffer
*/
struct iovec decomp_iov[REDUCE_MAX_IOVECS];
int decomp_iovcnt;
/**
* Scratch buffer used for compressed chunk. This is used for:
* 1) destination buffer for compression operations
* 2) source buffer for decompression operations
* 3) data buffer when writing compressed chunk to disk
* 4) data buffer when reading compressed chunk from disk
*/
uint8_t *comp_buf;
struct iovec *comp_buf_iov;
struct iovec *iov;
bool rmw;
struct spdk_reduce_vol *vol;
int type;
int reduce_errno;
int iovcnt;
int num_backing_ops;
uint32_t num_io_units;
bool chunk_is_compressed;
uint64_t offset;
uint64_t logical_map_index;
uint64_t length;
uint64_t chunk_map_index;
struct spdk_reduce_chunk_map *chunk;
spdk_reduce_vol_op_complete cb_fn;
void *cb_arg;
TAILQ_ENTRY(spdk_reduce_vol_request) tailq;
struct spdk_reduce_vol_cb_args backing_cb_args;
};
struct spdk_reduce_vol {
struct spdk_reduce_vol_params params;
uint32_t backing_io_units_per_chunk;
uint32_t backing_lba_per_io_unit;
uint32_t logical_blocks_per_chunk;
struct spdk_reduce_pm_file pm_file;
struct spdk_reduce_backing_dev *backing_dev;
struct spdk_reduce_vol_superblock *backing_super;
struct spdk_reduce_vol_superblock *pm_super;
uint64_t *pm_logical_map;
uint64_t *pm_chunk_maps;
struct spdk_bit_array *allocated_chunk_maps;
struct spdk_bit_array *allocated_backing_io_units;
struct spdk_reduce_vol_request *request_mem;
TAILQ_HEAD(, spdk_reduce_vol_request) free_requests;
TAILQ_HEAD(, spdk_reduce_vol_request) executing_requests;
TAILQ_HEAD(, spdk_reduce_vol_request) queued_requests;
/* Single contiguous buffer used for all request buffers for this volume. */
uint8_t *buf_mem;
struct iovec *buf_iov_mem;
};
static void _start_readv_request(struct spdk_reduce_vol_request *req);
static void _start_writev_request(struct spdk_reduce_vol_request *req);
static uint8_t *g_zero_buf;
static int g_vol_count = 0;
/*
* Allocate extra metadata chunks and corresponding backing io units to account for
* outstanding IO in worst case scenario where logical map is completely allocated
* and no data can be compressed. We need extra chunks in this case to handle
* in-flight writes since reduce never writes data in place.
*/
#define REDUCE_NUM_EXTRA_CHUNKS 128
static void
_reduce_persist(struct spdk_reduce_vol *vol, const void *addr, size_t len)
{
if (vol->pm_file.pm_is_pmem) {
pmem_persist(addr, len);
} else {
pmem_msync(addr, len);
}
}
static uint64_t
_get_pm_logical_map_size(uint64_t vol_size, uint64_t chunk_size)
{
uint64_t chunks_in_logical_map, logical_map_size;
chunks_in_logical_map = vol_size / chunk_size;
logical_map_size = chunks_in_logical_map * sizeof(uint64_t);
/* Round up to next cacheline. */
return spdk_divide_round_up(logical_map_size, REDUCE_PM_SIZE_ALIGNMENT) *
REDUCE_PM_SIZE_ALIGNMENT;
}
static uint64_t
_get_total_chunks(uint64_t vol_size, uint64_t chunk_size)
{
uint64_t num_chunks;
num_chunks = vol_size / chunk_size;
num_chunks += REDUCE_NUM_EXTRA_CHUNKS;
return num_chunks;
}
static inline uint32_t
_reduce_vol_get_chunk_struct_size(uint64_t backing_io_units_per_chunk)
{
return sizeof(struct spdk_reduce_chunk_map) + sizeof(uint64_t) * backing_io_units_per_chunk;
}
static uint64_t
_get_pm_total_chunks_size(uint64_t vol_size, uint64_t chunk_size, uint64_t backing_io_unit_size)
{
uint64_t io_units_per_chunk, num_chunks, total_chunks_size;
num_chunks = _get_total_chunks(vol_size, chunk_size);
io_units_per_chunk = chunk_size / backing_io_unit_size;
total_chunks_size = num_chunks * _reduce_vol_get_chunk_struct_size(io_units_per_chunk);
return spdk_divide_round_up(total_chunks_size, REDUCE_PM_SIZE_ALIGNMENT) *
REDUCE_PM_SIZE_ALIGNMENT;
}
static struct spdk_reduce_chunk_map *
_reduce_vol_get_chunk_map(struct spdk_reduce_vol *vol, uint64_t chunk_map_index)
{
uintptr_t chunk_map_addr;
assert(chunk_map_index < _get_total_chunks(vol->params.vol_size, vol->params.chunk_size));
chunk_map_addr = (uintptr_t)vol->pm_chunk_maps;
chunk_map_addr += chunk_map_index *
_reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk);
return (struct spdk_reduce_chunk_map *)chunk_map_addr;
}
static int
_validate_vol_params(struct spdk_reduce_vol_params *params)
{
if (params->vol_size > 0) {
/**
* User does not pass in the vol size - it gets calculated by libreduce from
* values in this structure plus the size of the backing device.
*/
return -EINVAL;
}
if (params->chunk_size == 0 || params->backing_io_unit_size == 0 ||
params->logical_block_size == 0) {
return -EINVAL;
}
/* Chunk size must be an even multiple of the backing io unit size. */
if ((params->chunk_size % params->backing_io_unit_size) != 0) {
return -EINVAL;
}
/* Chunk size must be an even multiple of the logical block size. */
if ((params->chunk_size % params->logical_block_size) != 0) {
return -1;
}
return 0;
}
static uint64_t
_get_vol_size(uint64_t chunk_size, uint64_t backing_dev_size)
{
uint64_t num_chunks;
num_chunks = backing_dev_size / chunk_size;
if (num_chunks <= REDUCE_NUM_EXTRA_CHUNKS) {
return 0;
}
num_chunks -= REDUCE_NUM_EXTRA_CHUNKS;
return num_chunks * chunk_size;
}
static uint64_t
_get_pm_file_size(struct spdk_reduce_vol_params *params)
{
uint64_t total_pm_size;
total_pm_size = sizeof(struct spdk_reduce_vol_superblock);
total_pm_size += _get_pm_logical_map_size(params->vol_size, params->chunk_size);
total_pm_size += _get_pm_total_chunks_size(params->vol_size, params->chunk_size,
params->backing_io_unit_size);
return total_pm_size;
}
const struct spdk_uuid *
spdk_reduce_vol_get_uuid(struct spdk_reduce_vol *vol)
{
return &vol->params.uuid;
}
static void
_initialize_vol_pm_pointers(struct spdk_reduce_vol *vol)
{
uint64_t logical_map_size;
/* Superblock is at the beginning of the pm file. */
vol->pm_super = (struct spdk_reduce_vol_superblock *)vol->pm_file.pm_buf;
/* Logical map immediately follows the super block. */
vol->pm_logical_map = (uint64_t *)(vol->pm_super + 1);
/* Chunks maps follow the logical map. */
logical_map_size = _get_pm_logical_map_size(vol->params.vol_size, vol->params.chunk_size);
vol->pm_chunk_maps = (uint64_t *)((uint8_t *)vol->pm_logical_map + logical_map_size);
}
/* We need 2 iovs during load - one for the superblock, another for the path */
#define LOAD_IOV_COUNT 2
struct reduce_init_load_ctx {
struct spdk_reduce_vol *vol;
struct spdk_reduce_vol_cb_args backing_cb_args;
spdk_reduce_vol_op_with_handle_complete cb_fn;
void *cb_arg;
struct iovec iov[LOAD_IOV_COUNT];
void *path;
};
static int
_allocate_vol_requests(struct spdk_reduce_vol *vol)
{
struct spdk_reduce_vol_request *req;
int i;
/* Allocate 2x since we need buffers for both read/write and compress/decompress
* intermediate buffers.
*/
vol->buf_mem = spdk_malloc(2 * REDUCE_NUM_VOL_REQUESTS * vol->params.chunk_size,
64, NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (vol->buf_mem == NULL) {
return -ENOMEM;
}
vol->request_mem = calloc(REDUCE_NUM_VOL_REQUESTS, sizeof(*req));
if (vol->request_mem == NULL) {
spdk_free(vol->buf_mem);
vol->buf_mem = NULL;
return -ENOMEM;
}
/* Allocate 2x since we need iovs for both read/write and compress/decompress intermediate
* buffers.
*/
vol->buf_iov_mem = calloc(REDUCE_NUM_VOL_REQUESTS,
2 * sizeof(struct iovec) * vol->backing_io_units_per_chunk);
if (vol->buf_iov_mem == NULL) {
free(vol->request_mem);
spdk_free(vol->buf_mem);
vol->request_mem = NULL;
vol->buf_mem = NULL;
return -ENOMEM;
}
for (i = 0; i < REDUCE_NUM_VOL_REQUESTS; i++) {
req = &vol->request_mem[i];
TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq);
req->decomp_buf_iov = &vol->buf_iov_mem[(2 * i) * vol->backing_io_units_per_chunk];
req->decomp_buf = vol->buf_mem + (2 * i) * vol->params.chunk_size;
req->comp_buf_iov = &vol->buf_iov_mem[(2 * i + 1) * vol->backing_io_units_per_chunk];
req->comp_buf = vol->buf_mem + (2 * i + 1) * vol->params.chunk_size;
}
return 0;
}
static void
_init_load_cleanup(struct spdk_reduce_vol *vol, struct reduce_init_load_ctx *ctx)
{
if (ctx != NULL) {
spdk_free(ctx->path);
free(ctx);
}
if (vol != NULL) {
if (vol->pm_file.pm_buf != NULL) {
pmem_unmap(vol->pm_file.pm_buf, vol->pm_file.size);
}
spdk_free(vol->backing_super);
spdk_bit_array_free(&vol->allocated_chunk_maps);
spdk_bit_array_free(&vol->allocated_backing_io_units);
free(vol->request_mem);
free(vol->buf_iov_mem);
spdk_free(vol->buf_mem);
free(vol);
}
}
static int
_alloc_zero_buff(struct spdk_reduce_vol *vol)
{
int rc = 0;
/* The zero buffer is shared between all volumnes and just used
* for reads so allocate one global instance here if not already
* allocated when another vol init'd or loaded.
*/
if (g_vol_count++ == 0) {
g_zero_buf = spdk_zmalloc(vol->params.chunk_size,
64, NULL, SPDK_ENV_LCORE_ID_ANY,
SPDK_MALLOC_DMA);
if (g_zero_buf == NULL) {
rc = -ENOMEM;
}
}
return rc;
}
static void
_init_write_super_cpl(void *cb_arg, int reduce_errno)
{
struct reduce_init_load_ctx *init_ctx = cb_arg;
int rc;
rc = _allocate_vol_requests(init_ctx->vol);
if (rc != 0) {
init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc);
_init_load_cleanup(init_ctx->vol, init_ctx);
return;
}
rc = _alloc_zero_buff(init_ctx->vol);
if (rc != 0) {
init_ctx->cb_fn(init_ctx->cb_arg, NULL, rc);
_init_load_cleanup(init_ctx->vol, init_ctx);
return;
}
init_ctx->cb_fn(init_ctx->cb_arg, init_ctx->vol, reduce_errno);
/* Only clean up the ctx - the vol has been passed to the application
* for use now that initialization was successful.
*/
_init_load_cleanup(NULL, init_ctx);
}
static void
_init_write_path_cpl(void *cb_arg, int reduce_errno)
{
struct reduce_init_load_ctx *init_ctx = cb_arg;
struct spdk_reduce_vol *vol = init_ctx->vol;
init_ctx->iov[0].iov_base = vol->backing_super;
init_ctx->iov[0].iov_len = sizeof(*vol->backing_super);
init_ctx->backing_cb_args.cb_fn = _init_write_super_cpl;
init_ctx->backing_cb_args.cb_arg = init_ctx;
vol->backing_dev->writev(vol->backing_dev, init_ctx->iov, 1,
0, sizeof(*vol->backing_super) / vol->backing_dev->blocklen,
&init_ctx->backing_cb_args);
}
static int
_allocate_bit_arrays(struct spdk_reduce_vol *vol)
{
uint64_t total_chunks, total_backing_io_units;
uint32_t i, num_metadata_io_units;
total_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size);
vol->allocated_chunk_maps = spdk_bit_array_create(total_chunks);
total_backing_io_units = total_chunks * (vol->params.chunk_size / vol->params.backing_io_unit_size);
vol->allocated_backing_io_units = spdk_bit_array_create(total_backing_io_units);
if (vol->allocated_chunk_maps == NULL || vol->allocated_backing_io_units == NULL) {
return -ENOMEM;
}
/* Set backing io unit bits associated with metadata. */
num_metadata_io_units = (sizeof(*vol->backing_super) + REDUCE_PATH_MAX) /
vol->backing_dev->blocklen;
for (i = 0; i < num_metadata_io_units; i++) {
spdk_bit_array_set(vol->allocated_backing_io_units, i);
}
return 0;
}
void
spdk_reduce_vol_init(struct spdk_reduce_vol_params *params,
struct spdk_reduce_backing_dev *backing_dev,
const char *pm_file_dir,
spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)
{
struct spdk_reduce_vol *vol;
struct reduce_init_load_ctx *init_ctx;
uint64_t backing_dev_size;
size_t mapped_len;
int dir_len, max_dir_len, rc;
/* We need to append a path separator and the UUID to the supplied
* path.
*/
max_dir_len = REDUCE_PATH_MAX - SPDK_UUID_STRING_LEN - 1;
dir_len = strnlen(pm_file_dir, max_dir_len);
/* Strip trailing slash if the user provided one - we will add it back
* later when appending the filename.
*/
if (pm_file_dir[dir_len - 1] == '/') {
dir_len--;
}
if (dir_len == max_dir_len) {
SPDK_ERRLOG("pm_file_dir (%s) too long\n", pm_file_dir);
cb_fn(cb_arg, NULL, -EINVAL);
return;
}
rc = _validate_vol_params(params);
if (rc != 0) {
SPDK_ERRLOG("invalid vol params\n");
cb_fn(cb_arg, NULL, rc);
return;
}
backing_dev_size = backing_dev->blockcnt * backing_dev->blocklen;
params->vol_size = _get_vol_size(params->chunk_size, backing_dev_size);
if (params->vol_size == 0) {
SPDK_ERRLOG("backing device is too small\n");
cb_fn(cb_arg, NULL, -EINVAL);
return;
}
if (backing_dev->readv == NULL || backing_dev->writev == NULL ||
backing_dev->unmap == NULL) {
SPDK_ERRLOG("backing_dev function pointer not specified\n");
cb_fn(cb_arg, NULL, -EINVAL);
return;
}
vol = calloc(1, sizeof(*vol));
if (vol == NULL) {
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
TAILQ_INIT(&vol->free_requests);
TAILQ_INIT(&vol->executing_requests);
TAILQ_INIT(&vol->queued_requests);
vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 0, NULL,
SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (vol->backing_super == NULL) {
cb_fn(cb_arg, NULL, -ENOMEM);
_init_load_cleanup(vol, NULL);
return;
}
init_ctx = calloc(1, sizeof(*init_ctx));
if (init_ctx == NULL) {
cb_fn(cb_arg, NULL, -ENOMEM);
_init_load_cleanup(vol, NULL);
return;
}
init_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 0, NULL,
SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (init_ctx->path == NULL) {
cb_fn(cb_arg, NULL, -ENOMEM);
_init_load_cleanup(vol, init_ctx);
return;
}
if (spdk_mem_all_zero(&params->uuid, sizeof(params->uuid))) {
spdk_uuid_generate(&params->uuid);
}
memcpy(vol->pm_file.path, pm_file_dir, dir_len);
vol->pm_file.path[dir_len] = '/';
spdk_uuid_fmt_lower(&vol->pm_file.path[dir_len + 1], SPDK_UUID_STRING_LEN,
&params->uuid);
vol->pm_file.size = _get_pm_file_size(params);
vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, vol->pm_file.size,
PMEM_FILE_CREATE | PMEM_FILE_EXCL, 0600,
&mapped_len, &vol->pm_file.pm_is_pmem);
if (vol->pm_file.pm_buf == NULL) {
SPDK_ERRLOG("could not pmem_map_file(%s): %s\n",
vol->pm_file.path, strerror(errno));
cb_fn(cb_arg, NULL, -errno);
_init_load_cleanup(vol, init_ctx);
return;
}
if (vol->pm_file.size != mapped_len) {
SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n",
vol->pm_file.size, mapped_len);
cb_fn(cb_arg, NULL, -ENOMEM);
_init_load_cleanup(vol, init_ctx);
return;
}
vol->backing_io_units_per_chunk = params->chunk_size / params->backing_io_unit_size;
vol->logical_blocks_per_chunk = params->chunk_size / params->logical_block_size;
vol->backing_lba_per_io_unit = params->backing_io_unit_size / backing_dev->blocklen;
memcpy(&vol->params, params, sizeof(*params));
vol->backing_dev = backing_dev;
rc = _allocate_bit_arrays(vol);
if (rc != 0) {
cb_fn(cb_arg, NULL, rc);
_init_load_cleanup(vol, init_ctx);
return;
}
memcpy(vol->backing_super->signature, SPDK_REDUCE_SIGNATURE,
sizeof(vol->backing_super->signature));
memcpy(&vol->backing_super->params, params, sizeof(*params));
_initialize_vol_pm_pointers(vol);
memcpy(vol->pm_super, vol->backing_super, sizeof(*vol->backing_super));
/* Writing 0xFF's is equivalent of filling it all with SPDK_EMPTY_MAP_ENTRY.
* Note that this writes 0xFF to not just the logical map but the chunk maps as well.
*/
memset(vol->pm_logical_map, 0xFF, vol->pm_file.size - sizeof(*vol->backing_super));
_reduce_persist(vol, vol->pm_file.pm_buf, vol->pm_file.size);
init_ctx->vol = vol;
init_ctx->cb_fn = cb_fn;
init_ctx->cb_arg = cb_arg;
memcpy(init_ctx->path, vol->pm_file.path, REDUCE_PATH_MAX);
init_ctx->iov[0].iov_base = init_ctx->path;
init_ctx->iov[0].iov_len = REDUCE_PATH_MAX;
init_ctx->backing_cb_args.cb_fn = _init_write_path_cpl;
init_ctx->backing_cb_args.cb_arg = init_ctx;
/* Write path to offset 4K on backing device - just after where the super
* block will be written. We wait until this is committed before writing the
* super block to guarantee we don't get the super block written without the
* the path if the system crashed in the middle of a write operation.
*/
vol->backing_dev->writev(vol->backing_dev, init_ctx->iov, 1,
REDUCE_BACKING_DEV_PATH_OFFSET / vol->backing_dev->blocklen,
REDUCE_PATH_MAX / vol->backing_dev->blocklen,
&init_ctx->backing_cb_args);
}
static void
_load_read_super_and_path_cpl(void *cb_arg, int reduce_errno)
{
struct reduce_init_load_ctx *load_ctx = cb_arg;
struct spdk_reduce_vol *vol = load_ctx->vol;
uint64_t backing_dev_size;
uint64_t i, num_chunks, logical_map_index;
struct spdk_reduce_chunk_map *chunk;
size_t mapped_len;
uint32_t j;
int rc;
if (memcmp(vol->backing_super->signature,
SPDK_REDUCE_SIGNATURE,
sizeof(vol->backing_super->signature)) != 0) {
/* This backing device isn't a libreduce backing device. */
rc = -EILSEQ;
goto error;
}
memcpy(&vol->params, &vol->backing_super->params, sizeof(vol->params));
vol->backing_io_units_per_chunk = vol->params.chunk_size / vol->params.backing_io_unit_size;
vol->logical_blocks_per_chunk = vol->params.chunk_size / vol->params.logical_block_size;
vol->backing_lba_per_io_unit = vol->params.backing_io_unit_size / vol->backing_dev->blocklen;
rc = _allocate_bit_arrays(vol);
if (rc != 0) {
goto error;
}
backing_dev_size = vol->backing_dev->blockcnt * vol->backing_dev->blocklen;
if (_get_vol_size(vol->params.chunk_size, backing_dev_size) < vol->params.vol_size) {
SPDK_ERRLOG("backing device size %" PRIi64 " smaller than expected\n",
backing_dev_size);
rc = -EILSEQ;
goto error;
}
memcpy(vol->pm_file.path, load_ctx->path, sizeof(vol->pm_file.path));
vol->pm_file.size = _get_pm_file_size(&vol->params);
vol->pm_file.pm_buf = pmem_map_file(vol->pm_file.path, 0, 0, 0, &mapped_len,
&vol->pm_file.pm_is_pmem);
if (vol->pm_file.pm_buf == NULL) {
SPDK_ERRLOG("could not pmem_map_file(%s): %s\n", vol->pm_file.path, strerror(errno));
rc = -errno;
goto error;
}
if (vol->pm_file.size != mapped_len) {
SPDK_ERRLOG("could not map entire pmem file (size=%" PRIu64 " mapped=%" PRIu64 ")\n",
vol->pm_file.size, mapped_len);
rc = -ENOMEM;
goto error;
}
rc = _allocate_vol_requests(vol);
if (rc != 0) {
goto error;
}
_initialize_vol_pm_pointers(vol);
num_chunks = vol->params.vol_size / vol->params.chunk_size;
for (i = 0; i < num_chunks; i++) {
logical_map_index = vol->pm_logical_map[i];
if (logical_map_index == REDUCE_EMPTY_MAP_ENTRY) {
continue;
}
spdk_bit_array_set(vol->allocated_chunk_maps, logical_map_index);
chunk = _reduce_vol_get_chunk_map(vol, logical_map_index);
for (j = 0; j < vol->backing_io_units_per_chunk; j++) {
if (chunk->io_unit_index[j] != REDUCE_EMPTY_MAP_ENTRY) {
spdk_bit_array_set(vol->allocated_backing_io_units, chunk->io_unit_index[j]);
}
}
}
rc = _alloc_zero_buff(vol);
if (rc) {
goto error;
}
load_ctx->cb_fn(load_ctx->cb_arg, vol, 0);
/* Only clean up the ctx - the vol has been passed to the application
* for use now that volume load was successful.
*/
_init_load_cleanup(NULL, load_ctx);
return;
error:
load_ctx->cb_fn(load_ctx->cb_arg, NULL, rc);
_init_load_cleanup(vol, load_ctx);
}
void
spdk_reduce_vol_load(struct spdk_reduce_backing_dev *backing_dev,
spdk_reduce_vol_op_with_handle_complete cb_fn, void *cb_arg)
{
struct spdk_reduce_vol *vol;
struct reduce_init_load_ctx *load_ctx;
if (backing_dev->readv == NULL || backing_dev->writev == NULL ||
backing_dev->unmap == NULL) {
SPDK_ERRLOG("backing_dev function pointer not specified\n");
cb_fn(cb_arg, NULL, -EINVAL);
return;
}
vol = calloc(1, sizeof(*vol));
if (vol == NULL) {
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
TAILQ_INIT(&vol->free_requests);
TAILQ_INIT(&vol->executing_requests);
TAILQ_INIT(&vol->queued_requests);
vol->backing_super = spdk_zmalloc(sizeof(*vol->backing_super), 64, NULL,
SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (vol->backing_super == NULL) {
_init_load_cleanup(vol, NULL);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
vol->backing_dev = backing_dev;
load_ctx = calloc(1, sizeof(*load_ctx));
if (load_ctx == NULL) {
_init_load_cleanup(vol, NULL);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
load_ctx->path = spdk_zmalloc(REDUCE_PATH_MAX, 64, NULL,
SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (load_ctx->path == NULL) {
_init_load_cleanup(vol, load_ctx);
cb_fn(cb_arg, NULL, -ENOMEM);
return;
}
load_ctx->vol = vol;
load_ctx->cb_fn = cb_fn;
load_ctx->cb_arg = cb_arg;
load_ctx->iov[0].iov_base = vol->backing_super;
load_ctx->iov[0].iov_len = sizeof(*vol->backing_super);
load_ctx->iov[1].iov_base = load_ctx->path;
load_ctx->iov[1].iov_len = REDUCE_PATH_MAX;
load_ctx->backing_cb_args.cb_fn = _load_read_super_and_path_cpl;
load_ctx->backing_cb_args.cb_arg = load_ctx;
vol->backing_dev->readv(vol->backing_dev, load_ctx->iov, LOAD_IOV_COUNT, 0,
(sizeof(*vol->backing_super) + REDUCE_PATH_MAX) /
vol->backing_dev->blocklen,
&load_ctx->backing_cb_args);
}
void
spdk_reduce_vol_unload(struct spdk_reduce_vol *vol,
spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
{
if (vol == NULL) {
/* This indicates a programming error. */
assert(false);
cb_fn(cb_arg, -EINVAL);
return;
}
if (--g_vol_count == 0) {
spdk_free(g_zero_buf);
}
_init_load_cleanup(vol, NULL);
cb_fn(cb_arg, 0);
}
struct reduce_destroy_ctx {
spdk_reduce_vol_op_complete cb_fn;
void *cb_arg;
struct spdk_reduce_vol *vol;
struct spdk_reduce_vol_superblock *super;
struct iovec iov;
struct spdk_reduce_vol_cb_args backing_cb_args;
int reduce_errno;
char pm_path[REDUCE_PATH_MAX];
};
static void
destroy_unload_cpl(void *cb_arg, int reduce_errno)
{
struct reduce_destroy_ctx *destroy_ctx = cb_arg;
if (destroy_ctx->reduce_errno == 0) {
if (unlink(destroy_ctx->pm_path)) {
SPDK_ERRLOG("%s could not be unlinked: %s\n",
destroy_ctx->pm_path, strerror(errno));
}
}
/* Even if the unload somehow failed, we still pass the destroy_ctx
* reduce_errno since that indicates whether or not the volume was
* actually destroyed.
*/
destroy_ctx->cb_fn(destroy_ctx->cb_arg, destroy_ctx->reduce_errno);
spdk_free(destroy_ctx->super);
free(destroy_ctx);
}
static void
_destroy_zero_super_cpl(void *cb_arg, int reduce_errno)
{
struct reduce_destroy_ctx *destroy_ctx = cb_arg;
struct spdk_reduce_vol *vol = destroy_ctx->vol;
destroy_ctx->reduce_errno = reduce_errno;
spdk_reduce_vol_unload(vol, destroy_unload_cpl, destroy_ctx);
}
static void
destroy_load_cb(void *cb_arg, struct spdk_reduce_vol *vol, int reduce_errno)
{
struct reduce_destroy_ctx *destroy_ctx = cb_arg;
if (reduce_errno != 0) {
destroy_ctx->cb_fn(destroy_ctx->cb_arg, reduce_errno);
spdk_free(destroy_ctx->super);
free(destroy_ctx);
return;
}
destroy_ctx->vol = vol;
memcpy(destroy_ctx->pm_path, vol->pm_file.path, sizeof(destroy_ctx->pm_path));
destroy_ctx->iov.iov_base = destroy_ctx->super;
destroy_ctx->iov.iov_len = sizeof(*destroy_ctx->super);
destroy_ctx->backing_cb_args.cb_fn = _destroy_zero_super_cpl;
destroy_ctx->backing_cb_args.cb_arg = destroy_ctx;
vol->backing_dev->writev(vol->backing_dev, &destroy_ctx->iov, 1, 0,
sizeof(*destroy_ctx->super) / vol->backing_dev->blocklen,
&destroy_ctx->backing_cb_args);
}
void
spdk_reduce_vol_destroy(struct spdk_reduce_backing_dev *backing_dev,
spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
{
struct reduce_destroy_ctx *destroy_ctx;
destroy_ctx = calloc(1, sizeof(*destroy_ctx));
if (destroy_ctx == NULL) {
cb_fn(cb_arg, -ENOMEM);
return;
}
destroy_ctx->super = spdk_zmalloc(sizeof(*destroy_ctx->super), 64, NULL,
SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA);
if (destroy_ctx->super == NULL) {
free(destroy_ctx);
cb_fn(cb_arg, -ENOMEM);
return;
}
destroy_ctx->cb_fn = cb_fn;
destroy_ctx->cb_arg = cb_arg;
spdk_reduce_vol_load(backing_dev, destroy_load_cb, destroy_ctx);
}
static bool
_request_spans_chunk_boundary(struct spdk_reduce_vol *vol, uint64_t offset, uint64_t length)
{
uint64_t start_chunk, end_chunk;
start_chunk = offset / vol->logical_blocks_per_chunk;
end_chunk = (offset + length - 1) / vol->logical_blocks_per_chunk;
return (start_chunk != end_chunk);
}
typedef void (*reduce_request_fn)(void *_req, int reduce_errno);
static void
_reduce_vol_complete_req(struct spdk_reduce_vol_request *req, int reduce_errno)
{
struct spdk_reduce_vol_request *next_req;
struct spdk_reduce_vol *vol = req->vol;
req->cb_fn(req->cb_arg, reduce_errno);
TAILQ_REMOVE(&vol->executing_requests, req, tailq);
TAILQ_FOREACH(next_req, &vol->queued_requests, tailq) {
if (next_req->logical_map_index == req->logical_map_index) {
TAILQ_REMOVE(&vol->queued_requests, next_req, tailq);
if (next_req->type == REDUCE_IO_READV) {
_start_readv_request(next_req);
} else {
assert(next_req->type == REDUCE_IO_WRITEV);
_start_writev_request(next_req);
}
break;
}
}
TAILQ_INSERT_HEAD(&vol->free_requests, req, tailq);
}
static void
_write_write_done(void *_req, int reduce_errno)
{
struct spdk_reduce_vol_request *req = _req;
struct spdk_reduce_vol *vol = req->vol;
uint64_t old_chunk_map_index;
struct spdk_reduce_chunk_map *old_chunk;
uint32_t i;
if (reduce_errno != 0) {
req->reduce_errno = reduce_errno;
}
assert(req->num_backing_ops > 0);
if (--req->num_backing_ops > 0) {
return;
}
if (req->reduce_errno != 0) {
_reduce_vol_complete_req(req, req->reduce_errno);
return;
}
old_chunk_map_index = vol->pm_logical_map[req->logical_map_index];
if (old_chunk_map_index != REDUCE_EMPTY_MAP_ENTRY) {
old_chunk = _reduce_vol_get_chunk_map(vol, old_chunk_map_index);
for (i = 0; i < vol->backing_io_units_per_chunk; i++) {
if (old_chunk->io_unit_index[i] == REDUCE_EMPTY_MAP_ENTRY) {
break;
}
assert(spdk_bit_array_get(vol->allocated_backing_io_units, old_chunk->io_unit_index[i]) == true);
spdk_bit_array_clear(vol->allocated_backing_io_units, old_chunk->io_unit_index[i]);
old_chunk->io_unit_index[i] = REDUCE_EMPTY_MAP_ENTRY;
}
spdk_bit_array_clear(vol->allocated_chunk_maps, old_chunk_map_index);
}
/*
* We don't need to persist the clearing of the old chunk map here. The old chunk map
* becomes invalid after we update the logical map, since the old chunk map will no
* longer have a reference to it in the logical map.
*/
/* Persist the new chunk map. This must be persisted before we update the logical map. */
_reduce_persist(vol, req->chunk,
_reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk));
vol->pm_logical_map[req->logical_map_index] = req->chunk_map_index;
_reduce_persist(vol, &vol->pm_logical_map[req->logical_map_index], sizeof(uint64_t));
_reduce_vol_complete_req(req, 0);
}
static void
_issue_backing_ops(struct spdk_reduce_vol_request *req, struct spdk_reduce_vol *vol,
reduce_request_fn next_fn, bool is_write)
{
struct iovec *iov;
uint8_t *buf;
uint32_t i;
if (req->chunk_is_compressed) {
iov = req->comp_buf_iov;
buf = req->comp_buf;
} else {
iov = req->decomp_buf_iov;
buf = req->decomp_buf;
}
req->num_backing_ops = req->num_io_units;
req->backing_cb_args.cb_fn = next_fn;
req->backing_cb_args.cb_arg = req;
for (i = 0; i < req->num_io_units; i++) {
iov[i].iov_base = buf + i * vol->params.backing_io_unit_size;
iov[i].iov_len = vol->params.backing_io_unit_size;
if (is_write) {
vol->backing_dev->writev(vol->backing_dev, &iov[i], 1,
req->chunk->io_unit_index[i] * vol->backing_lba_per_io_unit,
vol->backing_lba_per_io_unit, &req->backing_cb_args);
} else {
vol->backing_dev->readv(vol->backing_dev, &iov[i], 1,
req->chunk->io_unit_index[i] * vol->backing_lba_per_io_unit,
vol->backing_lba_per_io_unit, &req->backing_cb_args);
}
}
}
static void
_reduce_vol_write_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn,
uint32_t compressed_size)
{
struct spdk_reduce_vol *vol = req->vol;
uint32_t i;
uint64_t chunk_offset, remainder, total_len = 0;
uint8_t *buf;
int j;
req->chunk_map_index = spdk_bit_array_find_first_clear(vol->allocated_chunk_maps, 0);
/* TODO: fail if no chunk map found - but really this should not happen if we
* size the number of requests similarly to number of extra chunk maps
*/
assert(req->chunk_map_index != UINT32_MAX);
spdk_bit_array_set(vol->allocated_chunk_maps, req->chunk_map_index);
req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index);
req->num_io_units = spdk_divide_round_up(compressed_size,
vol->params.backing_io_unit_size);
req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk);
req->chunk->compressed_size =
req->chunk_is_compressed ? compressed_size : vol->params.chunk_size;
/* if the chunk is uncompressed we need to copy the data from the host buffers. */
if (req->chunk_is_compressed == false) {
chunk_offset = req->offset % vol->logical_blocks_per_chunk;
buf = req->decomp_buf;
total_len = chunk_offset * vol->params.logical_block_size;
/* zero any offset into chunk */
if (req->rmw == false && chunk_offset) {
memset(buf, 0, total_len);
}
buf += total_len;
/* copy the data */
for (j = 0; j < req->iovcnt; j++) {
memcpy(buf, req->iov[j].iov_base, req->iov[j].iov_len);
buf += req->iov[j].iov_len;
total_len += req->iov[j].iov_len;
}
/* zero any remainder */
remainder = vol->params.chunk_size - total_len;
total_len += remainder;
if (req->rmw == false && remainder) {
memset(buf, 0, remainder);
}
assert(total_len == vol->params.chunk_size);
}
for (i = 0; i < req->num_io_units; i++) {
req->chunk->io_unit_index[i] = spdk_bit_array_find_first_clear(vol->allocated_backing_io_units, 0);
/* TODO: fail if no backing block found - but really this should also not
* happen (see comment above).
*/
assert(req->chunk->io_unit_index[i] != UINT32_MAX);
spdk_bit_array_set(vol->allocated_backing_io_units, req->chunk->io_unit_index[i]);
}
_issue_backing_ops(req, vol, next_fn, true /* write */);
}
static void
_write_compress_done(void *_req, int reduce_errno)
{
struct spdk_reduce_vol_request *req = _req;
/* Negative reduce_errno indicates failure for compression operations.
* Just write the uncompressed data instead. Force this to happen
* by just passing the full chunk size to _reduce_vol_write_chunk.
* When it sees the data couldn't be compressed, it will just write
* the uncompressed buffer to disk.
*/
if (reduce_errno < 0) {
reduce_errno = req->vol->params.chunk_size;
}
/* Positive reduce_errno indicates number of bytes in compressed buffer. */
_reduce_vol_write_chunk(req, _write_write_done, (uint32_t)reduce_errno);
}
static void
_reduce_vol_compress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
{
struct spdk_reduce_vol *vol = req->vol;
req->backing_cb_args.cb_fn = next_fn;
req->backing_cb_args.cb_arg = req;
req->comp_buf_iov[0].iov_base = req->comp_buf;
req->comp_buf_iov[0].iov_len = vol->params.chunk_size;
vol->backing_dev->compress(vol->backing_dev,
&req->decomp_iov[0], req->decomp_iovcnt, req->comp_buf_iov, 1,
&req->backing_cb_args);
}
static void
_reduce_vol_decompress_chunk_scratch(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
{
struct spdk_reduce_vol *vol = req->vol;
req->backing_cb_args.cb_fn = next_fn;
req->backing_cb_args.cb_arg = req;
req->comp_buf_iov[0].iov_base = req->comp_buf;
req->comp_buf_iov[0].iov_len = req->chunk->compressed_size;
req->decomp_buf_iov[0].iov_base = req->decomp_buf;
req->decomp_buf_iov[0].iov_len = vol->params.chunk_size;
vol->backing_dev->decompress(vol->backing_dev,
req->comp_buf_iov, 1, req->decomp_buf_iov, 1,
&req->backing_cb_args);
}
static void
_reduce_vol_decompress_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
{
struct spdk_reduce_vol *vol = req->vol;
uint64_t chunk_offset, remainder = 0;
uint64_t ttl_len = 0;
int i;
req->decomp_iovcnt = 0;
chunk_offset = req->offset % vol->logical_blocks_per_chunk;
if (chunk_offset) {
/* first iov point to our scratch buffer for any offset into the chunk */
req->decomp_iov[0].iov_base = req->decomp_buf;
req->decomp_iov[0].iov_len = chunk_offset * vol->params.logical_block_size;
ttl_len += req->decomp_iov[0].iov_len;
req->decomp_iovcnt = 1;
}
/* now the user data iov, direct to the user buffer */
for (i = 0; i < req->iovcnt; i++) {
req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base;
req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len;
ttl_len += req->decomp_iov[i + req->decomp_iovcnt].iov_len;
}
req->decomp_iovcnt += req->iovcnt;
/* send the rest of the chunk to our scratch buffer */
remainder = vol->params.chunk_size - ttl_len;
if (remainder) {
req->decomp_iov[req->decomp_iovcnt].iov_base = req->decomp_buf + ttl_len;
req->decomp_iov[req->decomp_iovcnt].iov_len = remainder;
ttl_len += req->decomp_iov[req->decomp_iovcnt].iov_len;
req->decomp_iovcnt++;
}
assert(ttl_len == vol->params.chunk_size);
req->backing_cb_args.cb_fn = next_fn;
req->backing_cb_args.cb_arg = req;
req->comp_buf_iov[0].iov_base = req->comp_buf;
req->comp_buf_iov[0].iov_len = req->chunk->compressed_size;
vol->backing_dev->decompress(vol->backing_dev,
req->comp_buf_iov, 1, &req->decomp_iov[0], req->decomp_iovcnt,
&req->backing_cb_args);
}
static void
_write_decompress_done(void *_req, int reduce_errno)
{
struct spdk_reduce_vol_request *req = _req;
struct spdk_reduce_vol *vol = req->vol;
uint64_t chunk_offset, remainder, ttl_len = 0;
int i;
/* Negative reduce_errno indicates failure for compression operations. */
if (reduce_errno < 0) {
_reduce_vol_complete_req(req, reduce_errno);
return;
}
/* Positive reduce_errno indicates number of bytes in decompressed
* buffer. This should equal the chunk size - otherwise that's another
* type of failure.
*/
if ((uint32_t)reduce_errno != vol->params.chunk_size) {
_reduce_vol_complete_req(req, -EIO);
return;
}
req->decomp_iovcnt = 0;
chunk_offset = req->offset % vol->logical_blocks_per_chunk;
if (chunk_offset) {
req->decomp_iov[0].iov_base = req->decomp_buf;
req->decomp_iov[0].iov_len = chunk_offset * vol->params.logical_block_size;
ttl_len += req->decomp_iov[0].iov_len;
req->decomp_iovcnt = 1;
}
for (i = 0; i < req->iovcnt; i++) {
req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base;
req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len;
ttl_len += req->decomp_iov[i + req->decomp_iovcnt].iov_len;
}
req->decomp_iovcnt += req->iovcnt;
remainder = vol->params.chunk_size - ttl_len;
if (remainder) {
req->decomp_iov[req->decomp_iovcnt].iov_base = req->decomp_buf + ttl_len;
req->decomp_iov[req->decomp_iovcnt].iov_len = remainder;
ttl_len += req->decomp_iov[req->decomp_iovcnt].iov_len;
req->decomp_iovcnt++;
}
assert(ttl_len == vol->params.chunk_size);
_reduce_vol_compress_chunk(req, _write_compress_done);
}
static void
_write_read_done(void *_req, int reduce_errno)
{
struct spdk_reduce_vol_request *req = _req;
if (reduce_errno != 0) {
req->reduce_errno = reduce_errno;
}
assert(req->num_backing_ops > 0);
if (--req->num_backing_ops > 0) {
return;
}
if (req->reduce_errno != 0) {
_reduce_vol_complete_req(req, req->reduce_errno);
return;
}
if (req->chunk_is_compressed) {
_reduce_vol_decompress_chunk_scratch(req, _write_decompress_done);
} else {
_write_decompress_done(req, req->chunk->compressed_size);
}
}
static void
_read_decompress_done(void *_req, int reduce_errno)
{
struct spdk_reduce_vol_request *req = _req;
struct spdk_reduce_vol *vol = req->vol;
/* Negative reduce_errno indicates failure for compression operations. */
if (reduce_errno < 0) {
_reduce_vol_complete_req(req, reduce_errno);
return;
}
/* Positive reduce_errno indicates number of bytes in decompressed
* buffer. This should equal the chunk size - otherwise that's another
* type of failure.
*/
if ((uint32_t)reduce_errno != vol->params.chunk_size) {
_reduce_vol_complete_req(req, -EIO);
return;
}
_reduce_vol_complete_req(req, 0);
}
static void
_read_read_done(void *_req, int reduce_errno)
{
struct spdk_reduce_vol_request *req = _req;
uint64_t chunk_offset;
uint8_t *buf;
int i;
if (reduce_errno != 0) {
req->reduce_errno = reduce_errno;
}
assert(req->num_backing_ops > 0);
if (--req->num_backing_ops > 0) {
return;
}
if (req->reduce_errno != 0) {
_reduce_vol_complete_req(req, req->reduce_errno);
return;
}
if (req->chunk_is_compressed) {
_reduce_vol_decompress_chunk(req, _read_decompress_done);
} else {
/* If the chunk was compressed, the data would have been sent to the
* host buffers by the decompression operation, if not we need to memcpy here.
*/
chunk_offset = req->offset % req->vol->logical_blocks_per_chunk;
buf = req->decomp_buf + chunk_offset * req->vol->params.logical_block_size;
for (i = 0; i < req->iovcnt; i++) {
memcpy(req->iov[i].iov_base, buf, req->iov[i].iov_len);
buf += req->iov[i].iov_len;
}
_read_decompress_done(req, req->chunk->compressed_size);
}
}
static void
_reduce_vol_read_chunk(struct spdk_reduce_vol_request *req, reduce_request_fn next_fn)
{
struct spdk_reduce_vol *vol = req->vol;
req->chunk_map_index = vol->pm_logical_map[req->logical_map_index];
assert(req->chunk_map_index != UINT32_MAX);
req->chunk = _reduce_vol_get_chunk_map(vol, req->chunk_map_index);
req->num_io_units = spdk_divide_round_up(req->chunk->compressed_size,
vol->params.backing_io_unit_size);
req->chunk_is_compressed = (req->num_io_units != vol->backing_io_units_per_chunk);
_issue_backing_ops(req, vol, next_fn, false /* read */);
}
static bool
_iov_array_is_valid(struct spdk_reduce_vol *vol, struct iovec *iov, int iovcnt,
uint64_t length)
{
uint64_t size = 0;
int i;
for (i = 0; i < iovcnt; i++) {
size += iov[i].iov_len;
}
return size == (length * vol->params.logical_block_size);
}
static bool
_check_overlap(struct spdk_reduce_vol *vol, uint64_t logical_map_index)
{
struct spdk_reduce_vol_request *req;
TAILQ_FOREACH(req, &vol->executing_requests, tailq) {
if (logical_map_index == req->logical_map_index) {
return true;
}
}
return false;
}
static void
_start_readv_request(struct spdk_reduce_vol_request *req)
{
TAILQ_INSERT_TAIL(&req->vol->executing_requests, req, tailq);
_reduce_vol_read_chunk(req, _read_read_done);
}
void
spdk_reduce_vol_readv(struct spdk_reduce_vol *vol,
struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length,
spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
{
struct spdk_reduce_vol_request *req;
uint64_t logical_map_index;
bool overlapped;
int i;
if (length == 0) {
cb_fn(cb_arg, 0);
return;
}
if (_request_spans_chunk_boundary(vol, offset, length)) {
cb_fn(cb_arg, -EINVAL);
return;
}
if (!_iov_array_is_valid(vol, iov, iovcnt, length)) {
cb_fn(cb_arg, -EINVAL);
return;
}
logical_map_index = offset / vol->logical_blocks_per_chunk;
overlapped = _check_overlap(vol, logical_map_index);
if (!overlapped && vol->pm_logical_map[logical_map_index] == REDUCE_EMPTY_MAP_ENTRY) {
/*
* This chunk hasn't been allocated. So treat the data as all
* zeroes for this chunk - do the memset and immediately complete
* the operation.
*/
for (i = 0; i < iovcnt; i++) {
memset(iov[i].iov_base, 0, iov[i].iov_len);
}
cb_fn(cb_arg, 0);
return;
}
req = TAILQ_FIRST(&vol->free_requests);
if (req == NULL) {
cb_fn(cb_arg, -ENOMEM);
return;
}
TAILQ_REMOVE(&vol->free_requests, req, tailq);
req->type = REDUCE_IO_READV;
req->vol = vol;
req->iov = iov;
req->iovcnt = iovcnt;
req->offset = offset;
req->logical_map_index = logical_map_index;
req->length = length;
req->cb_fn = cb_fn;
req->cb_arg = cb_arg;
if (!overlapped) {
_start_readv_request(req);
} else {
TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq);
}
}
static void
_start_writev_request(struct spdk_reduce_vol_request *req)
{
struct spdk_reduce_vol *vol = req->vol;
uint64_t chunk_offset, ttl_len = 0;
uint64_t remainder = 0;
uint32_t lbsize;
int i;
TAILQ_INSERT_TAIL(&req->vol->executing_requests, req, tailq);
if (vol->pm_logical_map[req->logical_map_index] != REDUCE_EMPTY_MAP_ENTRY) {
if ((req->length * vol->params.logical_block_size) < vol->params.chunk_size) {
/* Read old chunk, then overwrite with data from this write
* operation.
*/
req->rmw = true;
_reduce_vol_read_chunk(req, _write_read_done);
return;
}
}
lbsize = vol->params.logical_block_size;
req->decomp_iovcnt = 0;
req->rmw = false;
/* Note: point to our zero buf for offset into the chunk. */
chunk_offset = req->offset % vol->logical_blocks_per_chunk;
if (chunk_offset != 0) {
ttl_len += chunk_offset * lbsize;
req->decomp_iov[0].iov_base = g_zero_buf;
req->decomp_iov[0].iov_len = ttl_len;
req->decomp_iovcnt = 1;
}
/* now the user data iov, direct from the user buffer */
for (i = 0; i < req->iovcnt; i++) {
req->decomp_iov[i + req->decomp_iovcnt].iov_base = req->iov[i].iov_base;
req->decomp_iov[i + req->decomp_iovcnt].iov_len = req->iov[i].iov_len;
ttl_len += req->decomp_iov[i + req->decomp_iovcnt].iov_len;
}
req->decomp_iovcnt += req->iovcnt;
remainder = vol->params.chunk_size - ttl_len;
if (remainder) {
req->decomp_iov[req->decomp_iovcnt].iov_base = g_zero_buf;
req->decomp_iov[req->decomp_iovcnt].iov_len = remainder;
ttl_len += req->decomp_iov[req->decomp_iovcnt].iov_len;
req->decomp_iovcnt++;
}
assert(ttl_len == req->vol->params.chunk_size);
_reduce_vol_compress_chunk(req, _write_compress_done);
}
void
spdk_reduce_vol_writev(struct spdk_reduce_vol *vol,
struct iovec *iov, int iovcnt, uint64_t offset, uint64_t length,
spdk_reduce_vol_op_complete cb_fn, void *cb_arg)
{
struct spdk_reduce_vol_request *req;
uint64_t logical_map_index;
bool overlapped;
if (length == 0) {
cb_fn(cb_arg, 0);
return;
}
if (_request_spans_chunk_boundary(vol, offset, length)) {
cb_fn(cb_arg, -EINVAL);
return;
}
if (!_iov_array_is_valid(vol, iov, iovcnt, length)) {
cb_fn(cb_arg, -EINVAL);
return;
}
logical_map_index = offset / vol->logical_blocks_per_chunk;
overlapped = _check_overlap(vol, logical_map_index);
req = TAILQ_FIRST(&vol->free_requests);
if (req == NULL) {
cb_fn(cb_arg, -ENOMEM);
return;
}
TAILQ_REMOVE(&vol->free_requests, req, tailq);
req->type = REDUCE_IO_WRITEV;
req->vol = vol;
req->iov = iov;
req->iovcnt = iovcnt;
req->offset = offset;
req->logical_map_index = logical_map_index;
req->length = length;
req->cb_fn = cb_fn;
req->cb_arg = cb_arg;
if (!overlapped) {
_start_writev_request(req);
} else {
TAILQ_INSERT_TAIL(&vol->queued_requests, req, tailq);
}
}
const struct spdk_reduce_vol_params *
spdk_reduce_vol_get_params(struct spdk_reduce_vol *vol)
{
return &vol->params;
}
void spdk_reduce_vol_print_info(struct spdk_reduce_vol *vol)
{
uint64_t logical_map_size, num_chunks, ttl_chunk_sz;
uint32_t struct_size;
uint64_t chunk_map_size;
SPDK_NOTICELOG("vol info:\n");
SPDK_NOTICELOG("\tvol->params.backing_io_unit_size = 0x%x\n", vol->params.backing_io_unit_size);
SPDK_NOTICELOG("\tvol->params.logical_block_size = 0x%x\n", vol->params.logical_block_size);
SPDK_NOTICELOG("\tvol->params.chunk_size = 0x%x\n", vol->params.chunk_size);
SPDK_NOTICELOG("\tvol->params.vol_size = 0x%" PRIx64 "\n", vol->params.vol_size);
num_chunks = _get_total_chunks(vol->params.vol_size, vol->params.chunk_size);
SPDK_NOTICELOG("\ttotal chunks (including extra) = 0x%" PRIx64 "\n", num_chunks);
SPDK_NOTICELOG("\ttotal chunks (excluding extra) = 0x%" PRIx64 "\n",
vol->params.vol_size / vol->params.chunk_size);
ttl_chunk_sz = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size,
vol->params.backing_io_unit_size);
SPDK_NOTICELOG("\ttotal_chunks_size = 0x%" PRIx64 "\n", ttl_chunk_sz);
struct_size = _reduce_vol_get_chunk_struct_size(vol->backing_io_units_per_chunk);
SPDK_NOTICELOG("\tchunk_struct_size = 0x%x\n", struct_size);
SPDK_NOTICELOG("pmem info:\n");
SPDK_NOTICELOG("\tvol->pm_file.size = 0x%" PRIx64 "\n", vol->pm_file.size);
SPDK_NOTICELOG("\tvol->pm_file.pm_buf = %p\n", (void *)vol->pm_file.pm_buf);
SPDK_NOTICELOG("\tvol->pm_super = %p\n", (void *)vol->pm_super);
SPDK_NOTICELOG("\tvol->pm_logical_map = %p\n", (void *)vol->pm_logical_map);
logical_map_size = _get_pm_logical_map_size(vol->params.vol_size,
vol->params.chunk_size);
SPDK_NOTICELOG("\tlogical_map_size = 0x%" PRIx64 "\n", logical_map_size);
SPDK_NOTICELOG("\tvol->pm_chunk_maps = %p\n", (void *)vol->pm_chunk_maps);
chunk_map_size = _get_pm_total_chunks_size(vol->params.vol_size, vol->params.chunk_size,
vol->params.backing_io_unit_size);
SPDK_NOTICELOG("\tchunk_map_size = 0x%" PRIx64 "\n", chunk_map_size);
}
SPDK_LOG_REGISTER_COMPONENT("reduce", SPDK_LOG_REDUCE)