a5f0327897
This patch translates NVMe status code to SCSI sense according to NVM Express: SCSI Translation Reference. http://nvmexpress.org/wp-content/uploads/NVM_Express_-_SCSI_Translation_Reference-1_5_20150624_Gold.pdf
325 lines
10 KiB
C
325 lines
10 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (C) 2008-2012 Daisuke Aoyama <aoyama@peach.ne.jp>.
|
|
* Copyright (c) Intel Corporation.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/** \file
|
|
* Block device abstraction layer
|
|
*/
|
|
|
|
#ifndef SPDK_BDEV_H_
|
|
#define SPDK_BDEV_H_
|
|
|
|
#include <inttypes.h>
|
|
#include <stddef.h> /* for offsetof */
|
|
#include <sys/uio.h> /* for struct iovec */
|
|
#include <stdbool.h>
|
|
|
|
#include "spdk/event.h"
|
|
#include "spdk/queue.h"
|
|
#include "spdk/scsi_spec.h"
|
|
|
|
#define SPDK_BDEV_SMALL_RBUF_MAX_SIZE 8192
|
|
#define SPDK_BDEV_LARGE_RBUF_MAX_SIZE (64 * 1024)
|
|
|
|
#define SPDK_BDEV_MAX_NAME_LENGTH 16
|
|
#define SPDK_BDEV_MAX_PRODUCT_NAME_LENGTH 50
|
|
|
|
struct spdk_bdev_io;
|
|
|
|
/**
|
|
* \brief SPDK block device.
|
|
*
|
|
* This is a virtual representation of a block device that is exported by the backend.
|
|
*/
|
|
struct spdk_bdev {
|
|
/** User context passed in by the backend */
|
|
void *ctxt;
|
|
|
|
/** Unique name for this block device. */
|
|
char name[SPDK_BDEV_MAX_NAME_LENGTH];
|
|
|
|
/** Unique product name for this kind of block device. */
|
|
char product_name[SPDK_BDEV_MAX_PRODUCT_NAME_LENGTH];
|
|
|
|
/** Size in bytes of a logical block for the backend */
|
|
uint32_t blocklen;
|
|
|
|
/** Number of blocks */
|
|
uint64_t blockcnt;
|
|
|
|
/** write cache enabled, not used at the moment */
|
|
int write_cache;
|
|
|
|
/**
|
|
* This is used to make sure buffers are sector aligned.
|
|
* This causes double buffering on writes.
|
|
*/
|
|
int need_aligned_buffer;
|
|
|
|
/** thin provisioning, not used at the moment */
|
|
int thin_provisioning;
|
|
|
|
/** function table for all LUN ops */
|
|
const struct spdk_bdev_fn_table *fn_table;
|
|
|
|
/** Represents maximum unmap block descriptor count */
|
|
uint32_t max_unmap_bdesc_count;
|
|
|
|
/** generation value used by block device reset */
|
|
uint32_t gencnt;
|
|
|
|
/** True if another blockdev or a LUN is using this device */
|
|
bool claimed;
|
|
|
|
TAILQ_ENTRY(spdk_bdev) link;
|
|
};
|
|
|
|
/** Blockdev I/O type */
|
|
enum spdk_bdev_io_type {
|
|
SPDK_BDEV_IO_TYPE_INVALID,
|
|
SPDK_BDEV_IO_TYPE_READ,
|
|
SPDK_BDEV_IO_TYPE_WRITE,
|
|
SPDK_BDEV_IO_TYPE_UNMAP,
|
|
SPDK_BDEV_IO_TYPE_FLUSH,
|
|
SPDK_BDEV_IO_TYPE_RESET,
|
|
};
|
|
|
|
/**
|
|
* Function table for a block device backend.
|
|
*
|
|
* The backend block device function table provides a set of APIs to allow
|
|
* communication with a backend. The main commands are read/write API
|
|
* calls for I/O via submit_request.
|
|
*/
|
|
struct spdk_bdev_fn_table {
|
|
/** Destroy the backend block device object */
|
|
int (*destruct)(struct spdk_bdev *bdev);
|
|
|
|
/** Process the IO. */
|
|
void (*submit_request)(struct spdk_bdev_io *);
|
|
|
|
/** Check if the block device supports a specific I/O type. */
|
|
bool (*io_type_supported)(struct spdk_bdev *bdev, enum spdk_bdev_io_type);
|
|
|
|
/** Get an I/O channel for the specific bdev for the calling thread. */
|
|
struct spdk_io_channel *(*get_io_channel)(struct spdk_bdev *bdev, uint32_t priority);
|
|
};
|
|
|
|
/** Blockdev I/O completion status */
|
|
enum spdk_bdev_io_status {
|
|
SPDK_BDEV_IO_STATUS_NVME_ERROR = -2,
|
|
SPDK_BDEV_IO_STATUS_FAILED = -1,
|
|
SPDK_BDEV_IO_STATUS_PENDING = 0,
|
|
SPDK_BDEV_IO_STATUS_SUCCESS = 1,
|
|
};
|
|
|
|
/** Blockdev reset operation type */
|
|
enum spdk_bdev_reset_type {
|
|
/**
|
|
* A hard reset indicates that the blockdev layer should not
|
|
* invoke the completion callback for I/Os issued before the
|
|
* reset is issued but completed after the reset is complete.
|
|
*/
|
|
SPDK_BDEV_RESET_HARD,
|
|
|
|
/**
|
|
* A soft reset indicates that the blockdev layer should still
|
|
* invoke the completion callback for I/Os issued before the
|
|
* reset is issued but completed after the reset is complete.
|
|
*/
|
|
SPDK_BDEV_RESET_SOFT,
|
|
};
|
|
|
|
typedef spdk_event_fn spdk_bdev_io_completion_cb;
|
|
typedef void (*spdk_bdev_io_get_rbuf_cb)(struct spdk_bdev_io *bdev_io);
|
|
|
|
/**
|
|
* Block device I/O
|
|
*
|
|
* This is an I/O that is passed to an spdk_bdev.
|
|
*/
|
|
struct spdk_bdev_io {
|
|
/** Pointer to scratch area reserved for use by the driver consuming this spdk_bdev_io. */
|
|
void *ctx;
|
|
|
|
/** The block device that this I/O belongs to. */
|
|
struct spdk_bdev *bdev;
|
|
|
|
/** The I/O channel to submit this I/O on. */
|
|
struct spdk_io_channel *ch;
|
|
|
|
/** Generation value for each I/O. */
|
|
uint32_t gencnt;
|
|
|
|
/** Enumerated value representing the I/O type. */
|
|
enum spdk_bdev_io_type type;
|
|
|
|
union {
|
|
struct {
|
|
|
|
/** The unaligned rbuf originally allocated. */
|
|
void *buf_unaligned;
|
|
|
|
/** For basic read case, use our own iovec element. */
|
|
struct iovec iov;
|
|
|
|
/** For SG buffer cases, array of iovecs to transfer. */
|
|
struct iovec *iovs;
|
|
|
|
/** For SG buffer cases, number of iovecs in iovec array. */
|
|
int iovcnt;
|
|
|
|
/** For SG buffer cases, total size of data to be transferred. */
|
|
size_t len;
|
|
|
|
/** Starting offset (in bytes) of the blockdev for this I/O. */
|
|
uint64_t offset;
|
|
|
|
/** Indicate whether the blockdev layer to put rbuf or not. */
|
|
bool put_rbuf;
|
|
} read;
|
|
struct {
|
|
/** For basic write case, use our own iovec element */
|
|
struct iovec iov;
|
|
|
|
/** For SG buffer cases, array of iovecs to transfer. */
|
|
struct iovec *iovs;
|
|
|
|
/** For SG buffer cases, number of iovecs in iovec array. */
|
|
int iovcnt;
|
|
|
|
/** For SG buffer cases, total size of data to be transferred. */
|
|
size_t len;
|
|
|
|
/** Starting offset (in bytes) of the blockdev for this I/O. */
|
|
uint64_t offset;
|
|
} write;
|
|
struct {
|
|
/** Represents the unmap block descriptors. */
|
|
struct spdk_scsi_unmap_bdesc *unmap_bdesc;
|
|
|
|
/** Count of unmap block descriptors. */
|
|
uint16_t bdesc_count;
|
|
} unmap;
|
|
struct {
|
|
/** Represents starting offset in bytes of the range to be flushed. */
|
|
uint64_t offset;
|
|
|
|
/** Represents the number of bytes to be flushed, starting at offset. */
|
|
uint64_t length;
|
|
} flush;
|
|
struct {
|
|
enum spdk_bdev_reset_type type;
|
|
} reset;
|
|
} u;
|
|
|
|
/** Error information from a device */
|
|
union {
|
|
/** Only valid when status is SPDK_BDEV_IO_STATUS_NVME_ERROR */
|
|
struct {
|
|
/** NVMe status code type */
|
|
int sct;
|
|
/** NVMe status code */
|
|
int sc;
|
|
} nvme;
|
|
} error;
|
|
|
|
/** User function that will be called when this completes */
|
|
spdk_bdev_io_completion_cb cb;
|
|
|
|
/** Context that will be passed to the completion callback */
|
|
void *caller_ctx;
|
|
|
|
struct spdk_event *cb_event;
|
|
|
|
/** Callback for when rbuf is allocated */
|
|
spdk_bdev_io_get_rbuf_cb get_rbuf_cb;
|
|
|
|
/** Status for the IO */
|
|
enum spdk_bdev_io_status status;
|
|
|
|
/** Used in virtual device (e.g., RAID), indicates its parent spdk_bdev_io **/
|
|
struct spdk_bdev_io *parent;
|
|
|
|
/** Used in virtual device (e.g., RAID) for storing multiple child device I/Os **/
|
|
TAILQ_HEAD(child_io, spdk_bdev_io) child_io;
|
|
|
|
/** Member used for linking child I/Os together. */
|
|
TAILQ_ENTRY(spdk_bdev_io) link;
|
|
|
|
/** Entry to the list need_buf of struct spdk_bdev. */
|
|
TAILQ_ENTRY(spdk_bdev_io) rbuf_link;
|
|
|
|
/** Per I/O context for use by the blockdev module */
|
|
uint8_t driver_ctx[0];
|
|
|
|
/* No members may be added after driver_ctx! */
|
|
};
|
|
|
|
struct spdk_bdev *spdk_bdev_get_by_name(const char *bdev_name);
|
|
void spdk_bdev_unregister(struct spdk_bdev *bdev);
|
|
|
|
struct spdk_bdev *spdk_bdev_first(void);
|
|
struct spdk_bdev *spdk_bdev_next(struct spdk_bdev *prev);
|
|
|
|
bool spdk_bdev_io_type_supported(struct spdk_bdev *bdev, enum spdk_bdev_io_type io_type);
|
|
|
|
struct spdk_bdev_io *spdk_bdev_read(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
|
|
void *buf, uint64_t offset, uint64_t nbytes,
|
|
spdk_bdev_io_completion_cb cb, void *cb_arg);
|
|
struct spdk_bdev_io *
|
|
spdk_bdev_readv(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
|
|
struct iovec *iov, int iovcnt,
|
|
uint64_t offset, uint64_t nbytes,
|
|
spdk_bdev_io_completion_cb cb, void *cb_arg);
|
|
struct spdk_bdev_io *spdk_bdev_write(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
|
|
void *buf, uint64_t offset, uint64_t nbytes,
|
|
spdk_bdev_io_completion_cb cb, void *cb_arg);
|
|
struct spdk_bdev_io *spdk_bdev_writev(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
|
|
struct iovec *iov, int iovcnt,
|
|
uint64_t offset, uint64_t len,
|
|
spdk_bdev_io_completion_cb cb, void *cb_arg);
|
|
struct spdk_bdev_io *spdk_bdev_unmap(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
|
|
struct spdk_scsi_unmap_bdesc *unmap_d,
|
|
uint16_t bdesc_count,
|
|
spdk_bdev_io_completion_cb cb, void *cb_arg);
|
|
struct spdk_bdev_io *spdk_bdev_flush(struct spdk_bdev *bdev, struct spdk_io_channel *ch,
|
|
uint64_t offset, uint64_t length,
|
|
spdk_bdev_io_completion_cb cb, void *cb_arg);
|
|
int spdk_bdev_io_submit(struct spdk_bdev_io *bdev_io);
|
|
int spdk_bdev_free_io(struct spdk_bdev_io *bdev_io);
|
|
int spdk_bdev_reset(struct spdk_bdev *bdev, enum spdk_bdev_reset_type,
|
|
spdk_bdev_io_completion_cb cb, void *cb_arg);
|
|
struct spdk_io_channel *spdk_bdev_get_io_channel(struct spdk_bdev *bdev, uint32_t priority);
|
|
#endif /* SPDK_BDEV_H_ */
|