numam-spdk/lib/nvme/nvme_pcie.c
Darek Stojaczyk 8ee5ca50e7 nvme_pcie: re-probe the pci bus on hotplug event
Explicitly attaching a PCI device with spdk_pci_device_attach()
bypasses any kind of blacklists and should be only used
on a user request. Hotplug uevent is certainly not a user
request and should respect the blacklist, hence it's now
changed to call spdk_pci_enumerate() to probe new devices.
The enumeration callback will reject devices other that the
one we got hotplug request for, so no behavior is changed
in that matter.

This patch also fixes undefined behavior caused by reading
unitialized struct nvme_pcie_enum_cb;

Change-Id: I1399fbdd426152a13ed75c85a52bc7f0491ce287
Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com>
Reviewed-on: https://review.gerrithub.io/433867
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
Reviewed-by: Jim Harris <james.r.harris@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
2018-11-20 15:05:01 +00:00

2145 lines
56 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* Copyright (c) 2017, IBM Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NVMe over PCIe transport
*/
#include "spdk/stdinc.h"
#include "spdk/env.h"
#include "spdk/likely.h"
#include "nvme_internal.h"
#include "nvme_uevent.h"
/*
* Number of completion queue entries to process before ringing the
* completion queue doorbell.
*/
#define NVME_MIN_COMPLETIONS (1)
#define NVME_MAX_COMPLETIONS (128)
#define NVME_ADMIN_ENTRIES (128)
/*
* NVME_MAX_SGL_DESCRIPTORS defines the maximum number of descriptors in one SGL
* segment.
*/
#define NVME_MAX_SGL_DESCRIPTORS (253)
#define NVME_MAX_PRP_LIST_ENTRIES (506)
struct nvme_pcie_enum_ctx {
spdk_nvme_probe_cb probe_cb;
void *cb_ctx;
struct spdk_pci_addr pci_addr;
bool has_pci_addr;
};
/* PCIe transport extensions for spdk_nvme_ctrlr */
struct nvme_pcie_ctrlr {
struct spdk_nvme_ctrlr ctrlr;
/** NVMe MMIO register space */
volatile struct spdk_nvme_registers *regs;
/** NVMe MMIO register size */
uint64_t regs_size;
/* BAR mapping address which contains controller memory buffer */
void *cmb_bar_virt_addr;
/* BAR physical address which contains controller memory buffer */
uint64_t cmb_bar_phys_addr;
/* Controller memory buffer size in Bytes */
uint64_t cmb_size;
/* Current offset of controller memory buffer, relative to start of BAR virt addr */
uint64_t cmb_current_offset;
/* Last valid offset into CMB, this differs if CMB memory registration occurs or not */
uint64_t cmb_max_offset;
void *cmb_mem_register_addr;
size_t cmb_mem_register_size;
bool cmb_io_data_supported;
/** stride in uint32_t units between doorbell registers (1 = 4 bytes, 2 = 8 bytes, ...) */
uint32_t doorbell_stride_u32;
/* Opaque handle to associated PCI device. */
struct spdk_pci_device *devhandle;
/* File descriptor returned from spdk_pci_device_claim(). Closed when ctrlr is detached. */
int claim_fd;
/* Flag to indicate the MMIO register has been remapped */
bool is_remapped;
};
struct nvme_tracker {
TAILQ_ENTRY(nvme_tracker) tq_list;
struct nvme_request *req;
uint16_t cid;
uint16_t rsvd1: 15;
uint16_t active: 1;
uint32_t rsvd2;
uint64_t rsvd3;
uint64_t prp_sgl_bus_addr;
union {
uint64_t prp[NVME_MAX_PRP_LIST_ENTRIES];
struct spdk_nvme_sgl_descriptor sgl[NVME_MAX_SGL_DESCRIPTORS];
} u;
};
/*
* struct nvme_tracker must be exactly 4K so that the prp[] array does not cross a page boundary
* and so that there is no padding required to meet alignment requirements.
*/
SPDK_STATIC_ASSERT(sizeof(struct nvme_tracker) == 4096, "nvme_tracker is not 4K");
SPDK_STATIC_ASSERT((offsetof(struct nvme_tracker, u.sgl) & 7) == 0, "SGL must be Qword aligned");
/* PCIe transport extensions for spdk_nvme_qpair */
struct nvme_pcie_qpair {
/* Submission queue tail doorbell */
volatile uint32_t *sq_tdbl;
/* Completion queue head doorbell */
volatile uint32_t *cq_hdbl;
/* Submission queue shadow tail doorbell */
volatile uint32_t *sq_shadow_tdbl;
/* Completion queue shadow head doorbell */
volatile uint32_t *cq_shadow_hdbl;
/* Submission queue event index */
volatile uint32_t *sq_eventidx;
/* Completion queue event index */
volatile uint32_t *cq_eventidx;
/* Submission queue */
struct spdk_nvme_cmd *cmd;
/* Completion queue */
struct spdk_nvme_cpl *cpl;
TAILQ_HEAD(, nvme_tracker) free_tr;
TAILQ_HEAD(nvme_outstanding_tr_head, nvme_tracker) outstanding_tr;
/* Array of trackers indexed by command ID. */
struct nvme_tracker *tr;
uint16_t num_entries;
uint16_t max_completions_cap;
uint16_t sq_tail;
uint16_t cq_head;
uint16_t sq_head;
uint8_t phase;
bool is_enabled;
/*
* Base qpair structure.
* This is located after the hot data in this structure so that the important parts of
* nvme_pcie_qpair are in the same cache line.
*/
struct spdk_nvme_qpair qpair;
/*
* Fields below this point should not be touched on the normal I/O path.
*/
bool sq_in_cmb;
uint64_t cmd_bus_addr;
uint64_t cpl_bus_addr;
};
static int nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx,
struct spdk_pci_addr *pci_addr);
static int nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair);
static int nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair);
__thread struct nvme_pcie_ctrlr *g_thread_mmio_ctrlr = NULL;
static volatile uint16_t g_signal_lock;
static bool g_sigset = false;
static int hotplug_fd = -1;
static void
nvme_sigbus_fault_sighandler(int signum, siginfo_t *info, void *ctx)
{
void *map_address;
if (!__sync_bool_compare_and_swap(&g_signal_lock, 0, 1)) {
return;
}
assert(g_thread_mmio_ctrlr != NULL);
if (!g_thread_mmio_ctrlr->is_remapped) {
map_address = mmap((void *)g_thread_mmio_ctrlr->regs, g_thread_mmio_ctrlr->regs_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
if (map_address == MAP_FAILED) {
SPDK_ERRLOG("mmap failed\n");
g_signal_lock = 0;
return;
}
memset(map_address, 0xFF, sizeof(struct spdk_nvme_registers));
g_thread_mmio_ctrlr->regs = (volatile struct spdk_nvme_registers *)map_address;
g_thread_mmio_ctrlr->is_remapped = true;
}
g_signal_lock = 0;
return;
}
static void
nvme_pcie_ctrlr_setup_signal(void)
{
struct sigaction sa;
sa.sa_sigaction = nvme_sigbus_fault_sighandler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
sigaction(SIGBUS, &sa, NULL);
}
static int
_nvme_pcie_hotplug_monitor(void *cb_ctx, spdk_nvme_probe_cb probe_cb,
spdk_nvme_remove_cb remove_cb)
{
struct spdk_nvme_ctrlr *ctrlr, *tmp;
struct spdk_uevent event;
struct spdk_pci_addr pci_addr;
union spdk_nvme_csts_register csts;
struct spdk_nvme_ctrlr_process *proc;
while (spdk_get_uevent(hotplug_fd, &event) > 0) {
if (event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_UIO ||
event.subsystem == SPDK_NVME_UEVENT_SUBSYSTEM_VFIO) {
if (event.action == SPDK_NVME_UEVENT_ADD) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "add nvme address: %s\n",
event.traddr);
if (spdk_process_is_primary()) {
if (!spdk_pci_addr_parse(&pci_addr, event.traddr)) {
nvme_pcie_ctrlr_attach(probe_cb, cb_ctx, &pci_addr);
}
}
} else if (event.action == SPDK_NVME_UEVENT_REMOVE) {
struct spdk_nvme_transport_id trid;
memset(&trid, 0, sizeof(trid));
trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
snprintf(trid.traddr, sizeof(trid.traddr), "%s", event.traddr);
ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
if (ctrlr == NULL) {
return 0;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "remove nvme address: %s\n",
event.traddr);
nvme_ctrlr_fail(ctrlr, true);
/* get the user app to clean up and stop I/O */
if (remove_cb) {
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
remove_cb(cb_ctx, ctrlr);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
}
}
}
}
/* This is a work around for vfio-attached device hot remove detection. */
TAILQ_FOREACH_SAFE(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq, tmp) {
/* NVMe controller BAR must be mapped to secondary process space before any access. */
proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
if (proc) {
csts = spdk_nvme_ctrlr_get_regs_csts(ctrlr);
if (csts.raw == 0xffffffffU) {
nvme_ctrlr_fail(ctrlr, true);
if (remove_cb) {
nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
remove_cb(cb_ctx, ctrlr);
nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
}
}
}
}
return 0;
}
static inline struct nvme_pcie_ctrlr *
nvme_pcie_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE);
return SPDK_CONTAINEROF(ctrlr, struct nvme_pcie_ctrlr, ctrlr);
}
static inline struct nvme_pcie_qpair *
nvme_pcie_qpair(struct spdk_nvme_qpair *qpair)
{
assert(qpair->trtype == SPDK_NVME_TRANSPORT_PCIE);
return SPDK_CONTAINEROF(qpair, struct nvme_pcie_qpair, qpair);
}
static volatile void *
nvme_pcie_reg_addr(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
return (volatile void *)((uintptr_t)pctrlr->regs + offset);
}
int
nvme_pcie_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
g_thread_mmio_ctrlr = pctrlr;
spdk_mmio_write_4(nvme_pcie_reg_addr(ctrlr, offset), value);
g_thread_mmio_ctrlr = NULL;
return 0;
}
int
nvme_pcie_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
g_thread_mmio_ctrlr = pctrlr;
spdk_mmio_write_8(nvme_pcie_reg_addr(ctrlr, offset), value);
g_thread_mmio_ctrlr = NULL;
return 0;
}
int
nvme_pcie_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 4);
assert(value != NULL);
g_thread_mmio_ctrlr = pctrlr;
*value = spdk_mmio_read_4(nvme_pcie_reg_addr(ctrlr, offset));
g_thread_mmio_ctrlr = NULL;
if (~(*value) == 0) {
return -1;
}
return 0;
}
int
nvme_pcie_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
assert(offset <= sizeof(struct spdk_nvme_registers) - 8);
assert(value != NULL);
g_thread_mmio_ctrlr = pctrlr;
*value = spdk_mmio_read_8(nvme_pcie_reg_addr(ctrlr, offset));
g_thread_mmio_ctrlr = NULL;
if (~(*value) == 0) {
return -1;
}
return 0;
}
static int
nvme_pcie_ctrlr_set_asq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
{
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, asq),
value);
}
static int
nvme_pcie_ctrlr_set_acq(struct nvme_pcie_ctrlr *pctrlr, uint64_t value)
{
return nvme_pcie_ctrlr_set_reg_8(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, acq),
value);
}
static int
nvme_pcie_ctrlr_set_aqa(struct nvme_pcie_ctrlr *pctrlr, const union spdk_nvme_aqa_register *aqa)
{
return nvme_pcie_ctrlr_set_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, aqa.raw),
aqa->raw);
}
static int
nvme_pcie_ctrlr_get_cmbloc(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbloc_register *cmbloc)
{
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbloc.raw),
&cmbloc->raw);
}
static int
nvme_pcie_ctrlr_get_cmbsz(struct nvme_pcie_ctrlr *pctrlr, union spdk_nvme_cmbsz_register *cmbsz)
{
return nvme_pcie_ctrlr_get_reg_4(&pctrlr->ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw),
&cmbsz->raw);
}
uint32_t
nvme_pcie_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
/*
* For commands requiring more than 2 PRP entries, one PRP will be
* embedded in the command (prp1), and the rest of the PRP entries
* will be in a list pointed to by the command (prp2). This means
* that real max number of PRP entries we support is 506+1, which
* results in a max xfer size of 506*ctrlr->page_size.
*/
return NVME_MAX_PRP_LIST_ENTRIES * ctrlr->page_size;
}
uint16_t
nvme_pcie_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
return NVME_MAX_SGL_DESCRIPTORS;
}
static void
nvme_pcie_ctrlr_map_cmb(struct nvme_pcie_ctrlr *pctrlr)
{
int rc;
void *addr;
uint32_t bir;
union spdk_nvme_cmbsz_register cmbsz;
union spdk_nvme_cmbloc_register cmbloc;
uint64_t size, unit_size, offset, bar_size, bar_phys_addr;
uint64_t mem_register_start, mem_register_end;
if (nvme_pcie_ctrlr_get_cmbsz(pctrlr, &cmbsz) ||
nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
SPDK_ERRLOG("get registers failed\n");
goto exit;
}
if (!cmbsz.bits.sz) {
goto exit;
}
bir = cmbloc.bits.bir;
/* Values 0 2 3 4 5 are valid for BAR */
if (bir > 5 || bir == 1) {
goto exit;
}
/* unit size for 4KB/64KB/1MB/16MB/256MB/4GB/64GB */
unit_size = (uint64_t)1 << (12 + 4 * cmbsz.bits.szu);
/* controller memory buffer size in Bytes */
size = unit_size * cmbsz.bits.sz;
/* controller memory buffer offset from BAR in Bytes */
offset = unit_size * cmbloc.bits.ofst;
rc = spdk_pci_device_map_bar(pctrlr->devhandle, bir, &addr,
&bar_phys_addr, &bar_size);
if ((rc != 0) || addr == NULL) {
goto exit;
}
if (offset > bar_size) {
goto exit;
}
if (size > bar_size - offset) {
goto exit;
}
pctrlr->cmb_bar_virt_addr = addr;
pctrlr->cmb_bar_phys_addr = bar_phys_addr;
pctrlr->cmb_size = size;
pctrlr->cmb_current_offset = offset;
pctrlr->cmb_max_offset = offset + size;
if (!cmbsz.bits.sqs) {
pctrlr->ctrlr.opts.use_cmb_sqs = false;
}
/* If only SQS is supported use legacy mapping */
if (cmbsz.bits.sqs && !(cmbsz.bits.wds || cmbsz.bits.rds)) {
return;
}
/* If CMB is less than 4MiB in size then abort CMB mapping */
if (pctrlr->cmb_size < (1ULL << 22)) {
goto exit;
}
mem_register_start = (((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + 0x1fffff) & ~(0x200000 - 1));
mem_register_end = ((uintptr_t)pctrlr->cmb_bar_virt_addr + offset + pctrlr->cmb_size);
mem_register_end &= ~(uint64_t)(0x200000 - 1);
pctrlr->cmb_mem_register_addr = (void *)mem_register_start;
pctrlr->cmb_mem_register_size = mem_register_end - mem_register_start;
rc = spdk_mem_register(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
if (rc) {
SPDK_ERRLOG("spdk_mem_register() failed\n");
goto exit;
}
pctrlr->cmb_current_offset = mem_register_start - ((uint64_t)pctrlr->cmb_bar_virt_addr);
pctrlr->cmb_max_offset = mem_register_end - ((uint64_t)pctrlr->cmb_bar_virt_addr);
pctrlr->cmb_io_data_supported = true;
return;
exit:
pctrlr->cmb_bar_virt_addr = NULL;
pctrlr->ctrlr.opts.use_cmb_sqs = false;
return;
}
static int
nvme_pcie_ctrlr_unmap_cmb(struct nvme_pcie_ctrlr *pctrlr)
{
int rc = 0;
union spdk_nvme_cmbloc_register cmbloc;
void *addr = pctrlr->cmb_bar_virt_addr;
if (addr) {
if (pctrlr->cmb_mem_register_addr) {
spdk_mem_unregister(pctrlr->cmb_mem_register_addr, pctrlr->cmb_mem_register_size);
}
if (nvme_pcie_ctrlr_get_cmbloc(pctrlr, &cmbloc)) {
SPDK_ERRLOG("get_cmbloc() failed\n");
return -EIO;
}
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, cmbloc.bits.bir, addr);
}
return rc;
}
static int
nvme_pcie_ctrlr_alloc_cmb(struct spdk_nvme_ctrlr *ctrlr, uint64_t length, uint64_t aligned,
uint64_t *offset)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
uint64_t round_offset;
round_offset = pctrlr->cmb_current_offset;
round_offset = (round_offset + (aligned - 1)) & ~(aligned - 1);
/* CMB may only consume part of the BAR, calculate accordingly */
if (round_offset + length > pctrlr->cmb_max_offset) {
SPDK_ERRLOG("Tried to allocate past valid CMB range!\n");
return -1;
}
*offset = round_offset;
pctrlr->cmb_current_offset = round_offset + length;
return 0;
}
void *
nvme_pcie_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
uint64_t offset;
if (pctrlr->cmb_bar_virt_addr == NULL) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB not available\n");
return NULL;
}
if (!pctrlr->cmb_io_data_supported) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "CMB doesn't support I/O data\n");
return NULL;
}
if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, size, 4, &offset) != 0) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "%zu-byte CMB allocation failed\n", size);
return NULL;
}
return pctrlr->cmb_bar_virt_addr + offset;
}
int
nvme_pcie_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size)
{
/*
* Do nothing for now.
* TODO: Track free space so buffers may be reused.
*/
SPDK_ERRLOG("%s: no deallocation for CMB buffers yet!\n",
__func__);
return 0;
}
static int
nvme_pcie_ctrlr_allocate_bars(struct nvme_pcie_ctrlr *pctrlr)
{
int rc;
void *addr;
uint64_t phys_addr, size;
rc = spdk_pci_device_map_bar(pctrlr->devhandle, 0, &addr,
&phys_addr, &size);
pctrlr->regs = (volatile struct spdk_nvme_registers *)addr;
if ((pctrlr->regs == NULL) || (rc != 0)) {
SPDK_ERRLOG("nvme_pcicfg_map_bar failed with rc %d or bar %p\n",
rc, pctrlr->regs);
return -1;
}
pctrlr->regs_size = size;
nvme_pcie_ctrlr_map_cmb(pctrlr);
return 0;
}
static int
nvme_pcie_ctrlr_free_bars(struct nvme_pcie_ctrlr *pctrlr)
{
int rc = 0;
void *addr = (void *)pctrlr->regs;
if (pctrlr->ctrlr.is_removed) {
return rc;
}
rc = nvme_pcie_ctrlr_unmap_cmb(pctrlr);
if (rc != 0) {
SPDK_ERRLOG("nvme_ctrlr_unmap_cmb failed with error code %d\n", rc);
return -1;
}
if (addr) {
/* NOTE: addr may have been remapped here. We're relying on DPDK to call
* munmap internally.
*/
rc = spdk_pci_device_unmap_bar(pctrlr->devhandle, 0, addr);
}
return rc;
}
static int
nvme_pcie_ctrlr_construct_admin_qpair(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_qpair *pqpair;
int rc;
pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
if (pqpair == NULL) {
return -ENOMEM;
}
pqpair->num_entries = NVME_ADMIN_ENTRIES;
ctrlr->adminq = &pqpair->qpair;
rc = nvme_qpair_init(ctrlr->adminq,
0, /* qpair ID */
ctrlr,
SPDK_NVME_QPRIO_URGENT,
NVME_ADMIN_ENTRIES);
if (rc != 0) {
return rc;
}
return nvme_pcie_qpair_construct(ctrlr->adminq);
}
/* This function must only be called while holding g_spdk_nvme_driver->lock */
static int
pcie_nvme_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
{
struct spdk_nvme_transport_id trid = {};
struct nvme_pcie_enum_ctx *enum_ctx = ctx;
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_pci_addr pci_addr;
pci_addr = spdk_pci_device_get_addr(pci_dev);
trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
spdk_pci_addr_fmt(trid.traddr, sizeof(trid.traddr), &pci_addr);
/* Verify that this controller is not already attached */
ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(&trid);
if (ctrlr) {
if (spdk_process_is_primary()) {
/* Already attached */
return 0;
} else {
return nvme_ctrlr_add_process(ctrlr, pci_dev);
}
}
/* check whether user passes the pci_addr */
if (enum_ctx->has_pci_addr &&
(spdk_pci_addr_compare(&pci_addr, &enum_ctx->pci_addr) != 0)) {
return 1;
}
return nvme_ctrlr_probe(&trid, pci_dev,
enum_ctx->probe_cb, enum_ctx->cb_ctx);
}
int
nvme_pcie_ctrlr_scan(const struct spdk_nvme_transport_id *trid,
void *cb_ctx,
spdk_nvme_probe_cb probe_cb,
spdk_nvme_remove_cb remove_cb,
bool direct_connect)
{
struct nvme_pcie_enum_ctx enum_ctx = {};
enum_ctx.probe_cb = probe_cb;
enum_ctx.cb_ctx = cb_ctx;
if (strlen(trid->traddr) != 0) {
if (spdk_pci_addr_parse(&enum_ctx.pci_addr, trid->traddr)) {
return -1;
}
enum_ctx.has_pci_addr = true;
}
if (hotplug_fd < 0) {
hotplug_fd = spdk_uevent_connect();
if (hotplug_fd < 0) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "Failed to open uevent netlink socket\n");
}
} else {
_nvme_pcie_hotplug_monitor(cb_ctx, probe_cb, remove_cb);
}
if (enum_ctx.has_pci_addr == false) {
return spdk_pci_nvme_enumerate(pcie_nvme_enum_cb, &enum_ctx);
} else {
return spdk_pci_nvme_device_attach(pcie_nvme_enum_cb, &enum_ctx, &enum_ctx.pci_addr);
}
}
static int
nvme_pcie_ctrlr_attach(spdk_nvme_probe_cb probe_cb, void *cb_ctx, struct spdk_pci_addr *pci_addr)
{
struct nvme_pcie_enum_ctx enum_ctx;
enum_ctx.probe_cb = probe_cb;
enum_ctx.cb_ctx = cb_ctx;
enum_ctx.has_pci_addr = true;
enum_ctx.pci_addr = *pci_addr;
return spdk_pci_nvme_enumerate(pcie_nvme_enum_cb, &enum_ctx);
}
struct spdk_nvme_ctrlr *nvme_pcie_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
const struct spdk_nvme_ctrlr_opts *opts,
void *devhandle)
{
struct spdk_pci_device *pci_dev = devhandle;
struct nvme_pcie_ctrlr *pctrlr;
union spdk_nvme_cap_register cap;
union spdk_nvme_vs_register vs;
uint32_t cmd_reg;
int rc, claim_fd;
struct spdk_pci_id pci_id;
struct spdk_pci_addr pci_addr;
if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) {
SPDK_ERRLOG("could not parse pci address\n");
return NULL;
}
claim_fd = spdk_pci_device_claim(&pci_addr);
if (claim_fd < 0) {
SPDK_ERRLOG("could not claim device %s\n", trid->traddr);
return NULL;
}
pctrlr = spdk_zmalloc(sizeof(struct nvme_pcie_ctrlr), 64, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
if (pctrlr == NULL) {
close(claim_fd);
SPDK_ERRLOG("could not allocate ctrlr\n");
return NULL;
}
pctrlr->is_remapped = false;
pctrlr->ctrlr.is_removed = false;
pctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_PCIE;
pctrlr->devhandle = devhandle;
pctrlr->ctrlr.opts = *opts;
pctrlr->claim_fd = claim_fd;
memcpy(&pctrlr->ctrlr.trid, trid, sizeof(pctrlr->ctrlr.trid));
rc = nvme_pcie_ctrlr_allocate_bars(pctrlr);
if (rc != 0) {
close(claim_fd);
spdk_free(pctrlr);
return NULL;
}
/* Enable PCI busmaster and disable INTx */
spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4);
cmd_reg |= 0x404;
spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4);
if (nvme_ctrlr_get_cap(&pctrlr->ctrlr, &cap)) {
SPDK_ERRLOG("get_cap() failed\n");
close(claim_fd);
spdk_free(pctrlr);
return NULL;
}
if (nvme_ctrlr_get_vs(&pctrlr->ctrlr, &vs)) {
SPDK_ERRLOG("get_vs() failed\n");
close(claim_fd);
spdk_free(pctrlr);
return NULL;
}
nvme_ctrlr_init_cap(&pctrlr->ctrlr, &cap, &vs);
/* Doorbell stride is 2 ^ (dstrd + 2),
* but we want multiples of 4, so drop the + 2 */
pctrlr->doorbell_stride_u32 = 1 << cap.bits.dstrd;
rc = nvme_ctrlr_construct(&pctrlr->ctrlr);
if (rc != 0) {
nvme_ctrlr_destruct(&pctrlr->ctrlr);
return NULL;
}
pci_id = spdk_pci_device_get_id(pci_dev);
pctrlr->ctrlr.quirks = nvme_get_quirks(&pci_id);
rc = nvme_pcie_ctrlr_construct_admin_qpair(&pctrlr->ctrlr);
if (rc != 0) {
nvme_ctrlr_destruct(&pctrlr->ctrlr);
return NULL;
}
/* Construct the primary process properties */
rc = nvme_ctrlr_add_process(&pctrlr->ctrlr, pci_dev);
if (rc != 0) {
nvme_ctrlr_destruct(&pctrlr->ctrlr);
return NULL;
}
if (g_sigset != true) {
nvme_pcie_ctrlr_setup_signal();
g_sigset = true;
}
return &pctrlr->ctrlr;
}
int
nvme_pcie_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct nvme_pcie_qpair *padminq = nvme_pcie_qpair(ctrlr->adminq);
union spdk_nvme_aqa_register aqa;
if (nvme_pcie_ctrlr_set_asq(pctrlr, padminq->cmd_bus_addr)) {
SPDK_ERRLOG("set_asq() failed\n");
return -EIO;
}
if (nvme_pcie_ctrlr_set_acq(pctrlr, padminq->cpl_bus_addr)) {
SPDK_ERRLOG("set_acq() failed\n");
return -EIO;
}
aqa.raw = 0;
/* acqs and asqs are 0-based. */
aqa.bits.acqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
aqa.bits.asqs = nvme_pcie_qpair(ctrlr->adminq)->num_entries - 1;
if (nvme_pcie_ctrlr_set_aqa(pctrlr, &aqa)) {
SPDK_ERRLOG("set_aqa() failed\n");
return -EIO;
}
return 0;
}
int
nvme_pcie_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct spdk_pci_device *devhandle = nvme_ctrlr_proc_get_devhandle(ctrlr);
close(pctrlr->claim_fd);
if (ctrlr->adminq) {
nvme_pcie_qpair_destroy(ctrlr->adminq);
}
nvme_ctrlr_destruct_finish(ctrlr);
nvme_ctrlr_free_processes(ctrlr);
nvme_pcie_ctrlr_free_bars(pctrlr);
if (devhandle) {
spdk_pci_device_detach(devhandle);
}
spdk_free(pctrlr);
return 0;
}
static void
nvme_qpair_construct_tracker(struct nvme_tracker *tr, uint16_t cid, uint64_t phys_addr)
{
tr->prp_sgl_bus_addr = phys_addr + offsetof(struct nvme_tracker, u.prp);
tr->cid = cid;
tr->active = false;
}
int
nvme_pcie_qpair_reset(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
pqpair->sq_tail = pqpair->cq_head = 0;
/*
* First time through the completion queue, HW will set phase
* bit on completions to 1. So set this to 1 here, indicating
* we're looking for a 1 to know which entries have completed.
* we'll toggle the bit each time when the completion queue
* rolls over.
*/
pqpair->phase = 1;
memset(pqpair->cmd, 0,
pqpair->num_entries * sizeof(struct spdk_nvme_cmd));
memset(pqpair->cpl, 0,
pqpair->num_entries * sizeof(struct spdk_nvme_cpl));
return 0;
}
static int
nvme_pcie_qpair_construct(struct spdk_nvme_qpair *qpair)
{
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr;
uint16_t i;
volatile uint32_t *doorbell_base;
uint64_t offset;
uint16_t num_trackers;
size_t page_align = 0x200000;
uint32_t flags = SPDK_MALLOC_DMA;
/*
* Limit the maximum number of completions to return per call to prevent wraparound,
* and calculate how many trackers can be submitted at once without overflowing the
* completion queue.
*/
pqpair->max_completions_cap = pqpair->num_entries / 4;
pqpair->max_completions_cap = spdk_max(pqpair->max_completions_cap, NVME_MIN_COMPLETIONS);
pqpair->max_completions_cap = spdk_min(pqpair->max_completions_cap, NVME_MAX_COMPLETIONS);
num_trackers = pqpair->num_entries - pqpair->max_completions_cap;
SPDK_INFOLOG(SPDK_LOG_NVME, "max_completions_cap = %" PRIu16 " num_trackers = %" PRIu16 "\n",
pqpair->max_completions_cap, num_trackers);
assert(num_trackers != 0);
pqpair->sq_in_cmb = false;
if (nvme_qpair_is_admin_queue(&pqpair->qpair)) {
flags |= SPDK_MALLOC_SHARE;
}
/* cmd and cpl rings must be aligned on page size boundaries. */
if (ctrlr->opts.use_cmb_sqs) {
if (nvme_pcie_ctrlr_alloc_cmb(ctrlr, pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
sysconf(_SC_PAGESIZE), &offset) == 0) {
pqpair->cmd = pctrlr->cmb_bar_virt_addr + offset;
pqpair->cmd_bus_addr = pctrlr->cmb_bar_phys_addr + offset;
pqpair->sq_in_cmb = true;
}
}
/* To ensure physical address contiguity we make each ring occupy
* a single hugepage only. See MAX_IO_QUEUE_ENTRIES.
*/
if (pqpair->sq_in_cmb == false) {
pqpair->cmd = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cmd),
page_align, &pqpair->cmd_bus_addr,
SPDK_ENV_SOCKET_ID_ANY, flags);
if (pqpair->cmd == NULL) {
SPDK_ERRLOG("alloc qpair_cmd failed\n");
return -ENOMEM;
}
}
pqpair->cpl = spdk_zmalloc(pqpair->num_entries * sizeof(struct spdk_nvme_cpl),
page_align, &pqpair->cpl_bus_addr,
SPDK_ENV_SOCKET_ID_ANY, flags);
if (pqpair->cpl == NULL) {
SPDK_ERRLOG("alloc qpair_cpl failed\n");
return -ENOMEM;
}
doorbell_base = &pctrlr->regs->doorbell[0].sq_tdbl;
pqpair->sq_tdbl = doorbell_base + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
pqpair->cq_hdbl = doorbell_base + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
/*
* Reserve space for all of the trackers in a single allocation.
* struct nvme_tracker must be padded so that its size is already a power of 2.
* This ensures the PRP list embedded in the nvme_tracker object will not span a
* 4KB boundary, while allowing access to trackers in tr[] via normal array indexing.
*/
pqpair->tr = spdk_zmalloc(num_trackers * sizeof(*tr), sizeof(*tr), NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
if (pqpair->tr == NULL) {
SPDK_ERRLOG("nvme_tr failed\n");
return -ENOMEM;
}
TAILQ_INIT(&pqpair->free_tr);
TAILQ_INIT(&pqpair->outstanding_tr);
for (i = 0; i < num_trackers; i++) {
tr = &pqpair->tr[i];
nvme_qpair_construct_tracker(tr, i, spdk_vtophys(tr));
TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
}
nvme_pcie_qpair_reset(qpair);
return 0;
}
static inline void
nvme_pcie_copy_command(struct spdk_nvme_cmd *dst, const struct spdk_nvme_cmd *src)
{
/* dst and src are known to be non-overlapping and 64-byte aligned. */
#if defined(__AVX__)
__m256i *d256 = (__m256i *)dst;
const __m256i *s256 = (const __m256i *)src;
_mm256_store_si256(&d256[0], _mm256_load_si256(&s256[0]));
_mm256_store_si256(&d256[1], _mm256_load_si256(&s256[1]));
#elif defined(__SSE2__)
__m128i *d128 = (__m128i *)dst;
const __m128i *s128 = (const __m128i *)src;
_mm_store_si128(&d128[0], _mm_load_si128(&s128[0]));
_mm_store_si128(&d128[1], _mm_load_si128(&s128[1]));
_mm_store_si128(&d128[2], _mm_load_si128(&s128[2]));
_mm_store_si128(&d128[3], _mm_load_si128(&s128[3]));
#else
*dst = *src;
#endif
}
/**
* Note: the ctrlr_lock must be held when calling this function.
*/
static void
nvme_pcie_qpair_insert_pending_admin_request(struct spdk_nvme_qpair *qpair,
struct nvme_request *req, struct spdk_nvme_cpl *cpl)
{
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_request *active_req = req;
struct spdk_nvme_ctrlr_process *active_proc;
/*
* The admin request is from another process. Move to the per
* process list for that process to handle it later.
*/
assert(nvme_qpair_is_admin_queue(qpair));
assert(active_req->pid != getpid());
active_proc = spdk_nvme_ctrlr_get_process(ctrlr, active_req->pid);
if (active_proc) {
/* Save the original completion information */
memcpy(&active_req->cpl, cpl, sizeof(*cpl));
STAILQ_INSERT_TAIL(&active_proc->active_reqs, active_req, stailq);
} else {
SPDK_ERRLOG("The owning process (pid %d) is not found. Dropping the request.\n",
active_req->pid);
nvme_free_request(active_req);
}
}
/**
* Note: the ctrlr_lock must be held when calling this function.
*/
static void
nvme_pcie_qpair_complete_pending_admin_request(struct spdk_nvme_qpair *qpair)
{
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_request *req, *tmp_req;
pid_t pid = getpid();
struct spdk_nvme_ctrlr_process *proc;
/*
* Check whether there is any pending admin request from
* other active processes.
*/
assert(nvme_qpair_is_admin_queue(qpair));
proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
if (!proc) {
SPDK_ERRLOG("the active process (pid %d) is not found for this controller.\n", pid);
assert(proc);
return;
}
STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) {
STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq);
assert(req->pid == pid);
nvme_complete_request(req, &req->cpl);
nvme_free_request(req);
}
}
static inline int
nvme_pcie_qpair_need_event(uint16_t event_idx, uint16_t new_idx, uint16_t old)
{
return (uint16_t)(new_idx - event_idx) <= (uint16_t)(new_idx - old);
}
static bool
nvme_pcie_qpair_update_mmio_required(struct spdk_nvme_qpair *qpair, uint16_t value,
volatile uint32_t *shadow_db,
volatile uint32_t *eventidx)
{
uint16_t old;
if (!shadow_db) {
return true;
}
old = *shadow_db;
*shadow_db = value;
if (!nvme_pcie_qpair_need_event(*eventidx, value, old)) {
return false;
}
return true;
}
static void
nvme_pcie_qpair_submit_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
struct nvme_request *req;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
req = tr->req;
assert(req != NULL);
req->timed_out = false;
if (spdk_unlikely(pctrlr->ctrlr.timeout_enabled)) {
req->submit_tick = spdk_get_ticks();
} else {
req->submit_tick = 0;
}
pqpair->tr[tr->cid].active = true;
/* Copy the command from the tracker to the submission queue. */
nvme_pcie_copy_command(&pqpair->cmd[pqpair->sq_tail], &req->cmd);
if (++pqpair->sq_tail == pqpair->num_entries) {
pqpair->sq_tail = 0;
}
if (pqpair->sq_tail == pqpair->sq_head) {
SPDK_ERRLOG("sq_tail is passing sq_head!\n");
}
spdk_wmb();
if (spdk_likely(nvme_pcie_qpair_update_mmio_required(qpair,
pqpair->sq_tail,
pqpair->sq_shadow_tdbl,
pqpair->sq_eventidx))) {
g_thread_mmio_ctrlr = pctrlr;
spdk_mmio_write_4(pqpair->sq_tdbl, pqpair->sq_tail);
g_thread_mmio_ctrlr = NULL;
}
}
static void
nvme_pcie_qpair_complete_tracker(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr,
struct spdk_nvme_cpl *cpl, bool print_on_error)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_request *req;
bool retry, error, was_active;
bool req_from_current_proc = true;
req = tr->req;
assert(req != NULL);
error = spdk_nvme_cpl_is_error(cpl);
retry = error && nvme_completion_is_retry(cpl) &&
req->retries < spdk_nvme_retry_count;
if (error && print_on_error) {
nvme_qpair_print_command(qpair, &req->cmd);
nvme_qpair_print_completion(qpair, cpl);
}
was_active = pqpair->tr[cpl->cid].active;
pqpair->tr[cpl->cid].active = false;
assert(cpl->cid == req->cmd.cid);
if (retry) {
req->retries++;
nvme_pcie_qpair_submit_tracker(qpair, tr);
} else {
if (was_active) {
/* Only check admin requests from different processes. */
if (nvme_qpair_is_admin_queue(qpair) && req->pid != getpid()) {
req_from_current_proc = false;
nvme_pcie_qpair_insert_pending_admin_request(qpair, req, cpl);
} else {
nvme_complete_request(req, cpl);
}
}
if (req_from_current_proc == true) {
nvme_free_request(req);
}
tr->req = NULL;
TAILQ_REMOVE(&pqpair->outstanding_tr, tr, tq_list);
TAILQ_INSERT_HEAD(&pqpair->free_tr, tr, tq_list);
/*
* If the controller is in the middle of resetting, don't
* try to submit queued requests here - let the reset logic
* handle that instead.
*/
if (!STAILQ_EMPTY(&qpair->queued_req) &&
!qpair->ctrlr->is_resetting) {
req = STAILQ_FIRST(&qpair->queued_req);
STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
nvme_qpair_submit_request(qpair, req);
}
}
}
static void
nvme_pcie_qpair_manual_complete_tracker(struct spdk_nvme_qpair *qpair,
struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
bool print_on_error)
{
struct spdk_nvme_cpl cpl;
memset(&cpl, 0, sizeof(cpl));
cpl.sqid = qpair->id;
cpl.cid = tr->cid;
cpl.status.sct = sct;
cpl.status.sc = sc;
cpl.status.dnr = dnr;
nvme_pcie_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
}
static void
nvme_pcie_qpair_abort_trackers(struct spdk_nvme_qpair *qpair, uint32_t dnr)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr, *temp;
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, temp) {
SPDK_ERRLOG("aborting outstanding command\n");
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_ABORTED_BY_REQUEST, dnr, true);
}
}
static void
nvme_pcie_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_tracker *tr;
tr = TAILQ_FIRST(&pqpair->outstanding_tr);
while (tr != NULL) {
assert(tr->req != NULL);
if (tr->req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
nvme_pcie_qpair_manual_complete_tracker(qpair, tr,
SPDK_NVME_SCT_GENERIC, SPDK_NVME_SC_ABORTED_SQ_DELETION, 0,
false);
tr = TAILQ_FIRST(&pqpair->outstanding_tr);
} else {
tr = TAILQ_NEXT(tr, tq_list);
}
}
}
static void
nvme_pcie_admin_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
nvme_pcie_admin_qpair_abort_aers(qpair);
}
static int
nvme_pcie_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_pcie_admin_qpair_destroy(qpair);
}
if (pqpair->cmd && !pqpair->sq_in_cmb) {
spdk_free(pqpair->cmd);
}
if (pqpair->cpl) {
spdk_free(pqpair->cpl);
}
if (pqpair->tr) {
spdk_free(pqpair->tr);
}
nvme_qpair_deinit(qpair);
spdk_free(pqpair);
return 0;
}
static void
nvme_pcie_admin_qpair_enable(struct spdk_nvme_qpair *qpair)
{
/*
* Manually abort each outstanding admin command. Do not retry
* admin commands found here, since they will be left over from
* a controller reset and its likely the context in which the
* command was issued no longer applies.
*/
nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */);
}
static void
nvme_pcie_io_qpair_enable(struct spdk_nvme_qpair *qpair)
{
/* Manually abort each outstanding I/O. */
nvme_pcie_qpair_abort_trackers(qpair, 0);
}
int
nvme_pcie_qpair_enable(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
pqpair->is_enabled = true;
if (nvme_qpair_is_io_queue(qpair)) {
nvme_pcie_io_qpair_enable(qpair);
} else {
nvme_pcie_admin_qpair_enable(qpair);
}
return 0;
}
static void
nvme_pcie_admin_qpair_disable(struct spdk_nvme_qpair *qpair)
{
nvme_pcie_admin_qpair_abort_aers(qpair);
}
static void
nvme_pcie_io_qpair_disable(struct spdk_nvme_qpair *qpair)
{
}
int
nvme_pcie_qpair_disable(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
pqpair->is_enabled = false;
if (nvme_qpair_is_io_queue(qpair)) {
nvme_pcie_io_qpair_disable(qpair);
} else {
nvme_pcie_admin_qpair_disable(qpair);
}
return 0;
}
int
nvme_pcie_qpair_fail(struct spdk_nvme_qpair *qpair)
{
nvme_pcie_qpair_abort_trackers(qpair, 1 /* do not retry */);
return 0;
}
static int
nvme_pcie_ctrlr_cmd_create_io_cq(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn,
void *cb_arg)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_CREATE_IO_CQ;
/*
* TODO: create a create io completion queue command data
* structure.
*/
cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
/*
* 0x2 = interrupts enabled
* 0x1 = physically contiguous
*/
cmd->cdw11 = 0x1;
cmd->dptr.prp.prp1 = pqpair->cpl_bus_addr;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
nvme_pcie_ctrlr_cmd_create_io_sq(struct spdk_nvme_ctrlr *ctrlr,
struct spdk_nvme_qpair *io_que, spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(io_que);
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_CREATE_IO_SQ;
/*
* TODO: create a create io submission queue command data
* structure.
*/
cmd->cdw10 = ((pqpair->num_entries - 1) << 16) | io_que->id;
/* 0x1 = physically contiguous */
cmd->cdw11 = (io_que->id << 16) | (io_que->qprio << 1) | 0x1;
cmd->dptr.prp.prp1 = pqpair->cmd_bus_addr;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
nvme_pcie_ctrlr_cmd_delete_io_cq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_DELETE_IO_CQ;
cmd->cdw10 = qpair->id;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
nvme_pcie_ctrlr_cmd_delete_io_sq(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
spdk_nvme_cmd_cb cb_fn, void *cb_arg)
{
struct nvme_request *req;
struct spdk_nvme_cmd *cmd;
req = nvme_allocate_request_null(ctrlr->adminq, cb_fn, cb_arg);
if (req == NULL) {
return -ENOMEM;
}
cmd = &req->cmd;
cmd->opc = SPDK_NVME_OPC_DELETE_IO_SQ;
cmd->cdw10 = qpair->id;
return nvme_ctrlr_submit_admin_request(ctrlr, req);
}
static int
_nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair,
uint16_t qid)
{
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(ctrlr);
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_completion_poll_status status;
int rc;
rc = nvme_pcie_ctrlr_cmd_create_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
SPDK_ERRLOG("nvme_create_io_cq failed!\n");
return -1;
}
rc = nvme_pcie_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
SPDK_ERRLOG("nvme_create_io_sq failed!\n");
/* Attempt to delete the completion queue */
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(qpair->ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return -1;
}
spdk_nvme_wait_for_completion(ctrlr->adminq, &status);
return -1;
}
if (ctrlr->shadow_doorbell) {
pqpair->sq_shadow_tdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
pqpair->cq_shadow_hdbl = ctrlr->shadow_doorbell + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
pqpair->sq_eventidx = ctrlr->eventidx + (2 * qpair->id + 0) * pctrlr->doorbell_stride_u32;
pqpair->cq_eventidx = ctrlr->eventidx + (2 * qpair->id + 1) * pctrlr->doorbell_stride_u32;
}
nvme_pcie_qpair_reset(qpair);
return 0;
}
struct spdk_nvme_qpair *
nvme_pcie_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
const struct spdk_nvme_io_qpair_opts *opts)
{
struct nvme_pcie_qpair *pqpair;
struct spdk_nvme_qpair *qpair;
int rc;
assert(ctrlr != NULL);
pqpair = spdk_zmalloc(sizeof(*pqpair), 64, NULL,
SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE);
if (pqpair == NULL) {
return NULL;
}
pqpair->num_entries = opts->io_queue_size;
qpair = &pqpair->qpair;
rc = nvme_qpair_init(qpair, qid, ctrlr, opts->qprio, opts->io_queue_requests);
if (rc != 0) {
nvme_pcie_qpair_destroy(qpair);
return NULL;
}
rc = nvme_pcie_qpair_construct(qpair);
if (rc != 0) {
nvme_pcie_qpair_destroy(qpair);
return NULL;
}
rc = _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qid);
if (rc != 0) {
SPDK_ERRLOG("I/O queue creation failed\n");
nvme_pcie_qpair_destroy(qpair);
return NULL;
}
return qpair;
}
int
nvme_pcie_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
return _nvme_pcie_ctrlr_create_io_qpair(ctrlr, qpair, qpair->id);
}
int
nvme_pcie_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
struct nvme_completion_poll_status status;
int rc;
assert(ctrlr != NULL);
if (ctrlr->is_removed) {
goto free;
}
/* Delete the I/O submission queue */
rc = nvme_pcie_ctrlr_cmd_delete_io_sq(ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
return -1;
}
if (qpair->no_deletion_notification_needed == 0) {
/* Complete any I/O in the completion queue */
nvme_pcie_qpair_process_completions(qpair, 0);
/* Abort the rest of the I/O */
nvme_pcie_qpair_abort_trackers(qpair, 1);
}
/* Delete the completion queue */
rc = nvme_pcie_ctrlr_cmd_delete_io_cq(ctrlr, qpair, nvme_completion_poll_cb, &status);
if (rc != 0) {
return rc;
}
if (spdk_nvme_wait_for_completion(ctrlr->adminq, &status)) {
return -1;
}
free:
nvme_pcie_qpair_destroy(qpair);
return 0;
}
static void
nvme_pcie_fail_request_bad_vtophys(struct spdk_nvme_qpair *qpair, struct nvme_tracker *tr)
{
/*
* Bad vtophys translation, so abort this request and return
* immediately.
*/
nvme_pcie_qpair_manual_complete_tracker(qpair, tr, SPDK_NVME_SCT_GENERIC,
SPDK_NVME_SC_INVALID_FIELD,
1 /* do not retry */, true);
}
/*
* Append PRP list entries to describe a virtually contiguous buffer starting at virt_addr of len bytes.
*
* *prp_index will be updated to account for the number of PRP entries used.
*/
static int
nvme_pcie_prp_list_append(struct nvme_tracker *tr, uint32_t *prp_index, void *virt_addr, size_t len,
uint32_t page_size)
{
struct spdk_nvme_cmd *cmd = &tr->req->cmd;
uintptr_t page_mask = page_size - 1;
uint64_t phys_addr;
uint32_t i;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp_index:%u virt_addr:%p len:%u\n",
*prp_index, virt_addr, (uint32_t)len);
if (spdk_unlikely(((uintptr_t)virt_addr & 3) != 0)) {
SPDK_ERRLOG("virt_addr %p not dword aligned\n", virt_addr);
return -EINVAL;
}
i = *prp_index;
while (len) {
uint32_t seg_len;
/*
* prp_index 0 is stored in prp1, and the rest are stored in the prp[] array,
* so prp_index == count is valid.
*/
if (spdk_unlikely(i > SPDK_COUNTOF(tr->u.prp))) {
SPDK_ERRLOG("out of PRP entries\n");
return -EINVAL;
}
phys_addr = spdk_vtophys(virt_addr);
if (spdk_unlikely(phys_addr == SPDK_VTOPHYS_ERROR)) {
SPDK_ERRLOG("vtophys(%p) failed\n", virt_addr);
return -EINVAL;
}
if (i == 0) {
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp1 = %p\n", (void *)phys_addr);
cmd->dptr.prp.prp1 = phys_addr;
seg_len = page_size - ((uintptr_t)virt_addr & page_mask);
} else {
if ((phys_addr & page_mask) != 0) {
SPDK_ERRLOG("PRP %u not page aligned (%p)\n", i, virt_addr);
return -EINVAL;
}
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp[%u] = %p\n", i - 1, (void *)phys_addr);
tr->u.prp[i - 1] = phys_addr;
seg_len = page_size;
}
seg_len = spdk_min(seg_len, len);
virt_addr += seg_len;
len -= seg_len;
i++;
}
cmd->psdt = SPDK_NVME_PSDT_PRP;
if (i <= 1) {
cmd->dptr.prp.prp2 = 0;
} else if (i == 2) {
cmd->dptr.prp.prp2 = tr->u.prp[0];
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p\n", (void *)cmd->dptr.prp.prp2);
} else {
cmd->dptr.prp.prp2 = tr->prp_sgl_bus_addr;
SPDK_DEBUGLOG(SPDK_LOG_NVME, "prp2 = %p (PRP list)\n", (void *)cmd->dptr.prp.prp2);
}
*prp_index = i;
return 0;
}
/**
* Build PRP list describing physically contiguous payload buffer.
*/
static int
nvme_pcie_qpair_build_contig_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
uint32_t prp_index = 0;
int rc;
rc = nvme_pcie_prp_list_append(tr, &prp_index, req->payload.contig_or_cb_arg + req->payload_offset,
req->payload_size, qpair->ctrlr->page_size);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return rc;
}
return 0;
}
#define _2MB_OFFSET(ptr) (((uintptr_t)(ptr)) & (0x200000 - 1))
/**
* Build SGL list describing scattered payload buffer.
*/
static int
nvme_pcie_qpair_build_hw_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
int rc;
void *virt_addr;
uint64_t phys_addr;
uint32_t remaining_transfer_len, remaining_user_sge_len, length;
struct spdk_nvme_sgl_descriptor *sgl;
uint32_t nseg = 0;
/*
* Build scattered payloads.
*/
assert(req->payload_size != 0);
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
assert(req->payload.next_sge_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
sgl = tr->u.sgl;
req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
req->cmd.dptr.sgl1.unkeyed.subtype = 0;
remaining_transfer_len = req->payload_size;
while (remaining_transfer_len > 0) {
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg,
&virt_addr, &remaining_user_sge_len);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
remaining_user_sge_len = spdk_min(remaining_user_sge_len, remaining_transfer_len);
remaining_transfer_len -= remaining_user_sge_len;
while (remaining_user_sge_len > 0) {
if (nseg >= NVME_MAX_SGL_DESCRIPTORS) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
phys_addr = spdk_vtophys(virt_addr);
if (phys_addr == SPDK_VTOPHYS_ERROR) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
length = spdk_min(remaining_user_sge_len, 0x200000 - _2MB_OFFSET(virt_addr));
remaining_user_sge_len -= length;
virt_addr += length;
if (nseg > 0 && phys_addr ==
(*(sgl - 1)).address + (*(sgl - 1)).unkeyed.length) {
/* extend previous entry */
(*(sgl - 1)).unkeyed.length += length;
continue;
}
sgl->unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
sgl->unkeyed.length = length;
sgl->address = phys_addr;
sgl->unkeyed.subtype = 0;
sgl++;
nseg++;
}
}
if (nseg == 1) {
/*
* The whole transfer can be described by a single SGL descriptor.
* Use the special case described by the spec where SGL1's type is Data Block.
* This means the SGL in the tracker is not used at all, so copy the first (and only)
* SGL element into SGL1.
*/
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
req->cmd.dptr.sgl1.address = tr->u.sgl[0].address;
req->cmd.dptr.sgl1.unkeyed.length = tr->u.sgl[0].unkeyed.length;
} else {
/* For now we can only support 1 SGL segment in NVMe controller */
req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
req->cmd.dptr.sgl1.address = tr->prp_sgl_bus_addr;
req->cmd.dptr.sgl1.unkeyed.length = nseg * sizeof(struct spdk_nvme_sgl_descriptor);
}
return 0;
}
/**
* Build PRP list describing scattered payload buffer.
*/
static int
nvme_pcie_qpair_build_prps_sgl_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req,
struct nvme_tracker *tr)
{
int rc;
void *virt_addr;
uint32_t remaining_transfer_len, length;
uint32_t prp_index = 0;
uint32_t page_size = qpair->ctrlr->page_size;
/*
* Build scattered payloads.
*/
assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
assert(req->payload.reset_sgl_fn != NULL);
req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
remaining_transfer_len = req->payload_size;
while (remaining_transfer_len > 0) {
assert(req->payload.next_sge_fn != NULL);
rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return -1;
}
length = spdk_min(remaining_transfer_len, length);
/*
* Any incompatible sges should have been handled up in the splitting routine,
* but assert here as an additional check.
*
* All SGEs except last must end on a page boundary.
*/
assert((length == remaining_transfer_len) ||
_is_page_aligned((uintptr_t)virt_addr + length, page_size));
rc = nvme_pcie_prp_list_append(tr, &prp_index, virt_addr, length, page_size);
if (rc) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
return rc;
}
remaining_transfer_len -= length;
}
return 0;
}
static inline bool
nvme_pcie_qpair_check_enabled(struct spdk_nvme_qpair *qpair)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
if (!pqpair->is_enabled &&
!qpair->ctrlr->is_resetting) {
nvme_qpair_enable(qpair);
}
return pqpair->is_enabled;
}
int
nvme_pcie_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req)
{
struct nvme_tracker *tr;
int rc = 0;
void *md_payload;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
nvme_pcie_qpair_check_enabled(qpair);
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
}
tr = TAILQ_FIRST(&pqpair->free_tr);
if (tr == NULL || !pqpair->is_enabled) {
/*
* No tracker is available, or the qpair is disabled due to
* an in-progress controller-level reset.
*
* Put the request on the qpair's request queue to be
* processed when a tracker frees up via a command
* completion or when the controller reset is
* completed.
*/
STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
goto exit;
}
TAILQ_REMOVE(&pqpair->free_tr, tr, tq_list); /* remove tr from free_tr */
TAILQ_INSERT_TAIL(&pqpair->outstanding_tr, tr, tq_list);
tr->req = req;
req->cmd.cid = tr->cid;
if (req->payload_size && req->payload.md) {
md_payload = req->payload.md + req->md_offset;
tr->req->cmd.mptr = spdk_vtophys(md_payload);
if (tr->req->cmd.mptr == SPDK_VTOPHYS_ERROR) {
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
rc = -EINVAL;
goto exit;
}
}
if (req->payload_size == 0) {
/* Null payload - leave PRP fields zeroed */
rc = 0;
} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) {
rc = nvme_pcie_qpair_build_contig_request(qpair, req, tr);
} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) {
if (ctrlr->flags & SPDK_NVME_CTRLR_SGL_SUPPORTED) {
rc = nvme_pcie_qpair_build_hw_sgl_request(qpair, req, tr);
} else {
rc = nvme_pcie_qpair_build_prps_sgl_request(qpair, req, tr);
}
} else {
assert(0);
nvme_pcie_fail_request_bad_vtophys(qpair, tr);
rc = -EINVAL;
}
if (rc < 0) {
goto exit;
}
nvme_pcie_qpair_submit_tracker(qpair, tr);
exit:
if (nvme_qpair_is_admin_queue(qpair)) {
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
return rc;
}
static void
nvme_pcie_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
{
uint64_t t02;
struct nvme_tracker *tr, *tmp;
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
struct spdk_nvme_ctrlr_process *active_proc;
/* Don't check timeouts during controller initialization. */
if (ctrlr->state != NVME_CTRLR_STATE_READY) {
return;
}
if (nvme_qpair_is_admin_queue(qpair)) {
active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
} else {
active_proc = qpair->active_proc;
}
/* Only check timeouts if the current process has a timeout callback. */
if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
return;
}
t02 = spdk_get_ticks();
TAILQ_FOREACH_SAFE(tr, &pqpair->outstanding_tr, tq_list, tmp) {
assert(tr->req != NULL);
if (nvme_request_check_timeout(tr->req, tr->cid, active_proc, t02)) {
/*
* The requests are in order, so as soon as one has not timed out,
* stop iterating.
*/
break;
}
}
}
int32_t
nvme_pcie_qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions)
{
struct nvme_pcie_qpair *pqpair = nvme_pcie_qpair(qpair);
struct nvme_pcie_ctrlr *pctrlr = nvme_pcie_ctrlr(qpair->ctrlr);
struct nvme_tracker *tr;
struct spdk_nvme_cpl *cpl;
uint32_t num_completions = 0;
struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
if (spdk_unlikely(!nvme_pcie_qpair_check_enabled(qpair))) {
/*
* qpair is not enabled, likely because a controller reset is
* is in progress. Ignore the interrupt - any I/O that was
* associated with this interrupt will get retried when the
* reset is complete.
*/
return 0;
}
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_robust_mutex_lock(&ctrlr->ctrlr_lock);
}
if (max_completions == 0 || max_completions > pqpair->max_completions_cap) {
/*
* max_completions == 0 means unlimited, but complete at most
* max_completions_cap batch of I/O at a time so that the completion
* queue doorbells don't wrap around.
*/
max_completions = pqpair->max_completions_cap;
}
while (1) {
cpl = &pqpair->cpl[pqpair->cq_head];
if (cpl->status.p != pqpair->phase) {
break;
}
#ifdef __PPC64__
/*
* This memory barrier prevents reordering of:
* - load after store from/to tr
* - load after load cpl phase and cpl cid
*/
spdk_mb();
#endif
if (spdk_unlikely(++pqpair->cq_head == pqpair->num_entries)) {
pqpair->cq_head = 0;
pqpair->phase = !pqpair->phase;
}
tr = &pqpair->tr[cpl->cid];
pqpair->sq_head = cpl->sqhd;
if (tr->active) {
nvme_pcie_qpair_complete_tracker(qpair, tr, cpl, true);
} else {
SPDK_ERRLOG("cpl does not map to outstanding cmd\n");
nvme_qpair_print_completion(qpair, cpl);
assert(0);
}
if (++num_completions == max_completions) {
break;
}
}
if (num_completions > 0) {
if (spdk_likely(nvme_pcie_qpair_update_mmio_required(qpair, pqpair->cq_head,
pqpair->cq_shadow_hdbl,
pqpair->cq_eventidx))) {
g_thread_mmio_ctrlr = pctrlr;
spdk_mmio_write_4(pqpair->cq_hdbl, pqpair->cq_head);
g_thread_mmio_ctrlr = NULL;
}
}
if (spdk_unlikely(ctrlr->timeout_enabled)) {
/*
* User registered for timeout callback
*/
nvme_pcie_qpair_check_timeout(qpair);
}
/* Before returning, complete any pending admin request. */
if (spdk_unlikely(nvme_qpair_is_admin_queue(qpair))) {
nvme_pcie_qpair_complete_pending_admin_request(qpair);
nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock);
}
return num_completions;
}