numam-spdk/test/nvme/deallocated_value/deallocated_value.c
yidong0635 c947e87e46 nvme/deallocated_value: Fix scanbuild error on fedora30 with GCC9.
Scanbuild error on fedora30 reports:
warning: Array access (via field 'write_buf') results in a null pointer dereference
                if (context->write_buf[i]) {

In deallocated_value.c, cleanup function be used at many places to deal with failed
cases even context->write_buf is  NULL, so add context->write_buf pointer check before
array data. I think context->read_buf is the same.

This is related to issue #822.

Change-Id: I33c685fd732da820c1dfc861eb991b92b41caa29
Signed-off-by: yidong0635 <dongx.yi@intel.com>
Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/458736
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2019-06-26 08:06:13 +00:00

446 lines
12 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "spdk/nvme.h"
#include "spdk/env.h"
#define NUM_BLOCKS 100
/*
* The purpose of this sample app is to determine the read value of deallocated logical blocks
* from a given NVMe Controller. The NVMe 1.3 spec requires the controller to list this value,
* but controllers adhering to the NVMe 1.2 spec may not report this value. According to the spec,
* "The values read from a deallocated logical block and its metadata (excluding protection information) shall
* be all bytes set to 00h, all bytes set to FFh, or the last data written to the associated logical block".
*/
struct ns_entry {
struct spdk_nvme_ctrlr *ctrlr;
struct spdk_nvme_ns *ns;
struct ns_entry *next;
struct spdk_nvme_qpair *qpair;
};
struct deallocate_context {
struct ns_entry *ns_entry;
char **write_buf;
char **read_buf;
char *zero_buf;
char *FFh_buf;
int writes_completed;
int reads_completed;
int deallocate_completed;
int flush_complete;
int matches_zeroes;
int matches_previous_data;
int matches_FFh;
};
static struct ns_entry *g_namespaces = NULL;
static void cleanup(struct deallocate_context *context);
static void
fill_random(char *buf, size_t num_bytes)
{
size_t i;
srand((unsigned) time(NULL));
for (i = 0; i < num_bytes; i++) {
buf[i] = rand() % 0x100;
}
}
static void
register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns)
{
struct ns_entry *entry;
const struct spdk_nvme_ctrlr_data *cdata;
cdata = spdk_nvme_ctrlr_get_data(ctrlr);
if (!spdk_nvme_ns_is_active(ns)) {
printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n",
cdata->mn, cdata->sn,
spdk_nvme_ns_get_id(ns));
return;
}
entry = malloc(sizeof(struct ns_entry));
if (entry == NULL) {
perror("ns_entry malloc");
exit(1);
}
entry->ctrlr = ctrlr;
entry->ns = ns;
entry->next = g_namespaces;
g_namespaces = entry;
printf(" Namespace ID: %d size: %juGB\n", spdk_nvme_ns_get_id(ns),
spdk_nvme_ns_get_size(ns) / 1000000000);
}
static uint32_t
get_max_block_size(void)
{
struct ns_entry *ns;
uint32_t max_block_size, temp_block_size;
ns = g_namespaces;
max_block_size = 0;
while (ns != NULL) {
temp_block_size = spdk_nvme_ns_get_sector_size(ns->ns);
max_block_size = temp_block_size > max_block_size ? temp_block_size : max_block_size;
ns = ns->next;
}
return max_block_size;
}
static void
write_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct deallocate_context *context = arg;
context->writes_completed++;
}
static void
read_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct deallocate_context *context = arg;
struct ns_entry *ns_entry = context->ns_entry;
int rc;
rc = memcmp(context->write_buf[context->reads_completed],
context->read_buf[context->reads_completed], spdk_nvme_ns_get_sector_size(ns_entry->ns));
if (rc == 0) {
context->matches_previous_data++;
}
rc = memcmp(context->zero_buf, context->read_buf[context->reads_completed],
spdk_nvme_ns_get_sector_size(ns_entry->ns));
if (rc == 0) {
context->matches_zeroes++;
}
rc = memcmp(context->FFh_buf, context->read_buf[context->reads_completed],
spdk_nvme_ns_get_sector_size(ns_entry->ns));
if (rc == 0) {
context->matches_FFh++;
}
context->reads_completed++;
}
static void
deallocate_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct deallocate_context *context = arg;
printf("blocks matching previous data: %d\n", context->matches_previous_data);
printf("blocks matching zeroes: %d\n", context->matches_zeroes);
printf("blocks matching 0xFF: %d\n", context->matches_FFh);
printf("Deallocating Blocks 0 to %d with random data.\n", NUM_BLOCKS - 1);
printf("On next read, read value will match deallocated block read value.\n");
context->deallocate_completed = 1;
context->reads_completed = 0;
context->matches_previous_data = 0;
context->matches_zeroes = 0;
context->matches_FFh = 0;
}
static void
flush_complete(void *arg, const struct spdk_nvme_cpl *completion)
{
struct deallocate_context *context = arg;
context->flush_complete = 1;
}
static void
deallocate_test(void)
{
struct ns_entry *ns_entry;
struct spdk_nvme_ctrlr *ctrlr;
const struct spdk_nvme_ctrlr_data *data;
struct deallocate_context context;
struct spdk_nvme_dsm_range range;
uint32_t max_block_size;
int rc, i;
memset(&context, 0, sizeof(struct deallocate_context));
max_block_size = get_max_block_size();
ns_entry = g_namespaces;
if (max_block_size > 0) {
context.zero_buf = malloc(max_block_size);
} else {
printf("Unable to determine max block size.\n");
return;
}
if (context.zero_buf == NULL) {
printf("could not allocate buffer for test.\n");
return;
}
context.FFh_buf = malloc(max_block_size);
if (context.FFh_buf == NULL) {
cleanup(&context);
printf("could not allocate buffer for test.\n");
return;
}
context.write_buf = calloc(NUM_BLOCKS, sizeof(char *));
if (context.write_buf == NULL) {
cleanup(&context);
return;
}
context.read_buf = calloc(NUM_BLOCKS, sizeof(char *));
if (context.read_buf == NULL) {
printf("could not allocate buffer for test.\n");
cleanup(&context);
return;
}
memset(context.zero_buf, 0x00, max_block_size);
memset(context.FFh_buf, 0xFF, max_block_size);
for (i = 0; i < NUM_BLOCKS; i++) {
context.write_buf[i] = spdk_dma_zmalloc(0x1000, max_block_size, NULL);
if (context.write_buf[i] == NULL) {
printf("could not allocate buffer for test.\n");
cleanup(&context);
return;
}
fill_random(context.write_buf[i], 0x1000);
context.read_buf[i] = spdk_dma_zmalloc(0x1000, max_block_size, NULL);
if (context.read_buf[i] == NULL) {
printf("could not allocate buffer for test.\n");
cleanup(&context);
return;
}
}
while (ns_entry != NULL) {
ns_entry->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_entry->ctrlr, NULL, 0);
if (ns_entry->qpair == NULL) {
printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair() failed.\n");
return;
}
ctrlr = spdk_nvme_ns_get_ctrlr(ns_entry->ns);
data = spdk_nvme_ctrlr_get_data(ctrlr);
printf("\nController %-20.20s (%-20.20s)\n", data->mn, data->sn);
printf("Controller PCI vendor:%u PCI subsystem vendor:%u\n", data->vid, data->ssvid);
printf("Namespace Block Size:%u\n", spdk_nvme_ns_get_sector_size(ns_entry->ns));
printf("Writing Blocks 0 to %d with random data.\n", NUM_BLOCKS - 1);
printf("On next read, read value will match random data.\n");
context.ns_entry = ns_entry;
for (i = 0; i < NUM_BLOCKS; i++) {
rc = spdk_nvme_ns_cmd_write(ns_entry->ns, ns_entry->qpair, context.write_buf[i],
i,
1,
write_complete, &context, 0);
if (rc) {
printf("Error in nvme command completion, values may be inaccurate.\n");
}
}
while (context.writes_completed < NUM_BLOCKS) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
spdk_nvme_ns_cmd_flush(ns_entry->ns, ns_entry->qpair, flush_complete, &context);
while (!context.flush_complete) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
for (i = 0; i < NUM_BLOCKS; i++) {
rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, context.read_buf[i],
i, /* LBA start */
1, /* number of LBAs */
read_complete, &context, 0);
if (rc) {
printf("Error in nvme command completion, values may be inaccurate.\n");
}
/* block after each read command so that we can match the block to the write buffer. */
while (context.reads_completed <= i) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
}
context.flush_complete = 0;
range.length = NUM_BLOCKS;
range.starting_lba = 0;
rc = spdk_nvme_ns_cmd_dataset_management(ns_entry->ns, ns_entry->qpair,
SPDK_NVME_DSM_ATTR_DEALLOCATE, &range, 1, deallocate_complete, &context);
if (rc) {
printf("Error in nvme command completion, values may be inaccurate.\n");
}
while (!context.deallocate_completed) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
for (i = 0; i < NUM_BLOCKS; i++) {
rc = spdk_nvme_ns_cmd_read(ns_entry->ns, ns_entry->qpair, context.read_buf[i],
i, /* LBA start */
1, /* number of LBAs */
read_complete, &context, 0);
if (rc) {
printf("Error in nvme command completion, values may be inaccurate.\n");
}
while (context.reads_completed <= i) {
spdk_nvme_qpair_process_completions(ns_entry->qpair, 0);
}
}
printf("blocks matching previous data: %d\n", context.matches_previous_data);
printf("blocks matching zeroes: %d\n", context.matches_zeroes);
printf("blocks matching FFh: %d\n", context.matches_FFh);
/* reset counters in between each namespace. */
context.matches_previous_data = 0;
context.matches_zeroes = 0;
context.matches_FFh = 0;
context.writes_completed = 0;
context.reads_completed = 0;
context.deallocate_completed = 0;
spdk_nvme_ctrlr_free_io_qpair(ns_entry->qpair);
ns_entry = ns_entry->next;
}
cleanup(&context);
}
static bool
probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr_opts *opts)
{
printf("Attaching to %s\n", trid->traddr);
return true;
}
static void
attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts)
{
int num_ns;
struct spdk_nvme_ns *ns;
printf("Attached to %s\n", trid->traddr);
/*
* Use only the first namespace from each controller since we are testing controller level functionality.
*/
num_ns = spdk_nvme_ctrlr_get_num_ns(ctrlr);
if (num_ns < 1) {
printf("No valid namespaces in controller\n");
} else {
ns = spdk_nvme_ctrlr_get_ns(ctrlr, 1);
register_ns(ctrlr, ns);
}
}
static void
cleanup(struct deallocate_context *context)
{
struct ns_entry *ns_entry = g_namespaces;
int i;
while (ns_entry) {
struct ns_entry *next = ns_entry->next;
free(ns_entry);
ns_entry = next;
}
for (i = 0; i < NUM_BLOCKS; i++) {
if (context->write_buf && context->write_buf[i]) {
spdk_dma_free(context->write_buf[i]);
} else {
break;
}
if (context->read_buf && context->read_buf[i]) {
spdk_dma_free(context->read_buf[i]);
} else {
break;
}
}
free(context->write_buf);
free(context->read_buf);
free(context->zero_buf);
free(context->FFh_buf);
}
int main(int argc, char **argv)
{
int rc;
struct spdk_env_opts opts;
spdk_env_opts_init(&opts);
opts.name = "deallocate_test";
opts.shm_id = 0;
if (spdk_env_init(&opts) < 0) {
fprintf(stderr, "Unable to initialize SPDK env\n");
return 1;
}
printf("Initializing NVMe Controllers\n");
rc = spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, NULL);
if (rc != 0) {
fprintf(stderr, "spdk_nvme_probe() failed\n");
return 1;
}
if (g_namespaces == NULL) {
fprintf(stderr, "no NVMe controllers found\n");
return 1;
}
printf("Initialization complete.\n");
deallocate_test();
return 0;
}