Changpeng Liu cd258ce089 nvmf: ack the disconect event before call rdma_destroy_id
If we connected a subsystem twice from the initiator, the second
connection will be rejected by the NVMf target, however, the previous
connection will also be impacted because we destroy the connection id
before ack the disconnect event.

Change-Id: Ib597cc68a7823524460693053898f4d6e5499eb4
Signed-off-by: Changpeng Liu <changpeng.liu@intel.com>
2016-07-20 09:45:16 -07:00
2016-07-15 14:35:24 -07:00
2015-09-23 09:05:51 -07:00
2015-11-04 11:05:59 -07:00
2016-05-18 13:51:36 -07:00
2016-06-30 13:50:41 -07:00
2016-01-28 08:54:18 -07:00
2015-09-28 09:07:19 -07:00
2016-06-08 16:06:08 -07:00

Storage Performance Development Kit

Build Status

SPDK Mailing List

SPDK on 01.org

The Storage Performance Development Kit (SPDK) provides a set of tools and libraries for writing high performance, scalable, user-mode storage applications. It achieves high performance by moving all of the necessary drivers into userspace and operating in a polled mode instead of relying on interrupts, which avoids kernel context switches and eliminates interrupt handling overhead.

The development kit currently includes:

  • NVMe driver
  • I/OAT (DMA engine) driver
  • NVMf target

Documentation

Doxygen API documentation is available, as well as a Porting Guide for porting SPDK to different frameworks and operating systems.

Many examples are available in the examples directory.

Changelog

Prerequisites

To build SPDK, some dependencies must be installed.

Fedora/CentOS:

sudo dnf install -y gcc libpciaccess-devel CUnit-devel libaio-devel
# Additional dependencies for NVMf:
sudo dnf install -y libibverbs-devel librdmacm-devel

Ubuntu/Debian:

sudo apt-get install -y gcc libpciaccess-dev make libcunit1-dev libaio-dev
# Additional dependencies for NVMf:
sudo apt-get install -y libibverbs-dev librdmacm-dev

FreeBSD:

  • gcc
  • libpciaccess
  • gmake
  • cunit

Additionally, DPDK is required.

1) cd /path/to/spdk
2) wget http://dpdk.org/browse/dpdk/snapshot/dpdk-16.04.tar.gz
3) tar xfz dpdk-16.04.tar.gz

Linux:

4) (cd dpdk-16.04 && make install T=x86_64-native-linuxapp-gcc DESTDIR=.)

FreeBSD:

4) (cd dpdk-16.04 && gmake install T=x86_64-native-bsdapp-clang DESTDIR=.)

Building

Once the prerequisites are installed, run 'make' within the SPDK directory to build the SPDK libraries and examples.

make DPDK_DIR=/path/to/dpdk

If you followed the instructions above for building DPDK:

Linux:

make DPDK_DIR=./dpdk-16.04/x86_64-native-linuxapp-gcc

FreeBSD:

gmake DPDK_DIR=./dpdk-16.04/x86_64-native-bsdapp-clang

Hugepages and Device Binding

Before running an SPDK application, some hugepages must be allocated and any NVMe and I/OAT devices must be unbound from the native kernel drivers. SPDK includes a script to automate this process on both Linux and FreeBSD. This script should be run as root.

sudo scripts/setup.sh

Examples

Example code is located in the examples directory. The examples are compiled automatically as part of the build process. Simply call any of the examples with no arguments to see the help output. You'll likely need to run the examples as a privileged user (root) unless you've done additional configuration to grant your user permission to allocate huge pages and map devices through vfio.

Description
Languages
C 82.7%
Shell 7.4%
Python 4.8%
Makefile 4.7%
C++ 0.3%